51
|
Benayoun BA, Caburet S, Veitia RA. Forkhead transcription factors: key players in health and disease. Trends Genet 2011; 27:224-32. [PMID: 21507500 DOI: 10.1016/j.tig.2011.03.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 12/16/2022]
Abstract
Forkhead box (FOX) proteins constitute an evolutionarily conserved family of transcription factors with a central role not only during development, but also in the adult organism. Thus, the misregulation and/or mutation of FOX genes often induce human genetic diseases, promote cancer or deregulate ageing. Indeed, germinal FOX gene mutations cause diseases ranging from infertility to language and/or speech disorders and immunological defects. Moreover, because of their central role in signalling pathways and in the regulation of homeostasis, somatic misregulation and/or mutation of FOX genes are associated with cancer. FOX proteins have undergone diversification in terms of their sequence, regulation and function. In addition to dedicated roles, evidence suggests that Forkhead factors have retained some functional redundancy. Thus, combinations of slightly defective alleles might induce disease phenotypes in humans, acting as quantitative trait loci. Uncovering such variants would be a big step towards understanding the functional interdependencies of different FOX members and their implications in complex pathologies.
Collapse
Affiliation(s)
- Bérénice A Benayoun
- CNRS UMR 7592, Institut Jacques Monod, Equipe Génétique et Génomique du Développement Gonadique, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|
52
|
Fleming NI, Knower KC, Lazarus KA, Fuller PJ, Simpson ER, Clyne CD. Aromatase is a direct target of FOXL2: C134W in granulosa cell tumors via a single highly conserved binding site in the ovarian specific promoter. PLoS One 2010; 5:e14389. [PMID: 21188138 PMCID: PMC3004790 DOI: 10.1371/journal.pone.0014389] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 11/30/2010] [Indexed: 12/14/2022] Open
Abstract
Background Granulosa cell tumors (GCT) of the ovary often express aromatase and synthesize estrogen, which in turn may influence their progression. Recently a specific point mutation (C134W) in the FOXL2 protein was identified in >94% of adult-type GCT and it is likely to contribute to their development. A number of genes are known to be regulated by FOXL2, including aromatase/CYP19A1, but it is unclear which are direct targets and whether the C134W mutation alters their regulation. Recently, it has been reported that FOXL2 forms a complex with steroidogenic factor 1 (SF-1) which is a known regulator of aromatase in granulosa cells. Methodology/Principal Findings In this work, the human GCT-derived cell lines KGN and COV434 were heterozygous and wildtype for the FOXL2:C134W mutation, respectively. KGN had abundant FOXL2 mRNA expression but it was not expressed in COV434. Expression of exogenous FOXL2:C134W in COV434 cells induced higher expression of a luciferase reporter for the ovarian specific aromatase promoter, promoter II (PII) (−516bp) than expression of wildtype FOXL2, but did not alter induction of a similar reporter for the steroidogenic acute regulatory protein (StAR) promoter (−1300bp). Co-immunoprecipitation confirmed that FOXL2 bound SF-1 and that it also bound its homologue, liver receptor homologue 1 (LRH-1), however, the C134W mutation did not alter these interactions or induce a selective binding of the proteins. A highly conserved putative binding site for FOXL2 was identified in PII. FOXL2 was demonstrated to bind the site by electrophoretic mobility shift assays (EMSA) and site-directed mutagenesis of this element blocked its differential induction by wildtype FOXL2 and FOXL2:C134W. Conclusions/Significance These findings suggest that aromatase is a direct target of FOXL2:C134W in adult-type GCT via a single distinctive and highly conserved binding site in PII and therefore provide insight into the pathogenic mechanism of this mutation.
