51
|
Synthesis, characterization and application of magnetic mesoporous Fe3O4@Fe-Cu/MCM‐41 as efficient and recyclable nanocatalyst for the Buchwald-Hartwig C-N cross-coupling reaction. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
52
|
Qin J, Zhou T, Zhou TP, Tang L, Zuo H, Yu H, Wu G, Wu Y, Liao RZ, Zhong F. Catalytic Atroposelective Electrophilic Amination of Indoles. Angew Chem Int Ed Engl 2022; 61:e202205159. [PMID: 35612900 DOI: 10.1002/anie.202205159] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 01/13/2023]
Abstract
Reported here is the first catalytic atroposelective electrophilic amination of indoles, which delivers functionalized atropochiral N-sulfonyl-3-arylaminoindoles with excellent optical purity. This reaction was furnished by 1,6-nucleophilic addition to p-quinone diimines. Control experiments suggest an ionic mechanism that differs from the radical addition pathway commonly proposed for 1,6-addition to quinones. The origin of 1,6-addition selectivity was investigated through computational studies. Preliminary studies show that the obtained 3-aminoindoles atropisomers exhibit anticancer activities. This method is valuable with respect to enlarging the toolbox for atropochiral amine derivatives.
Collapse
Affiliation(s)
- Jingyang Qin
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Tong Zhou
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Tai-Ping Zhou
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Langyu Tang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Honghua Zuo
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Huaibin Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Guojiao Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Yuzhou Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Rong-Zhen Liao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| |
Collapse
|
53
|
Cui M, Wang R, Yang Q, Kuang C. Copper-Promoted One-Pot Sandmeyer-Type Reaction for the Synthesis of N-Aryltriazoles. J Org Chem 2022; 87:9654-9662. [PMID: 35880792 DOI: 10.1021/acs.joc.2c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report the copper-catalyzed one-pot Sandmeyer-type reaction of aromatic amines with triazoles to afford N-aryl-1,2,3-triazoles. Diazonium salts, formed from aromatic amines and tert-butyl nitrite in the presence of fluoroboric acid, reacted with triazoles in a copper-catalyzed Sandmeyer-type reaction. The reaction proceeded under mild conditions to afford N-aryltriazoles in moderate to good yields. This method is amenable to a wide range of aromatic amines and triazoles and shows diverse functional group tolerance. Inhibition of the reaction upon the addition of free radical scavengers suggested a radical pathway, in which the aryl radical, copper, and triazole formed a complex that underwent reductive elimination to give aryltriazole compounds; this is consistent with the mechanism underlying the Sandmeyer reaction. Thus, we demonstrate a new effective strategy for the construction of C-N bonds via Sandmeyer-type reactions and a valuable alternative approach for the synthesis of aryltriazole derivatives.
Collapse
Affiliation(s)
- Menghan Cui
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rong Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
54
|
Dhital R, Sen A, Hu H, Ishii R, Sato T, Yashiroda Y, Kimura H, Boone C, Yoshida M, Futamura Y, Hirano H, Osada H, Hashizume D, Uozumi Y, Yamada YM. Phenylboronic Ester-Activated Aryl Iodide-Selective Buchwald-Hartwig-Type Amination toward Bioactivity Assay. ACS OMEGA 2022; 7:24184-24189. [PMID: 35874269 PMCID: PMC9301730 DOI: 10.1021/acsomega.2c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, a phenylboronic ester-activated aryl iodide-selective Buchwald-Hartwig-type amination was developed. When the reaction of aryl iodides and aryl/aliphatic amines using Ni(acac)2 is carried out in the presence of phenylboronic ester, the Buchwald-Hartwig-type amination proceeds smoothly to afford the corresponding amines in high yields. This reaction does not proceed in the absence of phenylboronic ester. A wide variety of aryl iodides can be applied in the presence of aryl chlorides and bromides, which remain intact during the reaction. The mechanistic studies of this reaction suggest that the phenylboronic ester acts as an activator for the amines to form the ″ate complex″. Chemical kinetics studies show that the reaction of aryl iodides, base, and Ni(acac)2 follows first-order kinetics, while that of amines and phenylboronic ester follows zero-order kinetics. The bioactivity screening of the corresponding products showed that some amination products exhibit antifungal activity.
Collapse
Affiliation(s)
- Raghu
N. Dhital
- Green
Nanocatalysis Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Abhijit Sen
- Green
Nanocatalysis Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hao Hu
- Green
Nanocatalysis Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Rikako Ishii
- Green
Nanocatalysis Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takuma Sato
- Green
Nanocatalysis Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yoko Yashiroda
- Molecular
Ligand Target Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Chemical
Genomics Research Group, RIKEN Center for
Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiromi Kimura
- Molecular
Ligand Target Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Charles Boone
- Molecular
Ligand Target Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Donnelly
Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Minoru Yoshida
- Chemical
Genomics Research Group, RIKEN Center for
Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yushi Futamura
- Chemical
Biology Research Group, RIKEN Center for
Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Hirano
- Chemical
Resource Development Research Unit, RIKEN
Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical
Biology Research Group, RIKEN Center for
Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Chemical
Resource Development Research Unit, RIKEN
Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN
Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Yasuhiro Uozumi
- Green
Nanocatalysis Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Institute
for Molecular Science and Graduate School for Advanced Studies, Okazaki, Aichi 444-8787, Japan
| | - Yoichi M.A. Yamada
- Green
Nanocatalysis Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
55
|
Shennan BDA, Berheci D, Crompton JL, Davidson TA, Field JL, Williams BA, Dixon DJ. Branching out: redox strategies towards the synthesis of acyclic α-tertiary ethers. Chem Soc Rev 2022; 51:5878-5929. [PMID: 35770619 DOI: 10.1039/d1cs00669j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acyclic α-tertiary ethers represent a highly prevalent functionality, common to high-value bioactive molecules, such as pharmaceuticals and natural products, and feature as crucial synthetic handles in their construction. As such their synthesis has become an ever-more important goal in synthetic chemistry as the drawbacks of traditional strong base- and acid-mediated etherifications have become more limiting. In recent years, the generation of highly reactive intermediates via redox approaches has facilitated the synthesis of highly sterically-encumbered ethers and accordingly these strategies have been widely applied in α-tertiary ether synthesis. This review summarises and appraises the state-of-the-art in the application of redox strategies enabling acyclic α-tertiary ether synthesis.
