51
|
Ago H, Adachi H, Umena Y, Tashiro T, Kawakami K, Kamiya N, Tian L, Han G, Kuang T, Liu Z, Wang F, Zou H, Enami I, Miyano M, Shen JR. Novel Features of Eukaryotic Photosystem II Revealed by Its Crystal Structure Analysis from a Red Alga. J Biol Chem 2016; 291:5676-5687. [PMID: 26757821 DOI: 10.1074/jbc.m115.711689] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 12/14/2022] Open
Abstract
Photosystem II (PSII) catalyzes light-induced water splitting, leading to the evolution of molecular oxygen indispensible for life on the earth. The crystal structure of PSII from cyanobacteria has been solved at an atomic level, but the structure of eukaryotic PSII has not been analyzed. Because eukaryotic PSII possesses additional subunits not found in cyanobacterial PSII, it is important to solve the structure of eukaryotic PSII to elucidate their detailed functions, as well as evolutionary relationships. Here we report the structure of PSII from a red alga Cyanidium caldarium at 2.76 Å resolution, which revealed the structure and interaction sites of PsbQ', a unique, fourth extrinsic protein required for stabilizing the oxygen-evolving complex in the lumenal surface of PSII. The PsbQ' subunit was found to be located underneath CP43 in the vicinity of PsbV, and its structure is characterized by a bundle of four up-down helices arranged in a similar way to those of cyanobacterial and higher plant PsbQ, although helices I and II of PsbQ' were kinked relative to its higher plant counterpart because of its interactions with CP43. Furthermore, two novel transmembrane helices were found in the red algal PSII that are not present in cyanobacterial PSII; one of these helices may correspond to PsbW found only in eukaryotic PSII. The present results represent the first crystal structure of PSII from eukaryotic oxygenic organisms, which were discussed in comparison with the structure of cyanobacterial PSII.
Collapse
Affiliation(s)
- Hideo Ago
- From the RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Hideyuki Adachi
- the Photosynthesis Research Center, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Yasufumi Umena
- the Osaka City University Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan,; the Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Takayoshi Tashiro
- the Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Keisuke Kawakami
- the Osaka City University Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Nobuo Kamiya
- the Osaka City University Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan,; the Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Lirong Tian
- the Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guangye Han
- the Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tingyun Kuang
- the Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zheyi Liu
- the Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and
| | - Fangjun Wang
- the Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and
| | - Hanfa Zou
- the Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and
| | - Isao Enami
- the Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | | | - Jian-Ren Shen
- the Photosynthesis Research Center, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University, Okayama 700-8530, Japan,; the Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China,.
| |
Collapse
|
52
|
|
53
|
Isobe H, Shoji M, Shen JR, Yamaguchi K. Chemical Equilibrium Models for the S3 State of the Oxygen-Evolving Complex of Photosystem II. Inorg Chem 2015; 55:502-11. [DOI: 10.1021/acs.inorgchem.5b02471] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hiroshi Isobe
- Photosynthesis
Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- The
Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Mitsuo Shoji
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Jian-Ren Shen
- Photosynthesis
Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kizashi Yamaguchi
- The
Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
- Institute
for NanoScience Design, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
54
|
Prasad A, Kumar A, Suzuki M, Kikuchi H, Sugai T, Kobayashi M, Pospíšil P, Tada M, Kasai S. Detection of hydrogen peroxide in Photosystem II (PSII) using catalytic amperometric biosensor. FRONTIERS IN PLANT SCIENCE 2015; 6:862. [PMID: 26528319 PMCID: PMC4606053 DOI: 10.3389/fpls.2015.00862] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/29/2015] [Indexed: 05/29/2023]
Abstract
Hydrogen peroxide (H2O2) is known to be generated in Photosystem II (PSII) via enzymatic and non-enzymatic pathways. Detection of H2O2 by different spectroscopic techniques has been explored, however its sensitive detection has always been a challenge in photosynthetic research. During the recent past, fluorescence probes such as Amplex Red (AR) has been used but is known to either lack specificity or limitation with respect to the minimum detection limit of H2O2. We have employed an electrochemical biosensor for real time monitoring of H2O2 generation at the level of sub-cellular organelles. The electrochemical biosensor comprises of counter electrode and working electrodes. The counter electrode is a platinum plate, while the working electrode is a mediator based catalytic amperometric biosensor device developed by the coating of a carbon electrode with osmium-horseradish peroxidase which acts as H2O2 detection sensor. In the current study, generation and kinetic behavior of H2O2 in PSII membranes have been studied under light illumination. Electrochemical detection of H2O2 using the catalytic amperometric biosensor device is claimed to serve as a promising technique for detection of H2O2 in photosynthetic cells and subcellular structures including PSII or thylakoid membranes. It can also provide a precise information on qualitative determination of H2O2 and thus can be widely used in photosynthetic research.
