51
|
Graves DB. Oxy-nitroso shielding burst model of cold atmospheric plasma therapeutics. CLINICAL PLASMA MEDICINE 2014. [DOI: 10.1016/j.cpme.2014.11.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
52
|
Guerrero-Preston R, Ogawa T, Uemura M, Shumulinsky G, Valle BL, Pirini F, Ravi R, Sidransky D, Keidar M, Trink B. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. Int J Mol Med 2014; 34:941-6. [PMID: 25050490 PMCID: PMC4152136 DOI: 10.3892/ijmm.2014.1849] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/20/2014] [Indexed: 01/31/2023] Open
Abstract
The treatment of locoregional recurrence (LRR) of head and neck squamous cell carcinoma (HNSCC) often requires a combination of surgery, radiation therapy and/or chemotherapy. Survival outcomes are poor and the treatment outcomes are morbid. Cold atmospheric plasma (CAP) is an ionized gas produced at room temperature under laboratory conditions. We have previously demonstrated that treatment with a CAP jet device selectively targets cancer cells using in vitro melanoma and in vivo bladder cancer models. In the present study, we wished to examine CAP selectivity in HNSCC in vitro models, and to explore its potential for use as a minimally invasive surgical approach that allows for specific cancer cell or tumor tissue ablation without affecting the surrounding healthy cells and tissues. Four HNSCC cell lines (JHU-022, JHU-028, JHU-029, SCC25) and 2 normal oral cavity epithelial cell lines (OKF6 and NOKsi) were subjected to cold plasma treatment for durations of 10, 30 and 45 sec, and a helium flow of 20 l/min-1 for 10 sec was used as a positive treatment control. We showed that cold plasma selectively diminished HNSCC cell viability in a dose-response manner, as evidenced by MTT assays; the viability of the OKF6 cells was not affected by the cold plasma. The results of colony formation assays also revealed a cell-specific response to cold plasma application. Western blot analysis did not provide evidence that the cleavage of PARP occurred following cold plasma treatment. In conclusion, our results suggest that cold plasma application selectively impairs HNSCC cell lines through non-apoptotic mechanisms, while having a minimal effect on normal oral cavity epithelial cell lines.
Collapse
Affiliation(s)
- Rafael Guerrero-Preston
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Takenori Ogawa
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Mamoru Uemura
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Gary Shumulinsky
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Blanca L Valle
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Francesca Pirini
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Rajani Ravi
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David Sidransky
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, USA
| | - Barry Trink
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
53
|
Cheng X, Sherman J, Murphy W, Ratovitski E, Canady J, Keidar M. The effect of tuning cold plasma composition on glioblastoma cell viability. PLoS One 2014; 9:e98652. [PMID: 24878760 PMCID: PMC4039517 DOI: 10.1371/journal.pone.0098652] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/06/2014] [Indexed: 12/21/2022] Open
Abstract
Previous research in cold atmospheric plasma (CAP) and cancer cell interaction has repeatedly proven that the cold plasma induced cell death. It is postulated that the reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a major role in the CAP cancer therapy. In this paper, we seek to determine a mechanism of CAP therapy on glioblastoma cells (U87) through an understanding of the composition of the plasma, including treatment time, voltage, flow-rate and plasma-gas composition. In order to determine the threshold of plasma treatment on U87, normal human astrocytes (E6/E7) were used as the comparison cell line. Our data showed that the 30 sec plasma treatment caused 3-fold cell death in the U87 cells compared to the E6/E7 cells. All the other compositions of cold plasma were performed based on this result: plasma treatment time was maintained at 30 s per well while other plasma characteristics such as voltage, flow rate of source gas, and composition of source gas were changed one at a time to vary the intensity of the reactive species composition in the plasma jet, which may finally have various effect on cells reflected by cell viability. We defined a term “plasma dosage” to summarize the relationship of all the characteristics and cell viability.
Collapse
Affiliation(s)
- Xiaoqian Cheng
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, D.C., United States of America
| | - Jonathan Sherman
- Department of Neurosurgery, The George Washington University, Washington, D.C., United States of America
| | - William Murphy
- Department of Electrical and Computer Engineering, The George Washington University, Washington, D.C., United States of America
| | - Edward Ratovitski
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, D.C., United States of America
- Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jerome Canady
- Institute for Advanced Biological and Technical Sciences, USMI, Takoma Park, Maryland, United States of America
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
54
|
Hirst AM, Frame FM, Maitland NJ, O'Connell D. Low temperature plasma: a novel focal therapy for localized prostate cancer? BIOMED RESEARCH INTERNATIONAL 2014; 2014:878319. [PMID: 24738076 PMCID: PMC3971493 DOI: 10.1155/2014/878319] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/06/2014] [Indexed: 12/16/2022]
Abstract
Despite considerable advances in recent years for the focal treatment of localized prostate cancer, high recurrence rates and detrimental side effects are still a cause for concern. In this review, we compare current focal therapies to a potentially novel approach for the treatment of early onset prostate cancer: low temperature plasma. The rapidly evolving plasma technology has the potential to deliver a wide range of promising medical applications via the delivery of plasma-induced reactive oxygen and nitrogen species. Studies assessing the effect of low temperature plasma on cell lines and xenografts have demonstrated DNA damage leading to apoptosis and reduction in cell viability. However, there have been no studies on prostate cancer, which is an obvious candidate for this novel therapy. We present here the potential of low temperature plasma as a focal therapy for prostate cancer.