Collapse
Affiliation(s)
- Benjamin D A Shennan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Diana Berheci
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jessica L Crompton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Timothy A Davidson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Joshua L Field
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Benedict A Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Darren J Dixon
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
56
|
Abstract
Synthetic chemists have long focused on selective C(sp 3)-N bond-forming approaches in response to the high value of this motif in natural products, pharmaceutical agents and functional materials. In recent years, visible light-induced protocols have become an important synthetic platform to promote this transformation under mild reaction conditions. These photo-driven methods rely on converting visible light into chemical energy to generate reactive but controllable radical species. This Review highlights recent advances in this area, mostly after 2014, with an emphasis placed on C(sp 3)-H bond activations, including amination of olefins and carbonyl compounds, and cross-coupling reactions.
Collapse
|
57
|
Mustière R, Lagardère P, Hutter S, Deraeve C, Schwalen F, Amrane D, Masurier N, Azas N, Lisowski V, Verhaeghe P, Mazier D, Vanelle P, Primas N. Pd-catalyzed C-C and C-N cross-coupling reactions in 2-aminothieno[3,2- d]pyrimidin-4(3 H)-one series for antiplasmodial pharmacomodulation. RSC Adv 2022; 12:20004-20021. [PMID: 35865200 PMCID: PMC9264115 DOI: 10.1039/d2ra01687g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
In 2015, we identified gamhepathiopine (M1), a 2-tert-butylaminothieno[3,2-d]pyrimidin-4(3H)-one antiplasmodial hit targeting all development stages of the human malarial parasite P. falciparum. However, this hit compound suffers from sensitivity to hepatic oxidative metabolism. Herein, we describe the synthesis of 33 new compounds in the 2-aminothieno[3,2-d]pyrimidin-4(3H)-one series modulated at position 6 of this scaffold. The modulations were performed using three palladium-catalyzed cross coupling reactions, namely Suzuki-Miyaura, Sonogashira, and Buchwald-Hartwig. For the latter, we developed the reaction conditions. Then, we evaluated the synthesized compounds for their antiplasmodial activity on the K1 P. falciparum strain and their cytotoxicity on the human HepG2 cell line. Although we did not obtain a compound better than M1 in terms of the antiplasmodial activity, we identified compound 1g bearing a piperidine at position 6 of the thieno[3,2-d]pyrimidin-4(3H)-one ring with an improved cytotoxicity and metabolic stability. 1g is an interesting new starting point for further pharmacomodulation studies. This study also provides valuable antiplasmodial SAR data regarding the nature of the ring at position 6, the possible substituent on this ring, and the introduction of a spacer between this ring and the thienopyrimidinone moiety.
Collapse
Affiliation(s)
- Romain Mustière
- Aix Marseille Université, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie Marseille France
| | - Prisca Lagardère
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques Montpellier France
| | - Sébastien Hutter
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME Marseille France
| | - Céline Deraeve
- LCC-CNRS, Université de Toulouse, CNRS UPR 8241, UPS Toulouse France
| | - Florian Schwalen
- LCC-CNRS, Université de Toulouse, CNRS UPR 8241, UPS Toulouse France
| | - Dyhia Amrane
- Aix Marseille Université, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie Marseille France
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques Montpellier France
| | - Nadine Azas
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME Marseille France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques Montpellier France
| | - Pierre Verhaeghe
- LCC-CNRS, Université de Toulouse, CNRS UPR 8241, UPS Toulouse France.,CHU de Nîmes, service de pharmacie Nimes France
| | - Dominique Mazier
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), INSERM, CNRS, Sorbonne Université Paris France
| | - Patrice Vanelle
- Aix Marseille Université, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie Marseille France .,Service Central de la Qualité et de l'Information Pharmaceutiques, AP-HM, Hôpital Conception Marseille France
| | - Nicolas Primas
- Aix Marseille Université, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie Marseille France .,Service Central de la Qualité et de l'Information Pharmaceutiques, AP-HM, Hôpital Conception Marseille France
| |
Collapse
|
58
|
Chernyshev VM, Khazipov OV, Shevchenko MA, Pasyukov DV, Burykina JV, Minyaev ME, Eremin DB, Ananikov VP. Discovery of the N–NHC Coupling Process under the Conditions of Pd/NHC- and Ni/NHC-Catalyzed Buchwald–Hartwig Amination. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Victor M. Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk 346428, Russia
| | - Oleg V. Khazipov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk 346428, Russia
| | - Maksim A. Shevchenko
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk 346428, Russia
| | - Dmitry V. Pasyukov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk 346428, Russia
| | - Julia V. Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Mikhail E. Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Dmitry B. Eremin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
59
|
Masuda H, Morishita H, Sasaki R, Takahata K, Uemura K, Hachiya I. Synthesis of 2,3,6‐Trisubstituted β‐Carbolin‐1‐ones Utilizing 3‐Amino‐2‐pyridone Synthesis. ChemistrySelect 2022. [DOI: 10.1002/slct.202201737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hiroyoshi Masuda
- Department of Chemistry for Materials Graduate School of Engineering Mie University Tsu Mie 514-8507 Japan
| | - Hiroki Morishita
- Department of Chemistry for Materials Graduate School of Engineering Mie University Tsu Mie 514-8507 Japan
| | - Rikuto Sasaki
- Department of Chemistry for Materials Graduate School of Engineering Mie University Tsu Mie 514-8507 Japan
| | - Kaito Takahata
- Department of Chemistry for Materials Graduate School of Engineering Mie University Tsu Mie 514-8507 Japan
| | - Kento Uemura
- Department of Chemistry for Materials Graduate School of Engineering Mie University Tsu Mie 514-8507 Japan
| | - Iwao Hachiya
- Department of Chemistry for Materials Graduate School of Engineering Mie University Tsu Mie 514-8507 Japan
| |
Collapse
|
60
|
Fukumoto Y, Umeno T, Kuramochi H, Hamada K, Matsumoto S, Suzuki N, Usui K, Mizutani A, Karasawa S. Acid responsiveness of emissive morpholinyl aminoquinolines and their use for cell fluorescence imaging. Org Biomol Chem 2022; 20:4342-4351. [PMID: 35575175 DOI: 10.1039/d2ob00546h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Herein, we report emissive aminoquinoline derivatives (TFMAQ) containing alkylmorpholine and arylmorpholine groups and their photophysical properties, acid-responsiveness, and organelle targeting. The alkylmorpholine group is well-known to favour accumulation in lysosomes and be acid-responsive, but, counterintuitively, the TFMAQ derivatives containing ethylmorpholine groups showed limited accumulation in lysosomes and, instead, preferential accumulation in lipid droplets. The findings reported here will aid the development of organelle/tissue specific dyes for cell imaging and diagnosis.
