51
|
Shigematsu H, Sokabe T, Danev R, Tominaga M, Nagayama K. A 3.5-nm structure of rat TRPV4 cation channel revealed by Zernike phase-contrast cryoelectron microscopy. J Biol Chem 2009; 285:11210-8. [PMID: 20044482 DOI: 10.1074/jbc.m109.090712] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transient receptor potential vanilloid 4 (TRPV4) is a non-selective cation channel responsive to various stimuli including cell swelling, warm temperatures (27-35 degrees C), and chemical compounds such as phorbol ester derivatives. Here we report the three-dimensional structure of full-length rat TRPV4 purified from baculovirus-infected Sf9 cells. Hexahistidine-tagged rat TRPV4 (His-rTRPV4) was solubilized with detergent and purified through affinity chromatography and size-exclusion chromatography. Chemical cross-linking analysis revealed that detergent-solubilized His-rTRPV4 was a tetramer. The 3.5-nm structure of rat TRPV4 was determined by cryoelectron microscopy using single-particle reconstruction from Zernike phase-contrast images. The overall structure comprises two distinct regions; a larger dense component, likely corresponding to the cytoplasmic N- and C-terminal regions, and a smaller component corresponding to the transmembrane region.
Collapse
Affiliation(s)
- Hideki Shigematsu
- Division of Nano-Structure Physiology, Okazaki Institute for Integrative Bioscience, Higashiyama, Myodaiji, Okazaki 444-8787 Japan
| | | | | | | | | |
Collapse
|
52
|
Yu Y, Ulbrich MH, Li MH, Buraei Z, Chen XZ, Ong ACM, Tong L, Isacoff EY, Yang J. Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci U S A 2009; 106:11558-63. [PMID: 19556541 PMCID: PMC2710685 DOI: 10.1073/pnas.0903684106] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Indexed: 01/20/2023] Open
Abstract
Mutations in PKD1 and TRPP2 account for nearly all cases of autosomal dominant polycystic kidney disease (ADPKD). These 2 proteins form a receptor/ion channel complex on the cell surface. Using a combination of biochemistry, crystallography, and a single-molecule method to determine the subunit composition of proteins in the plasma membrane of live cells, we find that this complex contains 3 TRPP2 and 1 PKD1. A newly identified coiled-coil domain in the C terminus of TRPP2 is critical for the formation of this complex. This coiled-coil domain forms a homotrimer, in both solution and crystal structure, and binds to a single coiled-coil domain in the C terminus of PKD1. Mutations that disrupt the TRPP2 coiled-coil domain trimer abolish the assembly of both the full-length TRPP2 trimer and the TRPP2/PKD1 complex and diminish the surface expression of both proteins. These results have significant implications for the assembly, regulation, and function of the TRPP2/PKD1 complex and the pathogenic mechanism of some ADPKD-producing mutations.
Collapse
Affiliation(s)
- Yong Yu
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Maximilian H. Ulbrich
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Ming-Hui Li
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Xing-Zhen Chen
- Membrane Protein Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2H7; and
| | - Albert C. M. Ong
- Kidney Genetics Group, Academic Unit of Nephrology, Sheffield Kidney Institute, University of Sheffield Medical School, Sheffield S10 2RX, United Kingdom
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Ehud Y. Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Material Science and Physical Bioscience Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
53
|
Inoue R, Jian Z, Kawarabayashi Y. Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol Ther 2009; 123:371-85. [PMID: 19501617 DOI: 10.1016/j.pharmthera.2009.05.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 05/14/2009] [Indexed: 12/22/2022]
Abstract
Transient receptor potential (TRP) proteins constitute a large non-voltage-gated cation channel superfamily, activated polymodally by various physicochemical stimuli, and are implicated in a variety of cellular functions. Known activators for TRP include not only chemical stimuli such as receptor stimulation, increased acidity and pungent/cooling agents, but temperature change and various forms of mechanical stimuli such as osmotic stress, membrane stretch, and shear force. Recent investigations have revealed that at least ten mammalian TRPs exhibit mechanosensitivity (TRPC1, 5, 6; TRPV1, 2, 4; TRPM3, 7; TRPA1; TRPP2), but the mechanisms underlying it appear considerably divergent and complex. The proposed mechanisms are associated with lipid bilayer mechanics, specialized force-transducing structures, biochemical reactions, membrane trafficking and transcriptional regulation. Many of mechanosensitive (MS)-TRP channel likely undergo multiple regulations via these mechanisms. In the cardiovascular system in which hemodynamic forces constantly operate, the impact of mechanical stress may be particularly significant. Extensive morphological and functional studies have indicated that several MS-TRP channels are expressed in cardiac muscle, vascular smooth muscle, endothelium and vasosensory neurons, each differentially contributing to cardiovascular (CV) functions. To further complexity, the recent evidence suggests that mechanical stress may synergize with neurohormonal mechanisms thereby amplifying otherwise marginal responses. Furthermore, the currently available data suggest that MS-TRP channels may be involved in CV pathophysiology such as cardiac arrhythmia, cardiac hypertrophy/myopathy, hypertension and aneurysms. This review will overview currently known mechanisms for mechanical activation/modulation of TRPs and possible connections of MS-TRP channels to CV disorders.