Collapse
Affiliation(s)
- Ankush Prasad
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan
| | - Aditya Kumar
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký UniversityOlomouc, Czech Republic
| | - Makoto Suzuki
- Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| | - Hiroyuki Kikuchi
- Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| | - Tomoya Sugai
- Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| | - Masaki Kobayashi
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan
- Graduate Department of Electronics, Tohoku Institute of TechnologySendai, Japan
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký UniversityOlomouc, Czech Republic
| | - Mika Tada
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan
- Center for General Education, Tohoku Institute of TechnologySendai, Japan
| | - Shigenobu Kasai
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan
- Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| |
Collapse
|
55
|
Isobe H, Shoji M, Shen JR, Yamaguchi K. Strong Coupling between the Hydrogen Bonding Environment and Redox Chemistry during the S2 to S3 Transition in the Oxygen-Evolving Complex of Photosystem II. J Phys Chem B 2015; 119:13922-33. [DOI: 10.1021/acs.jpcb.5b05740] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hiroshi Isobe
- Photosynthesis
Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- The Institute
of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Mitsuo Shoji
- Graduate School
of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Jian-Ren Shen
- Photosynthesis
Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kizashi Yamaguchi
- The Institute
of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
- Institute for
NanoScience Design, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
56
|
Nagashima H, Nakajima Y, Shen JR, Mino H. Proton Matrix ENDOR Studies on Ca2+-depleted and Sr2+-substituted Manganese Cluster in Photosystem II. J Biol Chem 2015; 290:28166-28174. [PMID: 26438823 DOI: 10.1074/jbc.m115.675496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Indexed: 01/08/2023] Open
Abstract
Proton matrix ENDOR spectra were measured for Ca(2+)-depleted and Sr(2+)-substituted photosystem II (PSII) membrane samples from spinach and core complexes from Thermosynechococcus vulcanus in the S2 state. The ENDOR spectra obtained were similar for untreated PSII from T. vulcanus and spinach, as well as for Ca(2+)-containing and Sr(2+)-substituted PSII, indicating that the proton arrangements around the manganese cluster in cyanobacterial and higher plant PSII and Ca(2+)-containing and Sr(2+)-substituted PSII are similar in the S2 state, in agreement with the similarity of the crystal structure of both Ca(2+)-containing and Sr(2+)-substituted PSII in the S1 state. Nevertheless, slightly different hyperfine separations were found between Ca(2+)-containing and Sr(2+)-substituted PSII because of modifications of the water protons ligating to the Sr(2+) ion. Importantly, Ca(2+) depletion caused the loss of ENDOR signals with a 1.36-MHz separation because of the loss of the water proton W4 connecting Ca(2+) and YZ directly. With respect to the crystal structure and the functions of Ca(2+) in oxygen evolution, it was concluded that the roles of Ca(2+) and Sr(2+) involve the maintenance of the hydrogen bond network near the Ca(2+) site and electron transfer pathway to the manganese cluster.