Collapse
Affiliation(s)
- Yuri Fukumoto
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Tomohiro Umeno
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Hina Kuramochi
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Koichi Hamada
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Shota Matsumoto
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Noriko Suzuki
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Kazuteru Usui
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Akihiro Mizutani
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Satoru Karasawa
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
61
|
Qin J, Zhou T, Zhou T, Tang L, Zuo H, Yu H, Wu G, Wu Y, Liao RZ, Zhong F. Catalytic Atroposelective Electrophilic Amination of Indoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jingyang Qin
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Tong Zhou
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Taiping Zhou
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Langyu Tang
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Honghua Zuo
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Huaibin Yu
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Guojiao Wu
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Yuzhou Wu
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Rong-Zhen Liao
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Fangrui Zhong
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering Luoyu road 1037 430074 Wuhan CHINA
| |
Collapse
|
62
|
Philip RM, Saranya PV, Anilkumar G. Nickel‐catalysed amination of arenes and heteroarenes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Gopinathan Anilkumar
- Mahatma Gandhi University School of Chemical Sciences Priyadarsini Hills P O 686560 KOTTAYAM INDIA
| |
Collapse
|
63
|
Anugu RR, Falck JR. Site-selective amination and/or nitrilation via metal-free C(sp 2)-C(sp 3) cleavage of benzylic and allylic alcohols. Chem Sci 2022; 13:4821-4827. [PMID: 35655896 PMCID: PMC9067586 DOI: 10.1039/d2sc00758d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Benzylic/allylic alcohols are converted via site-selective C(sp2)-C(sp3) cleavage to value-added nitrogenous motifs, viz., anilines and/or nitriles as well as N-heterocycles, utilizing commercial hydroxylamine-O-sulfonic acid (HOSA) and Et3N in an operationally simple, one-pot process. Notably, cyclic benzylic/allylic alcohols undergo bis-functionalization with attendant increases in architectural complexity and step-economy.
Collapse
Affiliation(s)
- Raghunath Reddy Anugu
- Chemistry Division, Biochemistry Dept., Pharmacology Dept., University of Texas Southwestern Medical Center Dallas TX 75390 USA
| | - John R Falck
- Chemistry Division, Biochemistry Dept., Pharmacology Dept., University of Texas Southwestern Medical Center Dallas TX 75390 USA
| |
Collapse
|
64
|
Mo L, Barr HI, Odom AL. Investigation of Phosphine Donor Properties to Vanadium(V) Nitrides. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
65
|
Ibrahim K, Saranya PV, Anilkumar G. Recent Advances and Prospects in the Amination of Benzoxazoles. ChemistrySelect 2022. [DOI: 10.1002/slct.202200601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kaliyathodi Ibrahim
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala INDIA 686560
| | - Padinjare Veetil Saranya
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala INDIA 686560
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala INDIA 686560
| |
Collapse
|
66
|
Fukuoka K, Imai K, Hirano K, Goto S, Miura R, Hachiya I. Synthesis of 3,6‐Disubstituted 4‐Ethoxycarbonylpyranoindol‐1ones Utilizing 3‐Amino‐2‐pyrone Synthesis. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kota Fukuoka
- Mie University Graduate School of Engineering Faculty of Engineering: Mie Daigaku Daigakuin Kogaku Kenkyuka Kogakubu Chemistry for Materials JAPAN
| | - Katsutoshi Imai
- Mie University Graduate School of Engineering Faculty of Engineering: Mie Daigaku Daigakuin Kogaku Kenkyuka Kogakubu Chemistry for Materials JAPAN
| | - Kotaro Hirano
- Mie University Graduate School of Engineering Faculty of Engineering: Mie Daigaku Daigakuin Kogaku Kenkyuka Kogakubu Chemistry for Materials JAPAN
| | - Shinsuke Goto
- Mie University Graduate School of Engineering Faculty of Engineering: Mie Daigaku Daigakuin Kogaku Kenkyuka Kogakubu Chemistry for Materials JAPAN
| | - Ryoya Miura
- Mie University Graduate School of Engineering Faculty of Engineering: Mie Daigaku Daigakuin Kogaku Kenkyuka Kogakubu Chemistry for Materials JAPAN
| | - Iwao Hachiya
- Graduate School of Engineering, Mie University Department of Chemistry for Materials 1577 Kurimamachiya-cho 514-8507 Tsu JAPAN
| |
Collapse
|
67
|
Ge X, He X, Lin Z, Zhu Y, Jiang X, Zhao L, Zeng F, Chen L, Xu W, Liu T, Chen Z, Zhao C, Huang Y, Liu B. 6,8-(1,3-Diaminoguanidine) luteolin and its Cr complex show hypoglycemic activities and alter intestinal microbiota composition in type 2 diabetes mice. Food Funct 2022; 13:3572-3589. [PMID: 35262159 DOI: 10.1039/d2fo00021k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Flavonoid compounds such as luteolin exhibit hypolipidemic effects, and there are few reports on the hypoglycemic activity of luteolin derivatives. In this research, 6,8-(1,3-diaminoguanidine) luteolin (DAGL) and its Cr complex (DAGL·Cr) were obtained as a result of structural modifications to luteolin, and the hypoglycemic activities and the composition of intestinal microbiota in T2DM mice were investigated. This study found that DAGL and DAGL·Cr could significantly restore body weight, FBG, OGTT, AUC, and GSP in T2DM mice. Moreover, the pancreatic islet function index and the biochemical indicators of serum and the liver were also significantly improved. The histopathological results also showed that DAGL and DAGL·Cr had a stronger repair ability in the liver and the pancreas. It was also revealed that the potential hypoglycemic mechanism of DAGL and DAGL·Cr was involved in the simultaneous regulation of PI3K/AKT-1/GSK-3β/GLUT-4 and PI3K/AKT-1/mTOR/S6K1/IRS-1. Furthermore, DAGL and DAGL·Cr could also regulate the structure of the intestinal microbiota and increase the content of SCFA to relieve the symptoms of hyperglycemia in T2DM mice. This included a significant reduction in the ratio of Firmicutes and Bacteroidetes (F/B), and at the genus level, an increase in the relative abundance of Alistipe and Ruminiclostridium, and improvement in the content of SCFA in the feces of T2DM mice. In conclusion, in this study, DAGL and DAGL·Cr were found to improve hyperglycemia in T2DM mice by improving the pancreatic islet function index, regulating the biochemical indicators of serum and the liver, repairing damaged tissues, and regulating the PI3K/AKT-1 signaling pathway as well as reducing F/B, increasing the relative abundance of intestinal beneficial microbiota, and the content of SCFA in the feces. The hypoglycemic effect of DAGL·Cr on the body weight, serum IL-10, serum IL-6, and pancreatic islet function index was significantly better than that of DAGL.