Collapse
Affiliation(s)
| | - Kevin C. Knower
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | - Kyren A. Lazarus
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | - Peter J. Fuller
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Evan R. Simpson
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Colin D. Clyne
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
- * E-mail:
| |
Collapse
|
53
|
Raharjo WH, Logan BC, Wen S, Kalb JM, Gaudet J. In vitro and in vivo characterization of Caenorhabditis elegans PHA-4/FoxA response elements. Dev Dyn 2010; 239:2219-32. [PMID: 20623595 DOI: 10.1002/dvdy.22359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Caenorhabditis elegans PHA-4 is a member of the FoxA group of transcription factors. PHA-4 is critical for development of the C. elegans pharynx and directly regulates most or all pharyngeal genes. The consensus binding site of PHA-4 has not been identified, with previous analysis of PHA-4 targets relying on the mammalian FoxA consensus. Here, we use in vitro and in vivo analyses to demonstrate three features of PHA-4 response elements. First, the PHA-4 consensus matches that of other FoxA proteins, but only a subset of possible sites is active in an in vivo assay. Second, sequence flanking the core PHA-4 site can influence the strength of reporter expression in vivo, as seen for other Fox proteins. Third, in the context of some pharyngeal promoters, PHA-4 response elements are flanked by distinct cis-regulatory elements that modulate response to PHA-4, generating gene expression in specific pharyngeal cell types.
Collapse
Affiliation(s)
- Wahyu Hendrati Raharjo
- Genes and Development Research Group, Department of Molecular Biology and Biochemistry, Department of Medical Genetics, Alberta Children's Hospital Research Institute, for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
54
|
Samaan G, Yugo D, Rajagopalan S, Wall J, Donnell R, Goldowitz D, Gopalakrishnan R, Venkatachalam S. Foxn3 is essential for craniofacial development in mice and a putative candidate involved in human congenital craniofacial defects. Biochem Biophys Res Commun 2010; 400:60-5. [DOI: 10.1016/j.bbrc.2010.07.142] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 07/31/2010] [Indexed: 12/12/2022]
|
55
|
Kim HJ. Stem cell potential in Parkinson's disease and molecular factors for the generation of dopamine neurons. Biochim Biophys Acta Mol Basis Dis 2010; 1812:1-11. [PMID: 20713152 DOI: 10.1016/j.bbadis.2010.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/13/2010] [Accepted: 08/11/2010] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) involves the loss of dopamine (DA) neurons, making it the most expected neurodegenerative disease to be treated by cell replacement therapy. Stem cells are a promising source for cell replacement therapy due to their ability to self-renew and their pluripotency/multipotency that allows them to generate various types of cells. However, it is challenging to derive midbrain DA neurons from stem cells. Thus, in this review, I will discuss the molecular factors that are known to play critical roles in the generation and survival of DA neurons. The developmental process of DA neurons and functions of extrinsic soluble factors and homeodomain proteins, forkhead box proteins, proneural genes, Nurr1 and genes involved in epigenetic control are discussed. In addition, different types of stem cells that have potential for future cell replacement therapy are reviewed.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, South Korea.
| |
Collapse
|
56
|
Kohler S, Cirillo LA. Stable chromatin binding prevents FoxA acetylation, preserving FoxA chromatin remodeling. J Biol Chem 2010; 285:464-72. [PMID: 19897491 PMCID: PMC2804194 DOI: 10.1074/jbc.m109.063149] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/05/2009] [Indexed: 12/22/2022] Open
Abstract
FoxA1-3 (formerly HNF3alpha, -beta, and -gamma), members of the FoxA subfamily of forkhead transcription factors, function as initial chromatin-binding and chromatin-remodeling factors in a variety of tissues, including liver and pancreas. Despite essential roles in development and metabolism, regulation of FoxA factors is not well understood. This study examines a potential role for acetylation in the regulation of FoxA chromatin binding and remodeling. Using in silico analysis, we have identified 11 putative p300 acetylation sites within FoxA1, five of which are located within wings 1 and 2 of its winged-helix DNA-binding domain. These polypeptide structures stabilize FoxA DNA and chromatin binding, and we have demonstrated that acetylation attenuates FoxA binding to DNA and diminishes its ability to remodel chromatin. FoxA acetylation is inhibited by chromatin binding. We propose a model whereby stable chromatin binding protects the FoxA DNA-binding domain from acetylation to preserve chromatin binding and remodeling by FoxA factors in the absence of extracellular cues.
