51
|
Rare-earth- and aluminum-free, high strength dilute magnesium alloy for Biomedical Applications. Sci Rep 2020; 10:15839. [PMID: 32985554 PMCID: PMC7522977 DOI: 10.1038/s41598-020-72374-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/31/2020] [Indexed: 11/10/2022] Open
Abstract
Lightweight, recyclable, and plentiful Mg alloys are receiving increased attention due to an exceptional combination of strength and ductility not possible from pure Mg. Yet, due to their alloying elements, such as rare-earths or aluminum, they are either not economical or biocompatible. Here we present a new rare-earth and aluminum-free magnesium-based alloy, with trace amounts of Zn, Ca, and Mn (≈ 2% by wt.). We show that the dilute alloy exhibits outstanding high strength and high ductility compared to other dilute Mg alloys. By direct comparison with annealed material of the same chemistry and using transmission electron microscopy (TEM), high-resolution TEM (HR-TEM) and atom probe tomography analyses, we show that the high strength can be attributed to a number of very fine, Zn/Ca-containing nanoscale precipitates, along with ultra-fine grains. These findings show that forming a hierarchy of nanometer precipitates from just miniscule amounts of solute can invoke simultaneous high strength and ductility, producing an affordable, biocompatible Mg alloy.
Collapse
|
52
|
Recent Advances in the Control of the Degradation Rate of PEO Treated Magnesium and Its Alloys for Biomedical Applications. METALS 2020. [DOI: 10.3390/met10070907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mg and Mg alloys have been studied for almost two centuries; nevertheless, commercial biomedical devices are still not available. The main issue that limits their use in the biomedical field is the rapid degradation rate combined with suitable surface properties. Novel approaches need to be designed for the development of biodegradable Mg-based devices, which could include the use of multifunctional coatings and/or new alloys designed “ad hoc”. The present article reviews on various properties, parameters and improvement methods concerning plasma electrolytic oxidation (PEO) coatings on Mg alloys substrates for biomedical applications. In this regard, (i) optimizing the PEO parameters, (ii) using additives and nanoparticles, (iii) creating combined layers of hard and/or soft particles, (iv) coating the PEO layer with a biodegradable polymer, could be the way to control their degradation rate. The review of recent scientific articles highlights that none of the techniques proposed may be preferred over the others and the need to deepen the studies for allowing the use of Mg-based devices in the biomedical field.
Collapse
|
53
|
Mg-Based Metallic Glass-Polymer Composites: Investigation of Structure, Thermal Properties, and Biocompatibility. METALS 2020. [DOI: 10.3390/met10070867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work, the biomedical applicability and physical properties of magnesium-based metallic glass/polycaprolactone (PCL) composites are explored. The composites were fabricated via mechanical alloying and subsequent coextrusion. The coextrusion process was carried out at a temperature near to the supercooled liquid region of the metallic glass and the viscous region of the polymer. The structures, as well as thermal and mechanical properties of the obtained samples were characterized, and in vivo investigations were undertaken. The composite samples possess acceptable thermal and mechanical properties. Tensile tests indicate the ability of the composites to withstand more than 100% deformation. In vivo studies reveal that the composites are biologically compatible and could be promising for biomedical applications.
Collapse
|
54
|
Kozakiewicz M. Are Magnesium Screws Proper for Mandibular Condyle Head Osteosynthesis? MATERIALS 2020; 13:ma13112641. [PMID: 32531885 PMCID: PMC7321625 DOI: 10.3390/ma13112641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Recently, magnesium alloys have gained a significant amount of recognition as potential biomaterials for degradable implants for craniofacial bone screws. Purpose: The aim of this work was to compare screws made specifically for mandibular head osteosynthesis from different materials. Materials and Methods: Screws measuring 14 mm made by one manufacturer specifically for mandibular head osteosynthesis out of the following materials were selected: magnesium (MgYREZr), titanium (Ti6Al7Nb), and polymer (PLGA). The axial pull-out strength and torsional properties were investigated. Results: Each type of screw presented different pull-out forces (Kruskal–Wallis test, p < 0.001). The magnesium screw had the highest pull-out force of 399 N (cracked without the screw out being pulled out), followed by the titanium screw, with a force of 340 N, and the PLGA screw, with a force of 138 N (always cracked at the base of the screw head without the screw being pulled out). ANOVA was performed for the maximal torques before damage to the screw (torsional properties), revealing that the maximal torque of the magnesium screw was 16 N·cm, while that of the titanium screw was 19 N·cm. The magnesium screw was significantly weaker than the titanium screw (p < 0.05). The measured torque and pull-out force were not related to each other (p > 0.05). Conclusion: Among the screws compared, the metal biodegradable magnesium screw seems to be the most suitable material for multiscrew mandibular head osteosynthesis, considering the condition of the fragile screwdriver socket.