Collapse
Affiliation(s)
- Xiaodong Ge
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Xiaoyu He
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhenshan Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Yuxian Zhu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Xiaoqin Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Liyuan Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Ligen Chen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Wei Xu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Tingting Liu
- Clinical Pharmacy Department, Yancheng Second People's Hospital, Yancheng, Jiangsu 224051, China
| | - Zhigang Chen
- Clinical Pharmacy Department, Yancheng Second People's Hospital, Yancheng, Jiangsu 224051, China
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Ying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
68
|
Gribanov PS, Philippova AN, Topchiy MA, Minaeva LI, Asachenko AF, Osipov SN. General Method of Synthesis of 5-(Het)arylamino-1,2,3-triazoles via Buchwald-Hartwig Reaction of 5-Amino- or 5-Halo-1,2,3-triazoles. Molecules 2022; 27:1999. [PMID: 35335361 PMCID: PMC8949195 DOI: 10.3390/molecules27061999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
An efficient access to the novel 5-(het)arylamino-1,2,3-triazole derivatives has been developed. The method is based on Buchwald-Hartwig cross-coupling reaction of 5-Amino or 5-Halo-1,2,3-triazoles with (het)aryl halides and amines, respectively. As result, it was found that palladium complex [(THP-Dipp)Pd(cinn)Cl] bearing expanded-ring N-heterocyclic carbene ligand is the most active catalyst for the process to afford the target molecules in high yields.
Collapse
Affiliation(s)
- Pavel S. Gribanov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Str., 119991 Moscow, Russia; (A.N.P.); (S.N.O.)
| | - Anna N. Philippova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Str., 119991 Moscow, Russia; (A.N.P.); (S.N.O.)
| | - Maxim A. Topchiy
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy Prospect 29, 119991 Moscow, Russia; (M.A.T.); (L.I.M.); (A.F.A.)
| | - Lidiya I. Minaeva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy Prospect 29, 119991 Moscow, Russia; (M.A.T.); (L.I.M.); (A.F.A.)
| | - Andrey F. Asachenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy Prospect 29, 119991 Moscow, Russia; (M.A.T.); (L.I.M.); (A.F.A.)
| | - Sergey N. Osipov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Str., 119991 Moscow, Russia; (A.N.P.); (S.N.O.)
| |
Collapse
|
69
|
Indole-Based Tubulin Inhibitors: Binding Modes and SARs Investigations. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051587. [PMID: 35268688 PMCID: PMC8911766 DOI: 10.3390/molecules27051587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Tubulin inhibitors can interfere with normal cell mitosis and inhibit cell proliferation through interfering with the normal structure and function of microtubules, forming spindle filaments. Indole, as a privileged pharmacological skeleton, has been widely used in anti-cancer inhibitors. A variety of alkaloids containing an indole core obtained from natural sources have been proven to inhibit tubulin polymerization, and an ever-increasing number of synthetic indole-based tubulin inhibitors have been reported. Among these, several kinds of indole-based derivatives, such as TMP analogues, aroylindoles, arylthioindoles, fused indole, carbazoles, azacarbolines, alkaloid nortopsentin analogues and bis-indole derivatives, have shown good inhibition activities towards tubulin polymerization. The binding modes and SARs investigations of synthetic indole derivatives, along with a brief mechanism on their anti-tubulin activity, are presented in this review.
Collapse
|
70
|
Genheden S, Mårdh A, Lahti G, Engkvist O, Olsson S, Kogej T. Prediction of the chemical context for Buchwald‐Hartwig coupling reactions. Mol Inform 2022; 41:e2100294. [PMID: 35122702 PMCID: PMC9540548 DOI: 10.1002/minf.202100294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/05/2022] [Indexed: 11/10/2022]
Abstract
We present machine learning models for predicting the chemical context for Buchwald‐Hartwig coupling reactions, i. e., what chemicals to add to the reactants to give a productive reaction. Using reaction data from in‐house electronic lab notebooks, we train two models: one based on single‐label data and one based on multi‐label data. Both models show excellent top‐3 accuracy of approximately 90 %, which suggests strong predictivity. Furthermore, there seems to be an advantage of including multi‐label data because the multi‐label model shows higher accuracy and better sensitivity for the individual contexts than the single‐label model. Although the models are performant, we also show that such models need to be re‐trained periodically as there is a strong temporal characteristic to the usage of different contexts. Therefore, a model trained on historical data will decrease in usefulness with time as newer and better contexts emerge and replace older ones. We hypothesize that such significant transitions in the context‐usage will likely affect any model predicting chemical contexts trained on historical data. Consequently, training context prediction models warrants careful planning of what data is used for training and how often the model needs to be re‐trained.
Collapse
|
71
|
Dong J, Peng L, Yang X, Zhang Z, Zhang P. XGBoost-based intelligence yield prediction and reaction factors analysis of amination reaction. J Comput Chem 2022; 43:289-302. [PMID: 34862652 DOI: 10.1002/jcc.26791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022]
Abstract
Buchwald-Hartwig amination reaction catalyzed by palladium plays an important role in drug synthesis. In the last few years, machine learning-assisted strategies emerged and quickly gained attention. In this article, an importance and relevance-based integrated feature screening method is proposed to effectively filter high-dimensional feature descriptor data. Then, a regularized machine learning boosting tree model, eXtreme Gradient Boosting, is introduced to intelligently predict reaction performance in multidimensional chemistry space. Furthermore, convergence, interpretability, generalization, and the internal association between reaction conditions and yields are excavated, which provides intelligent assistance for the optimal design of coupling reaction system and evaluating the reaction conditions. Compared with recently published results, the proposed method requires fewer feature descriptors, takes less time, and achieves more accurate prediction accuracy.
Collapse
Affiliation(s)
- Jing Dong
- Henan Engineering Research Center for Artificial Intelligence Theory and Algorithms, School of Mathematics and Statistics, Henan University, Kaifeng, China
| | - Lichao Peng
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, China
| | - Xiaohui Yang
- Henan Engineering Research Center for Artificial Intelligence Theory and Algorithms, School of Mathematics and Statistics, Henan University, Kaifeng, China
| | - Zelin Zhang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Puyu Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, China
| |
Collapse
|
72
|
Kubota K, Endo T, Uesugi M, Hayashi Y, Ito H. Solid-State C-N Cross-Coupling Reactions with Carbazoles as Nitrogen Nucleophiles Using Mechanochemistry. CHEMSUSCHEM 2022; 15:e202102132. [PMID: 34816600 DOI: 10.1002/cssc.202102132] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The palladium-catalyzed solid-state C-N cross-coupling of carbazoles with aryl halides via a high-temperature ball-milling technique has been reported. This reaction allowed simple, fast, and efficient synthesis of N-arylcarbazole derivatives in good to excellent yields without the use of large amounts of organic solvents in air. Importantly, the developed solid-state coupling approach enabled the cross-coupling of poorly soluble aryl halides with large polyaromatic structures that are barely reactive under conventional solution-based conditions.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Tsubura Endo
- Division of Applied Chemistry Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Minami Uesugi
- Division of Applied Chemistry Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yuta Hayashi
- Division of Applied Chemistry Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
73
|
Zheng DZ, Xiong HG, Song AX, Yao HG, Xu C. Buchwald-Hartwig Amination of Aryl Esters and Chlorides catalyzed by Dianisole-decorated Pd-NHC complex. Org Biomol Chem 2022; 20:2096-2101. [DOI: 10.1039/d1ob02051j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular and generic method for the Buchwald-Hartwig amination reactions of relatively unreactive aryl esters as acyl electrophiles and aryl chlorides as aryl electrophiles is developed, delivering efficient synthesis of...