Collapse
Affiliation(s)
- Sarah Kohler
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Lisa Ann Cirillo
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
57
|
Chernatynskaya AV, Deleeuw L, Trent JO, Brown T, Lane AN. Structural analysis of the DNA target site and its interaction with Mbp1. Org Biomol Chem 2009; 7:4981-91. [PMID: 19907790 DOI: 10.1039/b912309a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solution structure of a 14 base-pair non-self complementary DNA duplex containing the consensus-binding site of the yeast transcription factor Mbp1 has been determined by NMR using a combination of scalar coupling analysis, time-dependent NOEs, residual dipolar couplings and 13C-edited NMR spectroscopy of a duplex prepared with one strand uniformly labeled with 13C-nucleotides. As expected, the free DNA duplex is within the B-family of structures, and within experimental limits is straight. However, there are clear local structural variations associated with the consensus CGCG element in the binding sequence that are important for sequence recognition. In the complex, the DNA bends around the protein, which also undergoes some conformational rearrangement in the C-terminal region. Structural constraints derived from paramagnetic perturbation experiments with spin-labeled DNA, chemical shift perturbation experiments of the DNA, previous cross-saturation, chemical shift perturbation experiments on the protein, information from mutational analysis, and electrostatics calculations have been used to produce a detailed docked structure using the known solution conformation of the free protein and other spectroscopic information about the Mbp1:DNA complex. A Monte Carlo-based docking procedure with restrained MD in a fully solvated system subjected to available experimental constraints produced models that account for the available structural data, and can rationalize the extensive thermodynamic data about the Mbp1:DNA complex. The protein:DNA interface is closely packed and is associated with a small number of specific contacts. The structure shows an extensive positively charged surface that accounts for the high polyelectrolyte contribution to binding.
Collapse
|
58
|
Sekiya T, Muthurajan UM, Luger K, Tulin AV, Zaret KS. Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA. Genes Dev 2009; 23:804-9. [PMID: 19339686 DOI: 10.1101/gad.1775509] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
FoxA proteins are pioneer transcription factors, among the first to bind chromatin domains in development and enable gene activity. The Fox DNA-binding domain structurally resembles linker histone and binds nucleosomes stably. Using fluorescence recovery after photobleaching, we found that FoxA1 and FoxA2 move much more slowly in nuclei than other transcription factor types, including c-Myc, GATA-4, NF-1, and HMGB1. We find that slower nuclear mobility correlates with high nonspecific nucleosome binding, and point mutations that disrupt nonspecific binding markedly increase nuclear mobility. FoxA's distinct nuclear mobility is consistent with its pioneer activity in chromatin.
Collapse
Affiliation(s)
- Takashi Sekiya
- Epigenetics and Progenitor Cells Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
59
|
Hannenhalli S, Kaestner KH. The evolution of Fox genes and their role in development and disease. Nat Rev Genet 2009; 10:233-40. [PMID: 19274050 DOI: 10.1038/nrg2523] [Citation(s) in RCA: 492] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The forkhead box (Fox) family of transcription factors, which originated in unicellular eukaryotes, has expanded over time through multiple duplication events, and sometimes through gene loss, to over 40 members in mammals. Fox genes have evolved to acquire a specialized function in many key biological processes. Mutations in Fox genes have a profound effect on human disease, causing phenotypes as varied as cancer, glaucoma and language disorders. We summarize the salient features of the evolution of the Fox gene family and highlight the diverse contribution of various Fox subfamilies to developmental processes, from organogenesis to speech acquisition.
Collapse
Affiliation(s)
- Sridhar Hannenhalli
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA. ;
| | | |
Collapse
|
60
|
Abstract
Breast cancer is a heterogeneous disease and classification is important for clinical management. At least five subtypes can be identified based on unique gene expression patterns; this subtype classification is distinct from the histopathological classification. The transcription factor network(s) required for the specific gene expression signature in each of these subtypes is currently being elucidated. The transcription factor network composed of the oestrogen (estrogen) receptor alpha (ERalpha), FOXA1 and GATA3 may control the gene expression pattern in luminal subtype A breast cancers. Breast cancers that are dependent on this network correspond to well-differentiated and hormone-therapy-responsive tumours with good prognosis. In this review, we discuss the interplay between these transcription factors with a particular emphasis on FOXA1 structure and function, and its ability to control ERalpha function. Additionally, we discuss modulators of FOXA1 function, ERalpha-FOXA1-GATA3 downstream targets, and potential therapeutic agents that may increase differentiation through FOXA1.