Collapse
Affiliation(s)
- Hiroki Nagashima
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602, Japan
| | - Yoshiki Nakajima
- Photosynthesis Research Center, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Hiroyuki Mino
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
57
|
Affiliation(s)
- James D. Blakemore
- Department of Chemistry and
Energy Sciences Institute, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Robert H. Crabtree
- Department of Chemistry and
Energy Sciences Institute, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Gary W. Brudvig
- Department of Chemistry and
Energy Sciences Institute, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
58
|
Abdolahzadeh S, de Boer JW, Browne WR. Redox-State Dependent Ligand Exchange in Manganese-Based Oxidation Catalysis. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
59
|
Najafpour MM, Abasi M, Tomo T, Allakhverdiev SI. Nanolayered manganese oxide/C(60) composite: a good water-oxidizing catalyst for artificial photosynthetic systems. Dalton Trans 2015; 43:12058-64. [PMID: 24984108 DOI: 10.1039/c4dt00599f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
For the first time, we considered Mn oxide/C60 composites as water-oxidizing catalysts. The composites were synthesized by easy and simple procedures, and characterized by some methods. The water-oxidizing activities of these composites were also measured in the presence of cerium(iv) ammonium nitrate. We found that the nanolayered Mn oxide/C60 composites show promising activity toward water oxidation.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | | | | | | |
Collapse
|
60
|
Najafpour MM, Rahimi F, Fathollahzadeh M, Haghighi B, Hołyńska M, Tomo T, Allakhverdiev SI. Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis. Dalton Trans 2015; 43:10866-76. [PMID: 24898625 DOI: 10.1039/c4dt01295j] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | | | | | | | | | | | | |
Collapse
|
61
|
Najafpour MM, Amini E. Nano-sized Mn oxides on halloysite or high surface area montmorillonite as efficient catalysts for water oxidation with cerium(iv) ammonium nitrate: support from natural sources. Dalton Trans 2015; 44:15441-9. [DOI: 10.1039/c5dt02336j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We used halloysite, a nano-sized natural mineral and high surface area montmorillonite as supports for nano-sized Mn oxides to synthesize efficient water-oxidising catalysts.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Emad Amini
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| |
Collapse
|
62
|
Shoji M, Isobe H, Yamanaka S, Umena Y, Kawakami K, Kamiya N, Shen JR, Nakajima T, Yamaguchi K. Large-Scale QM/MM Calculations of Hydrogen Bonding Networks for Proton Transfer and Water Inlet Channels for Water Oxidation—Theoretical System Models of the Oxygen-Evolving Complex of Photosystem II. ADVANCES IN QUANTUM CHEMISTRY 2015. [DOI: 10.1016/bs.aiq.2014.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
63
|
Shen JR. The Structure of Photosystem II and the Mechanism of Water Oxidation in Photosynthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:23-48. [PMID: 25746448 DOI: 10.1146/annurev-arplant-050312-120129] [Citation(s) in RCA: 475] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Oxygenic photosynthesis forms the basis of aerobic life on earth by converting light energy into biologically useful chemical energy and by splitting water to generate molecular oxygen. The water-splitting and oxygen-evolving reaction is catalyzed by photosystem II (PSII), a huge, multisubunit membrane-protein complex located in the thylakoid membranes of organisms ranging from cyanobacteria to higher plants. The structure of PSII has been analyzed at 1.9-Å resolution by X-ray crystallography, revealing a clear picture of the Mn4CaO5 cluster, the catalytic center for water oxidation. This article provides an overview of the overall structure of PSII followed by detailed descriptions of the specific structure of the Mn4CaO5 cluster and its surrounding protein environment. Based on the geometric organization of the Mn4CaO5 cluster revealed by the crystallographic analysis, in combination with the results of a vast number of experimental studies involving spectroscopic and other techniques as well as various theoretical studies, the article also discusses possible mechanisms for water splitting that are currently under consideration.
Collapse
Affiliation(s)
- Jian-Ren Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan;
| |
Collapse
|
64
|
Chen J, Yoon H, Lee YM, Seo MS, Sarangi R, Fukuzumi S, Nam W. Tuning the Reactivity of Mononuclear Nonheme Manganese(IV)-Oxo Complexes by Triflic Acid. Chem Sci 2015; 6:3624-3632. [PMID: 26146538 PMCID: PMC4486364 DOI: 10.1039/c5sc00535c] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Triflic acid (HOTf)-bound nonheme Mn(IV)-oxo complexes, [(L)MnIV(O)]2+-(HOTf)2 (L = N4Py and Bn-TPEN; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) and Bn-TPEN = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), were synthesized by adding HOTf to the solutions of the [(L)MnIV(O)]2+ complexes and were characterized by various spectroscopies. The one-electron reduction potentials of the MnIV(O) complexes exhibited a significant positive shift upon binding of HOTf. The driving force dependence of electron transfer (ET) from electron donors to the MnIV(O) and MnIV(O)-(HOTf)2 complexes were examined and evaluated in light of the Marcus theory of ET to determine the reorganization energies of ET. The smaller reorganization energies and much more positive reduction potentials of the [(L)MnIV(O)]2+-(HOTf)2 complexes resulted in much enhanced oxidation capacity towards one-electron reductants and para-X-substituted-thioanisoles. The reactivities of the Mn(IV)-oxo complexes were markedly enhanced by binding of HOTf, such as a 6.4 × 105-fold increase in the oxygen atom transfer (OAT) reaction (i.e., sulfoxidation). Such a remarkable acceleration in the OAT reaction results from the enhancement of ET from para-X-substituted-thioanisoles to the MnIV(O) complexes as revealed by the unified ET driving force dependence of the rate constants of OAT and ET reactions of [(L)MnIV(O)]2+-(HOTf)2. In contrast, deceleration was observed in the rate of H-atom transfer (HAT) reaction of [(L)MnIV(O)]2+-(HOTf)2 complexes with 1,4-cyclohexadiene as compared with those of the [(L)MnIV(O)]2+ complexes. Thus, the binding of two HOTf molecules to the MnIV(O) moiety resulted in remarkable acceleration of the ET rate when the ET is thermodynamically feasible. When the ET reaction is highly endergonic, the rate of the HAT reaction is decelerated due to the steric effect of the counter anion of HOTf.