Collapse
|
74
|
Grabowski D, Alef S, Becker S, Müller U, Schnakenburg G, Höger S. Condensation of pyrylium salts with mixed anhydrides: aryl ethers, aryl amines and sterically congested aromatics. Org Chem Front 2022. [DOI: 10.1039/d1qo01419f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Condensation of 2,4,6-triaryl pyrylium salts with mixed anhydrides, formed in situ from α-functionalized sodium acetates and an anhydride solvent, leads in good yields to the corresponding 2,4,6-triaryl benzenes functionalized at their 1-position.
Collapse
Affiliation(s)
- Daniel Grabowski
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Susanne Alef
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Steven Becker
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Ute Müller
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| |
Collapse
|
75
|
Li C, Zhang Y, Sun W. Nickel-Catalyzed Paired Electrochemical Cross-Coupling of Aryl Halides with Nucleophiles. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1581-0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractElectrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. However, most electrochemical transformations only employ one electrode (anodic oxidation or cathodic reduction) to afford the desired products, while the chemistry that occurs at the counter electrode yields stoichiometric waste. In contrast, paired electrochemical reactions can synchronously utilize the anodic and cathodic reactions to deliver the desired product, thus improving the atom economy and energy efficiency of the electrolytic process. This review gives an overview of recent advances in nickel-catalyzed paired electrochemical cross-coupling reactions of aryl/alkenyl halides with different nucleophiles.1 Introduction2 Nickel-Catalyzed Cross-Coupling Reactions2.1 C–C Bond Formation2.2 C–N Bond Formation2.3 C–S/O Bond Formation2.4 C–P Bond Formation3 Conclusion
Collapse
Affiliation(s)
- Chao Li
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University
- National Institute of Biological Sciences
| | - Yong Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University
- National Institute of Biological Sciences
| | - Wenxuan Sun
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University
- National Institute of Biological Sciences
| |
Collapse
|
76
|
Astakhov AV, Chernenko AY, Kutyrev VV, Ranny GS, Minyaev ME, Chernyshev VM, Ananikov VP. Selective Buchwald–Hartwig arylation of C-amino-1,2,4-triazoles and other coordinating aminoheterocycles enabled by bulky NHC ligands and TPEDO activator. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01832b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A facile method for selective N-(hetero)arylation of coordinating 3(5)-amino-1,2,4-triazoles under Pd/NHC catalysis using TPEDO as a new efficient Pd(ii) to Pd(0) reductant has been developed.
Collapse
Affiliation(s)
- Alexander V. Astakhov
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Andrey Yu. Chernenko
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Vadim V. Kutyrev
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Gleb S. Ranny
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Mikhail E. Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Victor M. Chernyshev
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
77
|
Neigenfind P, Knyszek D, Handelmann J, Gessner VH. Synthesis of Sterically Encumbered Di- and Triarylamines by Palladium-Catalysed C-N Coupling Reactions at Mild Reaction Conditions. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02352g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of bulky, ortho-substituted triarylamines often represents a synthetic challenge, but is highly desirable due to the use of these compounds in organic electronics. Here, we report on a...
Collapse
|
78
|
Pasqualetto G, Pileggi E, Schepelmann M, Varricchio C, Rozanowska M, Brancale A, Bassetto M. Ligand-based rational design, synthesis and evaluation of novel potential chemical chaperones for opsin. Eur J Med Chem 2021; 226:113841. [PMID: 34555613 DOI: 10.1016/j.ejmech.2021.113841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/01/2022]
Abstract
Inherited blinding diseases retinitis pigmentosa (RP) and a subset of Leber's congenital amaurosis (LCA) are caused by the misfolding and mistrafficking of rhodopsin molecules, which aggregate and accumulate in the endoplasmic reticulum (ER), leading to photoreceptor cell death. One potential therapeutic strategy to prevent the loss of photoreceptors in these conditions is to identify opsin-binding compounds that act as chemical chaperones for opsin, aiding its proper folding and trafficking to the outer cell membrane. Aiming to identify novel compounds with such effect, a rational ligand-based approach was applied to the structure of the visual pigment chromophore, 11-cis-retinal, and its locked analogue 11-cis-6mr-retinal. Following molecular docking studies on the main chromophore binding site of rhodopsin, 49 novel compounds were synthesized according to optimized one-to seven-step synthetic routes. These agents were evaluated for their ability to compete for the chromophore binding site of opsin, and their capacity to increase the trafficking of the P23H opsin mutant from the ER to the cell membrane. Different new molecules displayed an effect in at least one assay, acting either as chemical chaperones or as stabilizers of the 9-cis-retinal-rhodopsin complex. These compounds could provide the basis to develop novel therapeutics for RP and LCA.
Collapse
Affiliation(s)
- Gaia Pasqualetto
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Elisa Pileggi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Martin Schepelmann
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, 1090, Austria; School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Malgorzata Rozanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK; Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff, CF10 3NB, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Marcella Bassetto
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
79
|
Ma Y, Hussein AA, Wang Z. Boosting Palladium-Catalyzed Aryl-Nitro Bond Activation Reaction by Understanding the Electronic, Electrostatic, and Polarization Effect: A Computational Study from a Basic Understanding to Ligand Design. J Org Chem 2021; 87:531-539. [PMID: 34910501 DOI: 10.1021/acs.joc.1c02536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although palladium-catalyzed aryl-nitro bond activation reaction has recently gained a lot of interest, it still requires rather harsh conditions. We here systematically explore the substituent effect on oxidative addition steps, known as the rate-determining step, by density functional theory simulations based on a Nakao's nitrogen heterocyclic carbene (NHC) ligand. The key aryl ring on the catalyst, ring A, acts as a π-donor and stabilizes the palladium center of the transition state, and thus an electron-rich ring A is expected to lower the barrier. However, the polarization and electrostatic effects were shown to be more important, although they were often ignored before. These effects originate from through-space interaction with a nitro group in the resting state, and the overall effect is that any polarizable or partly negative group near ortho- or meta-site of ring A is harmful for the reaction. Based on these discoveries, we proposed a list of guidelines for successful ligand developments and designed several new ligands. These ligands exhibit a significantly lower barrier than the reported Nakao's ligand by as large as ∼5 kcal/mol, in both gas phase and solvent with a moderate dipole. These candidates will promote further experimental studies and enhance the ability to improve ligands in a rational and predictive manner.