Collapse
Affiliation(s)
- Ryuji Inoue
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka 814-0180, Japan.
| | | | | |
Collapse
|
54
|
Sato C, Maruyama Y, Ogura T, Mio K, Kato K, Kaneko T, Kiyonaka S, Mori Y. Reply to Thinnes: Is There Competition in Trafficking of VDAC-cored VRAC and SOC in NE Differentiation of Cells? J Biol Chem 2009. [DOI: 10.1074/jbc.n900812200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
55
|
Affiliation(s)
- Vera Y Moiseenkova-Bell
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
56
|
Hayashi MK, Tang C, Verpelli C, Narayanan R, Stearns MH, Xu RM, Li H, Sala C, Hayashi Y. The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell 2009; 137:159-71. [PMID: 19345194 PMCID: PMC2680917 DOI: 10.1016/j.cell.2009.01.050] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 11/07/2008] [Accepted: 01/23/2009] [Indexed: 01/28/2023]
Abstract
The postsynaptic density (PSD) is crucial for synaptic functions, but the molecular architecture retaining its structure and components remains elusive. Homer and Shank are among the most abundant scaffolding proteins in the PSD, working synergistically for maturation of dendritic spines. Here, we demonstrate that Homer and Shank, together, form a mesh-like matrix structure. Crystallographic analysis of this region revealed a pair of parallel dimeric coiled coils intercalated in a tail-to-tail fashion to form a tetramer, giving rise to the unique configuration of a pair of N-terminal EVH1 domains at each end of the coiled coil. In neurons, the tetramerization is required for structural integrity of the dendritic spines and recruitment of proteins to synapses. We propose that the Homer-Shank complex serves as a structural framework and as an assembly platform for other PSD proteins.
Collapse
Affiliation(s)
- Mariko Kato Hayashi
- RIKEN-MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y, Sato C, Hamachi I, Mori Y. Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci U S A 2009; 106:5400-5. [PMID: 19289841 PMCID: PMC2664023 DOI: 10.1073/pnas.0808793106] [Citation(s) in RCA: 298] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Indexed: 12/31/2022] Open
Abstract
Canonical transient receptor potential (TRPC) channels control influxes of Ca(2+) and other cations that induce diverse cellular processes upon stimulation of plasma membrane receptors coupled to phospholipase C (PLC). Invention of subtype-specific inhibitors for TRPCs is crucial for distinction of respective TRPC channels that play particular physiological roles in native systems. Here, we identify a pyrazole compound (Pyr3), which selectively inhibits TRPC3 channels. Structure-function relationship studies of pyrazole compounds showed that the trichloroacrylic amide group is important for the TRPC3 selectivity of Pyr3. Electrophysiological and photoaffinity labeling experiments reveal a direct action of Pyr3 on the TRPC3 protein. In DT40 B lymphocytes, Pyr3 potently eliminated the Ca(2+) influx-dependent PLC translocation to the plasma membrane and late oscillatory phase of B cell receptor-induced Ca(2+) response. Moreover, Pyr3 attenuated activation of nuclear factor of activated T cells, a Ca(2+)-dependent transcription factor, and hypertrophic growth in rat neonatal cardiomyocytes, and in vivo pressure overload-induced cardiac hypertrophy in mice. These findings on important roles of native TRPC3 channels are strikingly consistent with previous genetic studies. Thus, the TRPC3-selective inhibitor Pyr3 is a powerful tool to study in vivo function of TRPC3, suggesting a pharmaceutical potential of Pyr3 in treatments of TRPC3-related diseases such as cardiac hypertrophy.