Collapse
Affiliation(s)
- Junying Chen
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea
| | - Heejung Yoon
- Department of Material and Life Science, Graduate School of Engineering, ALCA, JST, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea ; Department of Material and Life Science, Graduate School of Engineering, ALCA, JST, Osaka University, Suita, Osaka 565-0871, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
65
|
Hellmich J, Bommer M, Burkhardt A, Ibrahim M, Kern J, Meents A, Müh F, Dobbek H, Zouni A. Native-like Photosystem II Superstructure at 2.44 Å Resolution through Detergent Extraction from the Protein Crystal. Structure 2014; 22:1607-15. [DOI: 10.1016/j.str.2014.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/26/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
|
66
|
Shoji M, Isobe H, Yamanaka S, Umena Y, Kawakami K, Kamiya N, Shen JR, Nakajima T, Yamaguchi K. Theoretical modelling of biomolecular systems I. Large-scale QM/MM calculations of hydrogen-bonding networks of the oxygen evolving complex of photosystem II. Mol Phys 2014. [DOI: 10.1080/00268976.2014.960021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
67
|
Barry BA. Reaction dynamics and proton coupled electron transfer: studies of tyrosine-based charge transfer in natural and biomimetic systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:46-54. [PMID: 25260243 DOI: 10.1016/j.bbabio.2014.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/27/2014] [Accepted: 09/10/2014] [Indexed: 11/25/2022]
Abstract
In bioenergetic reactions, electrons are transferred long distances via a hopping mechanism. In photosynthesis and DNA synthesis, the aromatic amino acid residue, tyrosine, functions as an intermediate that is transiently oxidized and reduced during long distance electron transfer. At physiological pH values, oxidation of tyrosine is associated with a deprotonation of the phenolic oxygen, giving rise to a proton coupled electron transfer (PCET) reaction. Tyrosine-based PCET reactions are important in photosystem II, which carries out the light-induced oxidation of water, and in ribonucleotide reductase, which reduces ribonucleotides to form deoxynucleotides. Photosystem II contains two redox-active tyrosines, YD (Y160 in the D2 polypeptide) and YZ (Y161 in the D1 polypeptide). YD forms a light-induced stable radical, while YZ functions as an essential charge relay, oxidizing the catalytic Mn₄CaO₅ cluster on each of four photo-oxidation reactions. In Escherichia coli class 1a RNR, the β2 subunit contains the radical initiator, Y122O•, which is reversibly reduced and oxidized in long range electron transfer with the α2 subunit. In the isolated E. coli β2 subunit, Y122O• is a stable radical, but Y122O• is activated for rapid PCET in an α2β2 substrate/effector complex. Recent results concerning the structure and function of YD, YZ, and Y122 are reviewed here. Comparison is made to recent results derived from bioengineered proteins and biomimetic compounds, in which tyrosine-based charge transfer mechanisms have been investigated. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Bridgette A Barry
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
68
|
Wang L, Zhang C, Zhao J. Location and function of the high-affinity chloride in the oxygen-evolving complex – Implications from comparing studies on Cl−/Br−/I−-substituted photosystem II prepared using two different methods. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 138:249-55. [DOI: 10.1016/j.jphotobiol.2014.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 11/17/2022]
|
69
|
Substrate water exchange in photosystem II core complexes of the extremophilic red alga Cyanidioschyzon merolae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1257-62. [DOI: 10.1016/j.bbabio.2014.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
|
70
|
Najafpour MM, Ghobadi MZ, Haghighi B, Tomo T, Carpentier R, Shen JR, Allakhverdiev SI. A nano-sized manganese oxide in a protein matrix as a natural water-oxidizing site. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:3-15. [PMID: 24560883 DOI: 10.1016/j.plaphy.2014.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/26/2014] [Indexed: 06/03/2023]
Abstract
The purpose of this review is to present recent advances in the structural and functional studies of water-oxidizing center of Photosystem II and its surrounding protein matrix in order to synthesize artificial catalysts for production of clean and efficient hydrogen fuel.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran; Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | - Mohadeseh Zarei Ghobadi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Behzad Haghighi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran; Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan; PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Robert Carpentier