Collapse
Affiliation(s)
- Yumiao Ma
- BSJ Institue, Haidian, Beijing 100084, People's Republic of China.,Hangzhou Yanqu Information Technology Co., Ltd. Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, People's Republic of China
| | - Aqeel A Hussein
- Department of Pharmacy, College of Medicine, Komar University of Science and Technology, Kurdistan Region, Sulaymaniyah, Iraq
| | - Zhaohong Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
80
|
Zoghi R, Heravi MM, Montazeri N, Mohammadi Zeydi M, Hosseinnejad T. Preparation of an Efficient and Recoverable Catalyst through Immobilization of PdCl2 on Modified Poly(styrene-co-maleic anhydride) for the Suzuki Cross-Coupling Reaction. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021100183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
81
|
Beletskaya IP, Averin AD. Metal-catalyzed reactions for the C(sp2)–N bond formation: achievements of recent years. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The review deals with the main catalytic methods for the C(sp2)–N bond formation, including Buchwald–Hartwig palladium-catalyzed amination of aryl and heteroaryl halides, renaissance of the Ullmann chemistry, i.e., the application of catalysis by copper complexes to form the carbon–nitrogen bond, and Chan–Lam reactions of (hetero)arylboronic acids with amines. Also, oxidative amination with C–H activation, which has been booming during the last decade, is addressed. Particular attention is paid to achievements in the application of heterogenized catalysts.
The bibliography includes 350 references.
Collapse
|
82
|
Stiniya S, Saranya PV, Anilkumar G. An overview of iron‐catalyzed N‐alkylation reactions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sebastian Stiniya
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
| | | | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Kottayam Kerala India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam Kerala India
| |
Collapse
|
83
|
Li J, Wang X, Wang Z, Shi Y. A Cu-Promoted C-N Coupling of Boron Esters and Diaziridinone: An Approach to Aryl Ureas. Org Lett 2021; 23:8958-8962. [PMID: 34756047 DOI: 10.1021/acs.orglett.1c03468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel Cu-promoted C-N coupling between boron esters and di-tert-butyldiaziridinone is described. A wide variety of aryl ureas can be readily obtained under mild conditions with up to a 92% yield.
Collapse
Affiliation(s)
- Jing Li
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Xiaoyu Wang
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Zhanwei Wang
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| |
Collapse
|
84
|
Swami B, Yadav D, Menon RS. Benzannulation Reactions: A Case for Perspective Change From Arene Decoration to Arene Construction. CHEM REC 2021; 22:e202100249. [PMID: 34796605 DOI: 10.1002/tcr.202100249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022]
Abstract
Benzannulation reactions involve construction of a benzene ring from acyclic precursors. This class of reactions offer a versatile and often superior alternative to aromatic substitution for construction of substituted arenes. Selected pioneering and recent reports of various benzannulation reactions are categorised and discussed in this review.
Collapse
Affiliation(s)
- Bhawna Swami
- Department of Chemistry, Central University of Haryana Jant-Pali, Mahendergarh, Haryana, 120301, India
| | - Deepak Yadav
- Department of Chemistry, Central University of Haryana Jant-Pali, Mahendergarh, Haryana, 120301, India
| | - Rajeev S Menon
- Department of Chemistry, Central University of Haryana Jant-Pali, Mahendergarh, Haryana, 120301, India
| |
Collapse
|
85
|
Li DH, Lan XB, Song AX, Rahman MM, Xu C, Huang FD, Szostak R, Szostak M, Liu FS. Buchwald-Hartwig Amination of Coordinating Heterocycles Enabled by Large-but-Flexible Pd-BIAN-NHC Catalysts*. Chemistry 2021; 28:e202103341. [PMID: 34773313 DOI: 10.1002/chem.202103341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 01/21/2023]
Abstract
A new class of large-but-flexible Pd-BIAN-NHC catalysts (BIAN=acenaphthoimidazolylidene, NHC=N-heterocyclic carbene) has been rationally designed to enable the challenging Buchwald-Hartwig amination of coordinating heterocycles. This robust class of BIAN-NHC catalysts permits cross-coupling under practical aerobic conditions of a variety of heterocycles with aryl, alkyl, and heteroarylamines, including historically challenging oxazoles and thiazoles as well as electron-deficient heterocycles containing multiple heteroatoms with BIAN-INon (N,N'-bis(2,6-di(4-heptyl)phenyl)-7H-acenaphtho[1,2-d]imidazol-8-ylidene) as the most effective ligand. Studies on the ligand structure and electronic properties of the carbene center are reported. The study should facilitate the discovery of even more active catalyst systems based on the unique BIAN-NHC scaffold.
Collapse
Affiliation(s)
- Dong-Hui Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| | - Xiao-Bing Lan
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou, Hunan Province 423000, P. R. China
| | - A-Xiang Song
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Chang Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| | - Fei-Dong Huang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw, 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Feng-Shou Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| |
Collapse
|
86
|
Fan GG, Jiang BW, Sang W, Cheng H, Zhang R, Yu BY, Yuan Y, Chen C, Verpoort F. Metal-Free Synthesis of Heteroaryl Amines or Their Hydrochlorides via an External-Base-Free and Solvent-Free C-N Coupling Protocol. J Org Chem 2021; 86:14627-14639. [PMID: 34658240 DOI: 10.1021/acs.joc.1c01467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, a metal-free and solvent-free protocol was developed for the C-N coupling of heteroaryl halides and amines, which afforded numerous heteroaryl amines or their hydrochlorides without any external base. Further investigations elucidated that the basicity of amines and specific interactions derived from the X-ray crystallography analysis of 3j'·HCl played pivotal roles in the reactions. Moreover, this protocol was scalable to gram scales and applicable to drug molecules, which demonstrated its practical value for further applications.