Collapse
|
61
|
Lazarevich NL, Fleishman DI. Tissue-specific transcription factors in progression of epithelial tumors. BIOCHEMISTRY (MOSCOW) 2008; 73:573-91. [PMID: 18605982 DOI: 10.1134/s0006297908050106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dedifferentiation and epithelial-mesenchymal transition are important steps in epithelial tumor progression. A central role in the control of functional and morphological properties of different cell types is attributed to tissue-specific transcription factors which form regulatory cascades that define specification and differentiation of epithelial cells during embryonic development. The main principles of the action of such regulatory systems are reviewed on an example of a network of hepatocyte nuclear factors (HNFs) which play a key role in establishment and maintenance of hepatocytes--the major functional type of liver cells. HNFs, described as proteins binding to promoters of most hepatospecific genes, not only control expression of functional liver genes, but are also involved in regulation of proliferation, morphogenesis, and detoxification processes. One of the central components of the hepatospecific regulatory network is nuclear receptor HNF4alpha. Derangement of the expression of this gene is associated with progression of rodent and human hepatocellular carcinomas (HCCs) and contributes to increase of proliferation, loss of epithelial morphology, and dedifferentiation. Dysfunction of HNF4alpha during HCC progression can be either caused by structural changes of this gene or occurs due to modification of up-stream regulatory signaling pathways. Investigations preformed on a model system of the mouse one-step HCC progression have shown that the restoration of HNF4alpha function in dedifferentiated cells causes partial reversion of malignant phenotype both in vitro and in vivo. Derangement of HNFs function was also described in other tumors of epithelial origin. We suppose that tissue-specific factors that underlie the key steps in differentiation programs of certain tissues and are able to receive or modulate signals from the cell environment might be considered as promising candidates for the role of tumor suppressors in the tissue types where they normally play the most significant role.
Collapse
Affiliation(s)
- N L Lazarevich
- Institute of Carcinogenesis, Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences, Moscow 115478, Russia.
| | | |
Collapse
|
62
|
Matusik RJ, Jin RJ, Sun Q, Wang Y, Yu X, Gupta A, Nandana S, Case TC, Paul M, Mirosevich J, Oottamasathien S, Thomas J. Prostate epithelial cell fate. Differentiation 2008; 76:682-98. [PMID: 18462434 DOI: 10.1111/j.1432-0436.2008.00276.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Androgen receptor (AR) within prostatic mesenchymal cells, with the absence of AR in the epithelium, is still sufficient to induce prostate development. AR in the luminal epithelium is required to express the secretory markers associated with differentiation. Nkx3.1 is expressed in the epithelium in early prostatic embryonic development and expression is maintained in the adult. Induction of the mouse prostate gland by the embryonic mesenchymal cells results in the organization of a sparse basal layer below the luminal epithelium with rare neuroendocrine cells that are interdispersed within this basal layer. The human prostate shows similar glandular organization; however, the basal layer is continuous. The strong inductive nature of embryonic prostatic and bladder mesenchymal cells is demonstrated in grafts where embryonic stem (ES) cells are induced to differentiate and organize as a prostate and bladder, respectively. Further, the ES cells can be driven by the correct embryonic mesenchymal cells to form epithelium that differentiates into secretory prostate glands and differentiated bladders that produce uroplakin. This requires the ES cells to mature into endoderm that gives rise to differentiated epithelium. This process is control by transcription factors in both the inductive mesenchymal cells (AR) and the responding epithelium (FoxA1 and Nkx3.1) that allows for organ development and differentiation. In this review, we explore a molecular mechanism where the pattern of transcription factor expression controls cell determination, where the cell is assigned a developmental fate and subsequently cell differentiation, and where the assigned cell now emerges with it's own unique character.
Collapse
Affiliation(s)
- Robert J Matusik
- Department of Urologic Surgery, Vanderbilt University Medical Center, A-1302 Medical Center North, 1161 21st Ave South, Nashville, TN 37232 2765, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|