Collapse
Affiliation(s)
| | | | - Motohiro Nishida
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashiku, Fukuoka 812-8582, Japan
| | - Kazuhiro Mio
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono 1-1-4, Tsukuba Ibaraki 305-8568, Japan
| | | | | | | | | | | | | | - Masakazu Ishii
- Department of Pathophysiology, School of Pharmaceutical Sciences, Showa University, Tokyo 142-8555, Japan
| | - Hiroki Takemoto
- Laboratory of Bioorganic Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Akio Ojida
- Laboratory of Bioorganic Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kenta Watanabe
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashiku, Fukuoka 812-8582, Japan
| | - Aya Uemura
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashiku, Fukuoka 812-8582, Japan
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashiku, Fukuoka 812-8582, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tsutomu Kobayashi
- Pharmacology Laboratory, Mitsubishi Tanabe Pharma Corporation 2-2-50, Kawagishi, Toda 335-8505, Japan; and
| | - Yoji Sato
- National Institute of Health Sciences, Setagaya, Tokyo 158-8501, Japan
| | - Chikara Sato
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono 1-1-4, Tsukuba Ibaraki 305-8568, Japan
| | - Itaru Hamachi
- Laboratory of Bioorganic Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | | |
Collapse
|
58
|
Maruyama Y, Ogura T, Mio K, Kato K, Kaneko T, Kiyonaka S, Mori Y, Sato C. Tetrameric Orai1 is a teardrop-shaped molecule with a long, tapered cytoplasmic domain. J Biol Chem 2009; 284:13676-13685. [PMID: 19289460 DOI: 10.1074/jbc.m900812200] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Ca(2+) release-activated Ca(2+) channel is a principal regulator of intracellular Ca(2+) rise, which conducts various biological functions, including immune responses. This channel, involved in store-operated Ca(2+) influx, is believed to be composed of at least two major components. Orai1 has a putative channel pore and locates in the plasma membrane, and STIM1 is a sensor for luminal Ca(2+) store depletion in the endoplasmic reticulum membrane. Here we have purified the FLAG-fused Orai1 protein, determined its tetrameric stoichiometry, and reconstructed its three-dimensional structure at 21-A resolution from 3681 automatically selected particle images, taken with an electron microscope. This first structural depiction of a member of the Orai family shows an elongated teardrop-shape 150A in height and 95A in width. Antibody decoration and volume estimation from the amino acid sequence indicate that the widest transmembrane domain is located between the round extracellular domain and the tapered cytoplasmic domain. The cytoplasmic length of 100A is sufficient for direct association with STIM1. Orifices close to the extracellular and intracellular membrane surfaces of Orai1 seem to connect outside the molecule to large internal cavities.
Collapse
Affiliation(s)
- Yuusuke Maruyama
- Neuroscience Research Institute and National Institute of Advanced Industrial Science and Technology, Umezono 1-1-4, Tsukuba, Ibaraki 305-8568
| | - Toshihiko Ogura
- Neuroscience Research Institute and National Institute of Advanced Industrial Science and Technology, Umezono 1-1-4, Tsukuba, Ibaraki 305-8568; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012
| | - Kazuhiro Mio
- Neuroscience Research Institute and National Institute of Advanced Industrial Science and Technology, Umezono 1-1-4, Tsukuba, Ibaraki 305-8568; Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Umezono 1-1-4, Tsukuba, Ibaraki 305-8568
| | - Kenta Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takeshi Kaneko
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Chikara Sato
- Neuroscience Research Institute and National Institute of Advanced Industrial Science and Technology, Umezono 1-1-4, Tsukuba, Ibaraki 305-8568; Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Umezono 1-1-4, Tsukuba, Ibaraki 305-8568.