Collapse
Affiliation(s)
- Adam M Hirst
- Department of Physics, York Plasma Institute, University of York, Heslington, York YO10 5DD, UK
| | - Fiona M Frame
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Norman J Maitland
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Deborah O'Connell
- Department of Physics, York Plasma Institute, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
55
|
Ishaq M, Kumar S, Varinli H, Han ZJ, Rider AE, Evans MDM, Murphy AB, Ostrikov K. Atmospheric gas plasma-induced ROS production activates TNF-ASK1 pathway for the induction of melanoma cancer cell apoptosis. Mol Biol Cell 2014; 25:1523-31. [PMID: 24574456 PMCID: PMC4004600 DOI: 10.1091/mbc.e13-10-0590] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Atmospheric gas plasmas (AGPs) are able to selectively induce apoptosis in cancer cells, offering a promising alternative to conventional therapies that have unwanted side effects such as drug resistance and toxicity. However, the mechanism of AGP-induced cancer cell death is unknown. In this study, AGP is shown to up-regulate intracellular reactive oxygen species (ROS) levels and induce apoptosis in melanoma but not normal melanocyte cells. By screening genes involved in apoptosis, we identify tumor necrosis factor (TNF)-family members as the most differentially expressed cellular genes upon AGP treatment of melanoma cells. TNF receptor 1 (TNFR1) antagonist-neutralizing antibody specifically inhibits AGP-induced apoptosis signal, regulating apoptosis signal-regulating kinase 1 (ASK1) activity and subsequent ASK1-dependent apoptosis. Treatment of cells with intracellular ROS scavenger N-acetyl-l-cysteine also inhibits AGP-induced activation of ASK1, as well as apoptosis. Moreover, depletion of intracellular ASK1 reduces the level of AGP-induced oxidative stress and apoptosis. The evidence for TNF-signaling dependence of ASK1-mediated apoptosis suggests possible mechanisms for AGP activation and regulation of apoptosis-signaling pathways in tumor cells.
Collapse
Affiliation(s)
- Musarat Ishaq
- CSIRO Materials Science and Engineering, North Ryde, NSW 1670, Australia Plasma Nanoscience Center, CSIRO Materials Science and Engineering, Lindfield, NSW 2070, Australia CSIRO Animal, Food and Health Sciences, North Ryde, NSW 1670, Australia School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Kowal K, Cronin P, Dworniczek E, Zeglinski J, Tiernan P, Wawrzynska M, Podbielska H, Tofail SAM. Biocidal effect and durability of nano-TiO2 coated textiles to combat hospital acquired infections. RSC Adv 2014. [DOI: 10.1039/c4ra02759k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
57
|
|
58
|
Hoffmann C, Berganza C, Zhang J. Cold Atmospheric Plasma: methods of production and application in dentistry and oncology. Med Gas Res 2013; 3:21. [PMID: 24083477 PMCID: PMC4016545 DOI: 10.1186/2045-9912-3-21] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/05/2013] [Indexed: 11/10/2022] Open
Abstract
Cold Atmospheric Plasma is an ionized gas that has recently been extensively studied by researchers as a possible therapy in dentistry and oncology. Several different gases can be used to produce Cold Atmospheric Plasma such as Helium, Argon, Nitrogen, Heliox, and air. There are many methods of production by which cold atmospheric plasma is created. Each unique method can be used in different biomedical areas. In dentistry, researchers have mostly investigated the antimicrobial effects produced by plasma as a means to remove dental biofilms and eradicate oral pathogens. It has been shown that reactive oxidative species, charged particles, and UV photons play the main role. Cold Atmospheric Plasma has also found a minor, but important role in tooth whitening and composite restoration. Furthermore, it has been demonstrated that Cold Atmospheric Plasma induces apoptosis, necrosis, cell detachment, and senescence by disrupting the S phase of cell replication in tumor cells. This unique finding opens up its potential therapy in oncology.
Collapse
Affiliation(s)
- Clotilde Hoffmann
- Department of Physiology, Loma Linda University School of Medicine, Risley Hall, Room 223, Loma Linda, CA 92354, USA
| | - Carlos Berganza
- Department of Physiology, Loma Linda University School of Medicine, Risley Hall, Room 223, Loma Linda, CA 92354, USA
| | - John Zhang
- Department of Physiology, Loma Linda University School of Medicine, Risley Hall, Room 223, Loma Linda, CA 92354, USA
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|