Collapse
Affiliation(s)
- Marcin Kozakiewicz
- Department of Maxillofacial Surgery, Medical University of Lodz, 1st Gen. J. Haller Pl., 90-647 Lodz, Poland
| |
Collapse
|
55
|
|
56
|
Xi Z, Wu Y, Xiang S, Sun C, Wang Y, Yu H, Fu Y, Wang X, Yan J, Zhao D, Wang Y, Zhang N. Corrosion Resistance and Biocompatibility Assessment of a Biodegradable Hydrothermal-Coated Mg-Zn-Ca Alloy: An in Vitro and in Vivo Study. ACS OMEGA 2020; 5:4548-4557. [PMID: 32175501 PMCID: PMC7066561 DOI: 10.1021/acsomega.9b03889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/13/2020] [Indexed: 05/09/2023]
Abstract
A hydrothermal (HT) coating was applied to the biomedical Mg-Zn-Ca alloy surface by microarc oxidation (MAO) and heat treatment. Then, the corrosion resistance and biocompatibility of the coated alloy was evaluated in vitro and in vivo. The corrosion rate (CR) of HT-coated implants was significantly lower in experiment. In addition, this CR increased over time in vivo but was stable, albeit higher, in vitro. The proliferation, adhesion, and live activity of bone marrow stem cells (BMSCs) were significantly greater on the surface of the HT-coated Mg alloy in vitro. Serum Mg2+ was always within the normal range in rabbits with implants, although Ca2+ was higher than normal for both uncoated and coated scaffolds. There were no significant pathological effects on the main organs of alloy-implanted rabbits compared with healthy animals. Thus, the HT coating significantly improved the corrosion resistance and biocompatibility of the Mg-Zn-Ca alloy.
Collapse
Affiliation(s)
- Zheng Xi
- The
Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, Heilongjiang, People’s Republic
of China
| | - Yunfeng Wu
- Institute
for Advanced Ceramics, Harbin Institute
of Technology, Harbin 150001, Heilongjiang, People’s Republic of China
| | - Shouyang Xiang
- The
Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, People’s Republic
of China
| | - Chu Sun
- The
Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, Heilongjiang, People’s Republic
of China
| | - Yongxuan Wang
- Affiliated
Zhongshan Hospital of Dalian University, Dalian 116027, Liaoning, People’s Republic of China
| | - Haiming Yu
- The
Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, Heilongjiang, People’s Republic
of China
| | - Yu Fu
- The
Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, Heilongjiang, People’s Republic
of China
| | - Xintao Wang
- The
Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, People’s Republic
of China
| | - Jinglong Yan
- The
Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, People’s Republic
of China
| | - Dewei Zhao
- Affiliated
Zhongshan Hospital of Dalian University, Dalian 116027, Liaoning, People’s Republic of China
- E-mail: (D.Z.)
| | - Yaming Wang
- Institute
for Advanced Ceramics, Harbin Institute
of Technology, Harbin 150001, Heilongjiang, People’s Republic of China
- E-mail: (Y.W.)
| | - Nan Zhang
- The
Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, Heilongjiang, People’s Republic
of China
- E-mail: (N.Z.)
| |
Collapse
|
57
|
Liu D, Zhou T, Liu Z, Guo B. Effect of solid-solution and aging treatment on corrosion behavior of orthogonal designed and vacuum melted Mg-Zn-Ca-Mn alloys. J Appl Biomater Funct Mater 2020; 18:2280800019887906. [PMID: 31996069 DOI: 10.1177/2280800019887906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fast degradation rate and inhomogeneous corrosion are obstacles for magnesium alloy bio-corrosion properties. In this paper, a quaternary Mg-Zn-Ca-Mn alloy was designed by an orthogonal method and prepared by vacuum induction melting to investigate its bio-corrosion. Microstructure, corrosion morphology, and bio-corrosion properties of as-cast alloys 1 to 5 with good corrosion resistance were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction with immersion and electrochemical tests in simulated body fluid (SBF), respectively. Both the orthogonal method and in vitro degradation experiments demonstrated that alloy 3 exhibited the lowest degradation rate among the tested quaternary Mg-Zn-Ca-Mn alloys. Then, as-cast alloy 3 was treated by solid-solution and solid-solution aging. In vitro experimental results indicated that as-cast alloy 3 showed better corrosion resistance than heat-treated specimens and the average corrosion rate was approximately 0.15 mm/y. Heat-treated alloy 3 exhibited more uniform corrosion than as-cast alloy specimens. These results suggest that alloy 3 has the potential to become a biodegradable candidate material.