| |
Collapse
|
59
|
Hirschler-Laszkiewicz I, Tong Q, Conrad K, Zhang W, Flint WW, Barber AJ, Barber DL, Cheung JY, Miller BA. TRPC3 activation by erythropoietin is modulated by TRPC6. J Biol Chem 2009; 284:4567-81. [PMID: 19074769 PMCID: PMC2640975 DOI: 10.1074/jbc.m804734200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 12/09/2008] [Indexed: 11/06/2022] Open
Abstract
Regulation of intracellular calcium ([Ca(2+)](i)) by erythropoietin (Epo) is an essential part of signaling pathways controlling proliferation and differentiation of erythroid progenitors, but regulatory mechanisms are largely unknown. TRPC3 and the homologous TRPC6 are two members of the transient receptor potential channel (TRPC) superfamily that are expressed on normal human erythroid precursors. Here we show that TRPC3 expression increases but TRPC6 decreases during erythroid differentiation. This is associated with a significantly greater increase in [Ca(2+)](i) in response to Epo stimulation, suggesting that the ratio of TRPC3/TRPC6 is physiologically important. In HEK 293T cells heterologously expressing TRPC and erythropoietin receptor (Epo-R), Epo stimulated an increase in [Ca(2+)](i) through TRPC3 but not TRPC6. Replacement of the C terminus of TRPC3 with the TRPC6 C terminus (TRPC3-C6C) resulted in loss of activation by Epo. In contrast, substitution of the C terminus of TRPC6 with that of TRPC3 (TRPC6-C3C) resulted in an increase in [Ca(2+)](i) in response to Epo. Substitution of the N termini had no effect. Domains in the TRPC3 C terminus between amino acids 671 and 746 are critical for the response to Epo. Epo-R and phospholipase Cgamma associated with TRPC3, and these interactions were significantly reduced with TRPC6 and TRPC3-C6C chimeras. TRPC3 and TRPC6 form heterotetramers. Coexpression of TRPC6 or C3/C6 chimeras with TRPC3 and Epo-R inhibited the Epo-stimulated increase in [Ca(2+)](i). In a heterologous expression system, Epo stimulation increased cell surface expression of TRPC3, which was inhibited by TRPC6. However, in primary erythroblasts, an increase in TRPC3 cell surface expression was not observed in erythroblasts in which Epo stimulated an increase in [Ca(2+)](i), demonstrating that increased membrane insertion of TRPC3 is not required. These data demonstrate that TRPC6 regulates TRPC3 activation by Epo. Endogenously, regulation of TRPC3 by TRPC6 may primarily be through modulation of signaling mechanisms, including reduced interaction of TRPC6 with phospholipase Cgamma and Epo-R.
Collapse
Affiliation(s)
- Iwona Hirschler-Laszkiewicz
- Department of Pediatrics, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Mio K, Ogura T, Yamamoto T, Hiroaki Y, Fujiyoshi Y, Kubo Y, Sato C. Reconstruction of the P2X2 Receptor Reveals a Vase-Shaped Structure with Lateral Tunnels above the Membrane. Structure 2009; 17:266-75. [DOI: 10.1016/j.str.2008.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/30/2008] [Accepted: 12/02/2008] [Indexed: 11/28/2022]
|
61
|
3D structure of ion channels revealed by single particle electron microscopy. Neurosci Res 2009. [DOI: 10.1016/j.neures.2009.09.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
62
|
Nagayama K, Danev R. Phase contrast electron microscopy: development of thin-film phase plates and biological applications. Philos Trans R Soc Lond B Biol Sci 2008; 363:2153-62. [PMID: 18339604 PMCID: PMC2453530 DOI: 10.1098/rstb.2008.2268] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phase contrast transmission electron microscopy (TEM) based on thin-film phase plates has been developed and applied to biological systems. Currently, development is focused on two techniques that employ two different types of phase plates. The first technique uses a Zernike phase plate, which is made of a uniform amorphous carbon film that completely covers the aperture of an objective lens and can retard the phase of electron waves by π/2, except at the centre where a tiny hole is drilled. The other technique uses a Hilbert phase plate, which is made of an amorphous carbon film that is twice as thick as the Zernike phase plate, covers only half of the aperture and retards the electron wave phase by π. By combining the power of efficient phase contrast detection with the accurate preservation achieved by a cryotechnique such as vitrification, macromolecular complexes and supermolecular structures inside intact bacterial or eukaryotic cells may be visualized without staining. Phase contrast cryo-TEM has the potential to bridge the gap between cellular and molecular biology in terms of high-resolution visualization. Examples using proteins, viruses, cyanobacteria and somatic cells are provided.