- Departement de Chimie Biochimie et Physique, Université du Québec à Trois Rivières, C.P. 500, Québec G9A 5H7, Canada
| | - Jian-Ren Shen
- Graduate School of Natural Science and Technology, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
71
|
Debus RJ. FTIR studies of metal ligands, networks of hydrogen bonds, and water molecules near the active site Mn₄CaO₅ cluster in Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:19-34. [PMID: 25038513 DOI: 10.1016/j.bbabio.2014.07.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 11/26/2022]
Abstract
The photosynthetic conversion of water to molecular oxygen is catalyzed by the Mn₄CaO₅ cluster in Photosystem II and provides nearly our entire supply of atmospheric oxygen. The Mn₄CaO₅ cluster accumulates oxidizing equivalents in response to light-driven photochemical events within Photosystem II and then oxidizes two molecules of water to oxygen. The Mn₄CaO₅ cluster converts water to oxygen much more efficiently than any synthetic catalyst because its protein environment carefully controls the cluster's reactivity at each step in its catalytic cycle. This control is achieved by precise choreography of the proton and electron transfer reactions associated with water oxidation and by careful management of substrate (water) access and proton egress. This review describes the FTIR studies undertaken over the past two decades to identify the amino acid residues that are responsible for this control and to determine the role of each. In particular, this review describes the FTIR studies undertaken to characterize the influence of the cluster's metal ligands on its activity, to delineate the proton egress pathways that link the Mn₄CaO₅ cluster with the thylakoid lumen, and to characterize the influence of specific residues on the water molecules that serve as substrate or as participants in the networks of hydrogen bonds that make up the water access and proton egress pathways. This information will improve our understanding of water oxidation by the Mn₄CaO₅ catalyst in Photosystem II and will provide insight into the design of new generations of synthetic catalysts that convert sunlight into useful forms of storable energy. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Richard J Debus
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521-0129, USA.
| |
Collapse
|
72
|
Noguchi T. Fourier transform infrared difference and time-resolved infrared detection of the electron and proton transfer dynamics in photosynthetic water oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:35-45. [PMID: 24998309 DOI: 10.1016/j.bbabio.2014.06.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 01/15/2023]
Abstract
Photosynthetic water oxidation, which provides the electrons necessary for CO₂ reduction and releases O₂ and protons, is performed at the Mn₄CaO₅ cluster in photosystem II (PSII). In this review, studies that assessed the mechanism of water oxidation using infrared spectroscopy are summarized focusing on electron and proton transfer dynamics. Structural changes in proteins and water molecules between intermediates known as Si states (i=0-3) were detected using flash-induced Fourier transform infrared (FTIR) difference spectroscopy. Electron flow in PSII and proton release from substrate water were monitored using the infrared changes in ferricyanide as an exogenous electron acceptor and Mes buffer as a proton acceptor. Time-resolved infrared (TRIR) spectroscopy provided information on the dynamics of proton-coupled electron transfer during the S-state transitions. In particular, a drastic proton movement during the lag phase (~200μs) before electron transfer in the S3→S0 transition was detected directly by monitoring the infrared absorption of a polarizable proton in a hydrogen bond network. Furthermore, the proton release pathways in the PSII proteins were analyzed by FTIR difference measurements in combination with site-directed mutagenesis, isotopic substitutions, and quantum chemical calculations. Therefore, infrared spectroscopy is a powerful tool for understanding the molecular mechanism of photosynthetic water oxidation. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| |
Collapse
|
73
|
Pospíšil P. The Role of Metals in Production and Scavenging of Reactive Oxygen Species in Photosystem II. ACTA ACUST UNITED AC 2014; 55:1224-32. [DOI: 10.1093/pcp/pcu053] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
74
|
Debus RJ. Evidence from FTIR Difference Spectroscopy That D1-Asp61 Influences the Water Reactions of the Oxygen-Evolving Mn4CaO5 Cluster of Photosystem II. Biochemistry 2014; 53:2941-55. [DOI: 10.1021/bi500309f] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Richard J. Debus
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
75
|