Collapse
Affiliation(s)
- Dexue Liu
- School of Material science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, China
| | - Tianshui Zhou
- School of Material science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, China
| | - Zehua Liu
- School of Material science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, China
| | - Bing Guo
- School of Material science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
58
|
Jayasathyakawin S, Ravichandran M, Baskar N, Anand Chairman C, Balasundaram R. Mechanical properties and applications of Magnesium alloy – Review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.matpr.2020.01.255] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
59
|
Du X, Song Y, Xuan X, Chen S, Wu X, Jiang HB, Lee ES, Wang X. Characterization of a Bioresorbable Magnesium-Reinforced PLA-Integrated GTR/GBR Membrane as Dental Applications. SCANNING 2020; 2020:6743195. [PMID: 33024479 PMCID: PMC7520691 DOI: 10.1155/2020/6743195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 05/03/2023]
Abstract
Inferior mechanical properties have always been a limitation of the bioresorbable membranes in GBR/GTR. This study is aimed at fabricating a bioresorbable magnesium-reinforced polylactic acid- (PLA-) integrated membrane and investigating its mechanical properties, degradation rate, and biocompatibility. The uncoated and fluoride-coated magnesium alloys, AZ91, were made into strips. Then, magnesium-reinforced PLA-integrated membrane was made through integration. PLA strips were used in the control group instead of magnesium strips. Specimens were cut into rectangular shape and immersed in Hank's Balanced Salt Solution (HBSS) at 37°C for 4, 8, and 12 d. The weight loss of the AZ91 strips was measured. Three-point bending tests were conducted before and after the immersion to determine the maximum load on specimens. Potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) were conducted on coated and uncoated AZ91 plates to examine corrosion resistance. Murine fibroblast and osteoblast cells were cultured on circular specimens and titanium disks for 1, 3, and 5 d. Thereafter, WST test was performed to examine cell proliferation. As a result, the coated and uncoated groups showed higher maximum loads than the control group at all time points. The weight loss of AZ91 strips used in the coated group was lower than that in the uncoated group. PDP, EIS, SEM, and EDS showed that the coated AZ91 had a better corrosion resistance than the uncoated AZ91. The cell proliferation test showed that the addition of AZ91 did not have an adverse effect on osteoblast cells. Conclusively, the magnesium-reinforced PLA-integrated membrane has excellent load capacity, corrosion resistance, cell affinity, and proper degradation rate. Moreover, it has great potential as a bioresorbable membrane in the GBR/GTR application.
Collapse
Affiliation(s)
- Xin Du
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Yahui Song
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Xinxin Xuan
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Shuzhen Chen
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Xia Wu
- Jinan Stomatological Hospital, Jinan, Shandong 250001, China
| | - Heng Bo Jiang
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Eui-Seok Lee
- Department of Oral and Maxillofacial Surgery, Graduate School of Clinical Dentistry, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Xiaohui Wang
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| |
Collapse
|
60
|
Venezuela JJD, Johnston S, Dargusch MS. The Prospects for Biodegradable Zinc in Wound Closure Applications. Adv Healthc Mater 2019; 8:e1900408. [PMID: 31267693 DOI: 10.1002/adhm.201900408] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/28/2019] [Indexed: 12/16/2022]
Abstract
Zinc is identified as a promising biodegradable metal along with magnesium and iron. In the last 5 years, considerable progress is made on understanding the mechanical properties, biodegradability, and biocompatibility of zinc and its alloys. A majority of these studies have focused on using zinc for absorbable cardiovascular and orthopedic device applications. However, it is likely that zinc is also suitable for other biomedical applications. In this work, the prospects for zinc in the fabrication of wound closure devices such as absorbable sutures, staples, and surgical tacks are critically assessed, with the aim of inspiring future research on biodegradable Zn for this medical application.