Collapse
Affiliation(s)
- Kuniaki Nagayama
- Okazaki Institute for Integrative Bioscience and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Japan.
| | | |
Collapse
|
63
|
Abstract
Transient receptor potential (TRP) channels are important in many neuronal and non-neuronal physiological processes. The past 2 years have seen much progress in the use of structural biology techniques to elucidate molecular mechanisms of TRP channel gating and regulation. Two approaches have proven fruitful: (i) a divide-and-conquer strategy has provided high-resolution structural details of TRP channel fragments although it fails to explain how these fragments are integrated in the full channel; and (ii) electron microscopy of entire TRP channels has yielded low-resolution images that provide a basis for testable models of TRP channel architecture. The results of each approach, summarized in this review, provide a preview of what the future holds in TRP channel structural biology.
Collapse
Affiliation(s)
- Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 01238, USA.
| |
Collapse
|
64
|
Abstract
The transient receptor potential (TRP) family of ion channels participate in many signaling pathways. TRPV1 functions as a molecular integrator of noxious stimuli, including heat, low pH, and chemical ligands. Here, we report the 3D structure of full-length rat TRPV1 channel expressed in the yeast Saccharomyces cerevisiae and purified by immunoaffinity chromatography. We demonstrate that the recombinant purified TRPV1 channel retains its structural and functional integrity and is suitable for structural analysis. The 19-A structure of TRPV1 determined by using single-particle electron cryomicroscopy exhibits fourfold symmetry and comprises two distinct regions: a large open basket-like domain, likely corresponding to the cytoplasmic N- and C-terminal portions, and a more compact domain, corresponding to the transmembrane portion. The assignment of transmembrane and cytoplasmic regions was supported by fitting crystal structures of the structurally homologous Kv1.2 channel and isolated TRPV1 ankyrin repeats into the TRPV1 structure.
Collapse
|
65
|
Pathophysiological implications of transient receptor potential channels in vascular function. Curr Opin Nephrol Hypertens 2008; 17:193-8. [DOI: 10.1097/mnh.0b013e3282f52467] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
66
|
Maruyama Y, Ogura T, Mio K, Kiyonaka S, Kato K, Mori Y, Sato C. Three-dimensional reconstruction using transmission electron microscopy reveals a swollen, bell-shaped structure of transient receptor potential melastatin type 2 cation channel. J Biol Chem 2007; 282:36961-70. [PMID: 17940282 DOI: 10.1074/jbc.m705694200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential melastatin type 2 (TRPM2) is a redox-sensitive, calcium-permeable cation channel activated by various signals, such as adenosine diphosphate ribose (ADPR) acting on the ADPR pyrophosphatase (ADPRase) domain, and cyclic ADPR. Here, we purified the FLAG-tagged tetrameric TRPM2 channel, analyzed it using negatively stained electron microscopy, and reconstructed the three-dimensional structure at 2.8-nm resolution. This multimodal sensor molecule has a bell-like shape of 18 nm in width and 25 nm in height. The overall structure is similar to another multimodal sensor channel, TRP canonical type 3 (TRPC3). In both structures, the small extracellular domain is a dense half-dome, whereas the large cytoplasmic domain has a sparse, double-layered structure with multiple internal cavities. However, a unique square prism protuberance was observed under the cytoplasmic domain of TRPM2. The FLAG epitope, fused at the C terminus of the ADPRase domain, was assigned by the antibody to a position close to the protuberance. This indicates that the agonist-binding ADPRase domain and the ion gate in the transmembrane region are separately located in the molecule.