Collapse
Affiliation(s)
- Guang-Gao Fan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Bo-Wen Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Wei Sang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Hua Cheng
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, PR China
| | - Rui Zhang
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, PR China
| | - Bao-Yi Yu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing University of Agriculture, Beinong Road 7, Beijing 102206, PR China
| | - Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China.,National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russian Federation.,Ghent University Global Campus, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 21985, Korea
| |
Collapse
|
87
|
Jana R, Begam HM, Dinda E. The emergence of the C-H functionalization strategy in medicinal chemistry and drug discovery. Chem Commun (Camb) 2021; 57:10842-10866. [PMID: 34596175 DOI: 10.1039/d1cc04083a] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to the market competitiveness and urgent societal need, an optimum speed of drug discovery is an important criterion for successful implementation. Despite the rapid ascent of artificial intelligence and computational and bioanalytical techniques to accelerate drug discovery in big pharma, organic synthesis of privileged scaffolds predicted in silico for in vitro and in vivo studies is still considered as the rate-limiting step. C-H activation is the latest technology added into an organic chemist's toolbox for the rapid construction and late-stage modification of functional molecules to achieve the desired chemical and physical properties. Particularly, elimination of prefunctionalization steps, exceptional functional group tolerance, complexity-to-diversity oriented synthesis, and late-stage functionalization of privileged medicinal scaffolds expand the chemical space. It has immense potential for the rapid synthesis of a library of molecules, structural modification to achieve the required pharmacological properties such as absorption, distribution, metabolism, excretion, toxicology (ADMET) and attachment of chemical reporters for proteome profiling, metabolite synthesis, etc. for preclinical studies. Although heterocycle synthesis, late-stage drug modification, 18F labelling, methylation, etc. via C-H functionalization have been reviewed from the synthetic standpoint, a general overview of these protocols from medicinal and drug discovery aspects has not been reviewed. In this feature article, we will discuss the recent trends of C-H activation methodologies such as synthesis of medicinal scaffolds through C-H activation/annulation cascade; C-H arylation for sp2-sp2 and sp2-sp3 cross-coupling; C-H borylation/silylation to introduce a functional linchpin for further manipulation; C-H amination for N-heterocycles and hydrogen bond acceptors; C-H fluorination/fluoroalkylation to tune polarity and lipophilicity; C-H methylation: methyl magic in drug discovery; peptide modification and macrocyclization for therapeutics and biologics; fluorescent labelling and radiolabelling for bioimaging; bioconjugation for chemical biology studies; drug-metabolite synthesis for biodistribution and excretion studies; late-stage diversification of drug-molecules to increase efficacy and safety; cutting-edge DNA encoded library synthesis and improved synthesis of drug molecules via C-H activation in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Hasina Mamataj Begam
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Enakshi Dinda
- Department of Chemistry and Environment, Heritage Institute of Technology, Kolkata-700107, India
| |
Collapse
|
88
|
Zuo B, Shao H, Qu E, Ma Y, Li W, Huang M, Deng Q. An Alkoxy Modified
N
‐Heterocyclic Carbene‐Palladacycle: Synthesis, Characterization and Application towards Buchwald‐Hartwig and Suzuki‐Miyaura Coupling Reactions. ChemistrySelect 2021. [DOI: 10.1002/slct.202102733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bin Zuo
- School of Materials and Chemistry University of Shanghai for Science and Technology 334 Jungong Road Shanghai 200093 China
| | - Han Shao
- School of Materials and Chemistry University of Shanghai for Science and Technology 334 Jungong Road Shanghai 200093 China
| | - Erdong Qu
- School of Materials and Chemistry University of Shanghai for Science and Technology 334 Jungong Road Shanghai 200093 China
| | - Yunhua Ma
- School of Materials and Chemistry University of Shanghai for Science and Technology 334 Jungong Road Shanghai 200093 China
| | - Wanfang Li
- School of Materials and Chemistry University of Shanghai for Science and Technology 334 Jungong Road Shanghai 200093 China
| | - Mingxian Huang
- School of Materials and Chemistry University of Shanghai for Science and Technology 334 Jungong Road Shanghai 200093 China
| | - Qinyue Deng
- School of Materials and Chemistry University of Shanghai for Science and Technology 334 Jungong Road Shanghai 200093 China
| |
Collapse
|
89
|
Sai M. A Tetraarylpyrrole‐Based Phosphine Ligand for the Palladium‐Catalyzed Amination of Aryl Chlorides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Masahiro Sai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering Gifu University 1–1 Yanagido Gifu 501-1193 Japan
- Research Foundation ITSUU Laboratory C1232 Kanagawa Science Park R & D Building 3-2-1 Sakado, Takatsu-ku, Kawasaki Kanagawa 213-0012 Japan
| |
Collapse
|
90
|
Mechanistically guided survey of enantioselective palladium-catalyzed alkene functionalization. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
91
|
Copper Immobilization on Fe3O4@Agar: An Efficient Superparamagnetic Nanocatalyst for Green Ullmann-Type Cross-Coupling Reaction of Primary and Secondary Amines with Aryl Iodide Derivatives. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02106-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
92
|
Miao SX, Wan LX, He ZX, Zhou XL, Li X, Gao F. Pd-Catalyzed Direct Diversification of Natural Anti-Alzheimer's Disease Drug: Synthesis and Biological Evaluation of N-Aryl Huperzine A Analogues. JOURNAL OF NATURAL PRODUCTS 2021; 84:2374-2379. [PMID: 34445873 DOI: 10.1021/acs.jnatprod.1c00600] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The first systematic direct diversification of a complex natural product by metal-catalyzed N-H functionalization was carried out. A new series of N-(hetero)aryl analogues (1-32) of the natural anti-Alzheimer's disease drug huperzine A (HPA) was prepared via palladium-catalyzed Buchwald-Hartwig cross-coupling reactions of HPA with various aryl bromides in good yields. Most of the N-aryl-huperzine A (N-aryl-HPA) analogues showed good acetylcholinesterase (AChE) inhibitory activity in in vitro experiments. Three arylated huperzine A analogues (14, 19, and 30) exhibited stronger anti-AChE activity than HPA. The 5-methoxy-2-pyridyl analogue (30) displayed the most potent AChE inhibition activity, with an IC50 value of 1.5 μM, which was 7.6-fold more active than HPA. Compound 30 also exhibited better neuroprotective activity for H2O2-induced damage in SH-SY5Y cells than HPA. Structure-activity relationship analysis suggested that the electron density of the installed aromatic ring or heteroaromatic ring played a significant role in inducing the AChE inhibition activity. Overall, compound 30 showed the advantages of easy synthesis, high potency and selectivity, and improved neuroprotection, making it a potential huperzine-type lead compound for Alzheimer's disease drug development.