Yano J, Yachandra V. Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem Rev 2014; 114:4175-205. [PMID: 24684576 PMCID: PMC4002066 DOI: 10.1021/cr4004874] [Citation(s) in RCA: 490] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Vittal Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
76
|
Najafpour MM, Ghobadi MZ, Haghighi B, Eaton-Rye JJ, Tomo T, Shen JR, Allakhverdiev SI. Nano-sized manganese-calcium cluster in photosystem II. BIOCHEMISTRY (MOSCOW) 2014; 79:324-36. [DOI: 10.1134/s0006297914040026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
77
|
Najafpour MM, Heidari S, Amini E, Khatamian M, Carpentier R, Allakhverdiev SI. Nano-sized layered Mn oxides as promising and biomimetic water oxidizing catalysts for water splitting in artificial photosynthetic systems. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 133:124-39. [DOI: 10.1016/j.jphotobiol.2014.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/02/2014] [Accepted: 03/07/2014] [Indexed: 01/22/2023]
|
78
|
Chuah WY, Stranger R, Pace RJ, Krausz E, Frankcombe TJ. Ab Initio modeling of the effect of oxidation coupled with HnO deprotonation on carboxylate ligands in Mn/Ca clusters. J Phys Chem B 2014; 118:3553-8. [PMID: 24606611 DOI: 10.1021/jp500362q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Oxidation of some manganese complexes containing both carboxylate and water/hydroxo ligands does not result in changes to the carboxylate stretching frequencies. The water oxidizing complex of photosystem II is one motivating example. On the basis of electronic structure theory calculations, we here suggest that the deprotonation of water or hydroxo ligands minimizes changes in the vibrational frequencies of coligating carboxylates, rendering the carboxylate modes "invisible" in FTIR difference spectroscopy. This deprotonation of water/hydroxo ligands was also found to balance the redox potentials of the Mn(II)/Mn(III) and Mn(III)/Mn(IV) couples, allowing the possibility for successive manganese oxidations at a relatively constant redox potential.
Collapse
Affiliation(s)
- Wooi Yee Chuah
- Research School of Chemistry, Australian National University , ACT 0200, Australia
| | | | | | | | | |
Collapse
|
79
|
Service RJ, Hillier W, Debus RJ. Network of Hydrogen Bonds near the Oxygen-Evolving Mn4CaO5 Cluster of Photosystem II Probed with FTIR Difference Spectroscopy. Biochemistry 2014; 53:1001-17. [DOI: 10.1021/bi401450y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rachel J. Service
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| | - Warwick Hillier
- Research
School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Richard J. Debus
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
80
|
Gabdulkhakov AG, Dontsova MV. Structural studies on photosystem II of cyanobacteria. BIOCHEMISTRY (MOSCOW) 2014; 78:1524-38. [DOI: 10.1134/s0006297913130105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- A G Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
81
|
Najafpour MM, Abasi M, Tomo T, Allakhverdiev SI. Mn oxide/nanodiamond composite: a new water-oxidizing catalyst for water oxidation. RSC Adv 2014. [DOI: 10.1039/c4ra06181k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein, we reported nanosized Mn oxide/nanodiamond composites as water-oxidizing compounds.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
- Center of Climate Change and Global Warming
- Institute for Advanced Studies in Basic Sciences (IASBS)
| | - Mahnaz Abasi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
| | - Tatsuya Tomo
- Department of Biology
- Faculty of Science
- Tokyo University of Science
- Tokyo 162-8601, Japan
- PRESTO
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory
- Institute of Plant Physiology
- Russian Academy of Sciences
- Moscow 127276, Russia
- Institute of Basic Biological Problems
| |
Collapse
|
82
|
Najafpour MM, Abasi M, Hołyńska M. Nanolayered manganese oxides as water-oxidizing catalysts: the effects of Cu(ii) and Ni(ii) ions. RSC Adv 2014. [DOI: 10.1039/c4ra05617e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We synthesized nanolayered manganese oxides in the presence of copper(ii) or nickel(ii) ions, and considered the water oxidizing activities of them.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
- Center of Climate Change and Global Warming
- Institute for Advanced Studies in Basic Sciences (IASBS)
| | - Mahnaz Abasi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
| | - Małgorzata Hołyńska
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)
- Philipps-Universität Marburg
- Marburg, Germany
| |
Collapse
|
83
|
Saito K, Ishikita H. Influence of the Ca 2+ ion on the Mn 4 Ca conformation and the H-bond network arrangement in Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:159-66. [DOI: 10.1016/j.bbabio.2013.09.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/19/2013] [Accepted: 09/24/2013] [Indexed: 01/06/2023]
|
84
|