Collapse
Affiliation(s)
- Jeffrey Jones D. Venezuela
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering The University of Queensland St Lucia QLD 4072 Australia
| | - Sean Johnston
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering The University of Queensland St Lucia QLD 4072 Australia
| | - Matthew Simon Dargusch
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering The University of Queensland St Lucia QLD 4072 Australia
| |
Collapse
|
61
|
Anisimova N, Kiselevskiy M, Martynenko N, Straumal B, Willumeit-Römer R, Dobatkin S, Estrin Y. Cytotoxicity of biodegradable magnesium alloy WE43 to tumor cells in vitro: Bioresorbable implants with antitumor activity? J Biomed Mater Res B Appl Biomater 2019; 108:167-173. [PMID: 30957969 DOI: 10.1002/jbm.b.34375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
In this study, a degradable magnesium alloy WE43 (Mg-3.56%Y-2.20%Nd-0.47%Zr) was used as a research object. To refine its microstructure from the initial homogenized one, the alloy was subjected to severe plastic deformation (SPD) by equal channel angular pressing (ECAP). The data presented show that coincubation of tumor LNCaP and MDA-MB-231 cells with the WE43 alloy in the homogenized and the ECAP-processed states led to a decrease in their viability and proliferation. An increase in the concentration of Annexin V(+) cells during coincubation with samples in both microstructural states investigated was also observed. This is associated with the induction of apoptosis in the cell culture through contact with the samples. Concurrently, a significant drop in the concentration of Bcl-2(+) cells occurred. It was established that ECAP led to an enhancement of the cytotoxic activity of the alloy against tumor cells. This study demonstrated that alloy WE43 can be considered as a promising candidate for application in orthopedic implants in clinical oncology, where it could play a double role of a mechanically stable, yet bioresorbable, scaffold with local antitumor activity. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:167-173, 2020.
Collapse
Affiliation(s)
- Natalia Anisimova
- National University of Science and Technology "MISIS", Moscow, Russia.,N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Mikhail Kiselevskiy
- National University of Science and Technology "MISIS", Moscow, Russia.,N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Natalia Martynenko
- National University of Science and Technology "MISIS", Moscow, Russia.,A.A. Baikov Institute of Metallurgy and Materials Science of the RAS, Moscow, Russia
| | - Boris Straumal
- National University of Science and Technology "MISIS", Moscow, Russia.,Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Regine Willumeit-Römer
- Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Sergey Dobatkin
- National University of Science and Technology "MISIS", Moscow, Russia.,A.A. Baikov Institute of Metallurgy and Materials Science of the RAS, Moscow, Russia
| | - Yuri Estrin
- Department of Materials Science and Engineering, Monash University, Melbourne, Australia.,Department of Mechanical Engineering, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
62
|
Effects of Extrusion on Mechanical and Corrosion Resistance Properties of Biomedical Mg-Zn-Nd-xCa Alloys. MATERIALS 2019; 12:ma12071049. [PMID: 30934995 PMCID: PMC6479323 DOI: 10.3390/ma12071049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 02/02/2023]
Abstract
Magnesium alloys act as ideal biomedical materials with good biocompatibility. In this paper, the extruded biomedical Mg-6Zn-0.5Nd-0.5/0.8Ca alloys were prepared and their microstructure, mechanical properties and corrosion properties were investigated. The results showed that the surfaces of Mg-6Zn-0.5Nd-0.5/0.8Ca alloys extruded at medium temperature were smooth and compact without cracks. The tensile strength and elongation of Mg-6Zn-0.5Nd-0.5/0.8Ca alloys were 222.5 MPa and 20.2%, and 287.2 MPa and 18.4%, respectively. A large number of dislocations were generated in the grains and on grain boundaries after the extrusion. The alloy was immersed in simulating body fluid (SBF) for the weightlessness corrosion, and the corrosion products were analyzed by FTIR, SEM equipped with EDS. It was found that the corrosion rate of Mg-6Zn-0.5Nd-0.5Ca and Mg-6Zn-0.5Nd-0.8Ca alloy were 0.82 and 2.98 mm/a, respectively. Furthermore, the compact layer was formed on the surface of the alloy, which can effectively hinder the permeation of Cl− and significantly improve the corrosion resistance of magnesium alloys.
Collapse
|