Collapse
Affiliation(s)
- Shi-Xing Miao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Lin-Xi Wan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Zhen-Xiang He
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xian-Li Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xiaohuan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Feng Gao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
93
|
Buchwald–Hartwig reaction: an update. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02834-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
94
|
Oeser P, Koudelka J, Petrenko A, Tobrman T. Recent Progress Concerning the N-Arylation of Indoles. Molecules 2021; 26:molecules26165079. [PMID: 34443667 PMCID: PMC8402097 DOI: 10.3390/molecules26165079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
This review summarizes the current state-of-the-art procedures in terms of the preparation of N-arylindoles. After a short introduction, the transition-metal-free procedures available for the N-arylation of indoles are briefly discussed. Then, the nickel-catalyzed and palladium-catalyzed N-arylation of indoles are both discussed. In the next section, copper-catalyzed procedures for the N-arylation of indoles are described. The final section focuses on recent findings in the field of biologically active N-arylindoles.
Collapse
|
95
|
Rodrigues JM, Calhelha RC, Nogueira A, Ferreira ICFR, Barros L, Queiroz MJRP. Synthesis of Novel Methyl 7-[(Hetero)arylamino]thieno[2,3- b]pyrazine-6-carboxylates and Antitumor Activity Evaluation: Effects in Human Tumor Cells Growth, Cell Cycle Analysis, Apoptosis and Toxicity in Non-Tumor Cells. Molecules 2021; 26:molecules26164823. [PMID: 34443411 PMCID: PMC8400120 DOI: 10.3390/molecules26164823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Several novel methyl 7-[(hetero)arylamino]thieno[2,3-b]pyrazine-6-carboxylates were synthesized by Pd-catalyzed C–N Buchwald–Hartwig cross-coupling of either methyl 7-aminothieno[3,2-b]pyrazine-6-carboxylate with (hetero)arylhalides or 7-bromothieno[2,3-b]pyrazine-6-carboxylate with (hetero)arylamines in good-to-excellent yields (50% quantitative yield), using different reaction conditions, namely ligands and solvents, due to the different electronic character of the substrates. The antitumoral potential of these compounds was evaluated in four human tumor cell lines: gastric adenocarcinoma (AGS), colorectal adenocarcinoma (CaCo-2), breast carcinoma (MCF7), and non-small-cell lung carcinoma (NCI-H460) using the SRB assay, and it was possible to establish some structure–activity relationships. Furthermore, they did not show relevant toxicity against a non-tumor cell line culture from the African green monkey kidney (Vero). The most promising compounds (GI50 ≤ 11 µM), showed some selectivity either against AGS or CaCo-2 cell lines without toxicity at their GI50 values. The effects of the methoxylated compounds 2b (2-OMeC6H4), 2f and 2g (3,4- or 3,5-diOMeC6H3, respectively) on the cell cycle profile and induction of apoptosis were further studied in the AGS cell line. Nevertheless, even for the most active (GI50 = 7.8 µM) and selective compound (2g) against this cell line, it was observed that a huge number of dead cells gave rise to an atypical distribution on the cell cycle profile and that these cells were not apoptotic, which points to a different mechanism of action for the AGS cell growth inhibition.
Collapse
Affiliation(s)
- Juliana M. Rodrigues
- Centro de Química, Universidade do Minho (CQUM), Campus de Gualtar, 4710-057 Braga, Portugal;
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (R.C.C.); (A.N.); (I.C.F.R.F.); (L.B.)
| | - António Nogueira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (R.C.C.); (A.N.); (I.C.F.R.F.); (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (R.C.C.); (A.N.); (I.C.F.R.F.); (L.B.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (R.C.C.); (A.N.); (I.C.F.R.F.); (L.B.)
| | - Maria-João R. P. Queiroz
- Centro de Química, Universidade do Minho (CQUM), Campus de Gualtar, 4710-057 Braga, Portugal;
- Correspondence:
| |
Collapse
|
96
|
Absalan Y, Shad NN, Gholizadeh M, Mahmoudi G, Sarvestani HS, Strashnov P, Ghandi K, Kovalchukova O. Schiff bases-titanium (III) & (IV) complex compounds: Novel photocatalysts in Buchwald-Hartwig C–N cross-coupling reaction. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
97
|
Grayson JD, Dennis FM, Robertson CC, Partridge BM. Chan-Lam Amination of Secondary and Tertiary Benzylic Boronic Esters. J Org Chem 2021; 86:9883-9897. [PMID: 34169720 DOI: 10.1021/acs.joc.1c00976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report a Chan-Lam coupling reaction of benzylic and allylic boronic esters with primary and secondary anilines to form valuable alkyl amine products. Both secondary and tertiary boronic esters can be used as coupling partners, with mono-alkylation of the aniline occurring selectively. This is a rare example of a transition-metal-mediated transformation of a tertiary alkylboron reagent. Initial investigation into the reaction mechanism suggests that transmetalation from B to Cu occurs through a single-electron, rather than a two-electron process.
Collapse
Affiliation(s)
- James D Grayson
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, United Kingdom
| | - Francesca M Dennis
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, United Kingdom
| | - Craig C Robertson
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, United Kingdom
| | - Benjamin M Partridge
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, United Kingdom
| |
Collapse
|
98
|
Wu J, Tongdee S, Ammaiyappan Y, Darcel C. A Concise Route to Cyclic Amines from Nitroarenes and Ketoacids under Iron‐Catalyzed Hydrosilylation Conditions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiajun Wu
- UnivRennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Satawat Tongdee
- UnivRennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Yuvaraj Ammaiyappan
- UnivRennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Christophe Darcel
- UnivRennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| |
Collapse
|
99
|
Zhang X, Qin J, Ma R, Shi L. A base-free Chan–Lam reaction catalyzed by an easily assembled Cu(II)-carboxylate metal-organic framework. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211026506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new copper(II) metal-organic framework is constructed as a sustainable copper heterogeneous catalyst. Cu-DPTCA, with high catalytic activity, can effectively promote the Chan–Lam coupling reaction of arylboronic acids and amines without adding any base or additive.
Collapse
Affiliation(s)
- Xinhai Zhang
- School of Traffic and Materials Engineering, Hebi Polytechnic, Hebi, People’s Republic of China
| | - Jianhua Qin
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, People’s Republic of China
| | - Ruixuan Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, People’s Republic of China
| | - Lei Shi
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, People’s Republic of China
| |
Collapse
|
100
|
Dao PDQ, Cho CS. Synthesis of Trinuclear Benzimidazole‐Fused Hybrid Scaffolds by Transition Metal‐Free Tandem C(sp
2
)−N Bond Formation under Microwave Irradiation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pham Duy Quang Dao
- Department of Applied Chemistry Kyungpook National University 80 Daehakro, Bukgu Daegu 41566 Republic of Korea
| | - Chan Sik Cho
- Department of Applied Chemistry Kyungpook National University 80 Daehakro, Bukgu Daegu 41566 Republic of Korea
| |
Collapse
|