Yamaguchi K, Kitagawa Y, Isobe H, Shoji M, Yamanaka S, Okumura M. Reprint of “Theory of chemical bonds in metalloenzymes XVIII. Importance of mixed-valence configurations for Mn5O5, CaMn4O5 and Ca2Mn3O5 clusters revealed by UB3LYP computations. A bio-inspired strategy for artificial photosynthesis”. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
85
|
Photobiological hydrogen production: Bioenergetics and challenges for its practical application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2013. [DOI: 10.1016/j.jphotochemrev.2013.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
86
|
Ishikita H, Saito K. Proton transfer reactions and hydrogen-bond networks in protein environments. J R Soc Interface 2013; 11:20130518. [PMID: 24284891 DOI: 10.1098/rsif.2013.0518] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In protein environments, proton transfer reactions occur along polar or charged residues and isolated water molecules. These species consist of H-bond networks that serve as proton transfer pathways; therefore, thorough understanding of H-bond energetics is essential when investigating proton transfer reactions in protein environments. When the pKa values (or proton affinity) of the H-bond donor and acceptor moieties are equal, significantly short, symmetric H-bonds can be formed between the two, and proton transfer reactions can occur in an efficient manner. However, such short, symmetric H-bonds are not necessarily stable when they are situated near the protein bulk surface, because the condition of matching pKa values is opposite to that required for the formation of strong salt bridges, which play a key role in protein-protein interactions. To satisfy the pKa matching condition and allow for proton transfer reactions, proteins often adjust the pKa via electron transfer reactions or H-bond pattern changes. In particular, when a symmetric H-bond is formed near the protein bulk surface as a result of one of these phenomena, its instability often results in breakage, leading to large changes in protein conformation.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Department of Biological Sciences, Graduate School of Science, Osaka University, , Machikaneyama-cho 1-1, Toyonaka 560-0043, Japan
| | | |
Collapse
|
87
|
Service RJ, Yano J, Dilbeck PL, Burnap RL, Hillier W, Debus RJ. Participation of glutamate-333 of the D1 polypeptide in the ligation of the Mn₄CaO₅ cluster in photosystem II. Biochemistry 2013; 52:8452-64. [PMID: 24168467 DOI: 10.1021/bi401339f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the 1.9 Å structural model of photosystem II (PDB: 3ARC), the amino acid residue Glu333 of the D1 polypeptide coordinates to the oxygen-evolving Mn₄CaO₅ cluster. This residue appears to be highly significant in that it bridges the two Mn ions (Mn(B3) and the "dangling" Mn(A4)) that are also bridged by the oxygen atom O5. This oxygen atom has been proposed to be derived from one of two substrate water molecules and to become incorporated into the product dioxygen molecule during the final step in the catalytic cycle. In addition, the backbone nitrogen of D1-Glu333 interacts directly with a nearby Cl⁻ atom. To further explore the influence of this structurally unique residue on the properties of the Mn₄CaO₅ cluster, the D1-E333Q mutant of the cyanobacterium Synechocystis sp. PCC 6803 was characterized with a variety of biophysical and spectroscopic methods, including polarography, EPR, X-ray absorption, and FTIR difference spectroscopy. The kinetics of oxygen release in the mutant were essentially unchanged from those in wild-type. In addition, the oxygen flash yields exhibited normal period-four oscillations having normal S state parameters, although the yields were lower, indicative of the mutant's lower steady-state dioxygen evolution rate of approximately 30% compared to that of the wild-type. The S₁ state Mn-XANES and Mn-EXAFS and S₂ state multiline EPR signals of purified D1-E333Q PSII core complexes closely resembled those of wild-type, aside from having lower amplitudes. The S(n+1)-minus-S(n) FTIR difference spectra showed only minor alterations to the carbonyl, amide, and carboxylate stretching regions. However, the mutation eliminated a negative peak at 3663 cm⁻¹ in the weakly H-bonding O-H stretching region of the S₂-minus-S₁ FTIR difference spectrum and caused an approximately 9 cm⁻¹ downshift of the negative feature in this region of the S₁-minus-S₀ FTIR difference spectrum. We conclude that fully functional Mn₄CaO₅ clusters assemble in the presence of the D1-E333Q mutation but that the mutation decreases the yield of assembled clusters and alters the H-bonding properties of one or more water molecules or hydroxide groups that are located on or near the Mn₄CaO₅ cluster and that either deprotonate or form stronger hydrogen bonds during the S₀ to S₁ and S₁ to S₂ transitions.