Collapse
Affiliation(s)
- Yuusuke Maruyama
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-4, Tsukuba, Ibaraki 305-8568, Japan
| | | | | | | | | | | | | |
Collapse
|
67
|
Kawata M, Sato C. A statistically harmonized alignment-classification in image space enables accurate and robust alignment of noisy images in single particle analysis. JOURNAL OF ELECTRON MICROSCOPY 2007; 56:83-92. [PMID: 17967811 DOI: 10.1093/jmicro/dfm010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In determining the three-dimensional (3D) structure of macromolecular assemblies in single particle analysis, a large representative dataset of two-dimensional (2D) average images from huge number of raw images is a key for high resolution. Because alignments prior to averaging are computationally intensive, currently available multireference alignment (MRA) software does not survey every possible alignment. This leads to misaligned images, creating blurred averages and reducing the quality of the final 3D reconstruction. We present a new method, in which multireference alignment is harmonized with classification (multireference multiple alignment: MRMA). This method enables a statistical comparison of multiple alignment peaks, reflecting the similarities between each raw image and a set of reference images. Among the selected alignment candidates for each raw image, misaligned images are statistically excluded, based on the principle that aligned raw images of similar projections have a dense distribution around the correctly aligned coordinates in image space. This newly developed method was examined for accuracy and speed using model image sets with various signal-to-noise ratios, and with electron microscope images of the Transient Receptor Potential C3 and the sodium channel. In every data set, the newly developed method outperformed conventional methods in robustness against noise and in speed, creating 2D average images of higher quality. This statistically harmonized alignment-classification combination should greatly improve the quality of single particle analysis.
Collapse
Affiliation(s)
- Masaaki Kawata
- Grid Technology Research Center, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba 305-8568, Japan
| | | |
Collapse
|
68
|
Mio K, Ogura T, Kiyonaka S, Mori Y, Sato C. Subunit dissociation of TRPC3 ion channel under high-salt condition. JOURNAL OF ELECTRON MICROSCOPY 2007; 56:111-117. [PMID: 17967814 DOI: 10.1093/jmicro/dfm012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Single particle analysis is a computer-aided method for determining protein structure using particle images obtained by electron microscopy. This technique has great advantages, especially for analyzing fragile membrane-integrated proteins including ion channels, transporters, and receptors, and for analyzing large complexes difficult to crystallize. It is also useful in the analysis of dynamic conformational changes. We previously determined the structure of TRPC3 (canonical transient receptor potential-3) from negatively stained specimens and from ice-embedded specimens using single particle analysis (BBRC 333: 768-777, 2005; JMB 367: 373-383, 2007). These analyses revealed TRPC3's unique structural features, as well as demonstrating the first visual evidence of the tetramer structure. In establishing the purification procedure, we noticed that the stability of the tetrameric assembly of TRPC3 subunits is largely dependent on the cation concentration in the solution. Here, we report that the TRPC3 tetramer dissociates to monomers under high-salt conditions. It was demonstrated as a delay of elution in size exclusion chromatography, or as a loss of tetrameric protein bands in cross-linking experiments. Electron microscopy of the negatively stained specimens demonstrated that the large tetrameric TRPC3 (200 A in width and 240 A in height) dissociates to round-shaped monomer particles (100 A in diameter) in an ion-strength-dependent manner. These results also suggested that electron microscopy is highly effective when used in the "quality check" of the specimen in each purification step.
Collapse
Affiliation(s)
- Kazuhiro Mio
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono 1-1-4, Tsukuba, Ibaraki 305-8568, Japan
| | | | | | | | | |
Collapse
|