Collapse
Affiliation(s)
- Rachel J Service
- Department of Biochemistry, University of California , Riverside California 92521, United States
| | | | | | | | | | | |
Collapse
|
88
|
Najafpour MM, Tabrizi MA, Haghighi B, Eaton-Rye JJ, Carpentier R, Allakhverdiev SI. Imidazolium or guanidinium/layered manganese (III, IV) oxide hybrid as a promising structural model for the water-oxidizing complex of Photosystem II for artificial photosynthetic systems. PHOTOSYNTHESIS RESEARCH 2013; 117:413-421. [PMID: 23543329 DOI: 10.1007/s11120-013-9814-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/14/2013] [Indexed: 06/02/2023]
Abstract
Photosystem II is responsible for the light-driven biological water-splitting system in oxygenic photosynthesis and contains a cluster of one calcium and four manganese ions at its water-oxidizing complex. This cluster may serve as a model for the design of artificial or biomimetic systems capable of splitting water into oxygen and hydrogen. In this study, we consider the ability of manganese oxide monosheets to self-assemble with organic compounds. Layered structures of manganese oxide, including guanidinium and imidazolium groups, were synthesized and characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction spectrometry, and atomic absorption spectroscopy. The compounds can be considered as new structural models for the water-oxidizing complex of Photosystem II. The overvoltage of water oxidation for the compounds in these conditions at pH = 6.3 is ~0.6 V. These compounds may represent the first step to synthesize a hybrid of guanidinium or imidazole together with manganese as a biomimetic system for the water-oxidizing complex of Photosystem II.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran,
| | | | | | | | | | | |
Collapse
|
89
|
Bao H, Dilbeck PL, Burnap RL. Proton transport facilitating water-oxidation: the role of second sphere ligands surrounding the catalytic metal cluster. PHOTOSYNTHESIS RESEARCH 2013; 116:215-229. [PMID: 23975203 DOI: 10.1007/s11120-013-9907-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 08/03/2013] [Indexed: 06/02/2023]
Abstract
The ability of PSII to extract electrons from water, with molecular oxygen as a by-product, is a remarkable biochemical and evolutionary innovation. From an evolutionary perspective, the invention of PSII approximately 2.7 Ga led to the accelerated accumulation of biomass in the biosphere and the accumulation of oxygen in the atmosphere, a combination that allowed for the evolution of a much more complex and extensive biosphere than would otherwise have been possible. From the biochemical and enzymatic perspective, PSII is remarkable because of the thermodynamic and kinetic obstacles that needed to have been overcome to oxidize water as the ultimate photosynthetic electron donor. This article focuses on how proton release is an integral part of how these kinetic and thermodynamic obstacles have been overcome: the sequential removal of protons from the active site of H2O-oxidation facilitates the multistep oxidation of the substrate water at the Mn4CaOx, the catalytic heart of the H2O-oxidation reaction. As noted previously, the facilitated deprotonation of the Mn4CaOx cluster exerts a redox-leveling function preventing the accumulation of excess positive charge on the cluster, which might otherwise hinder the already energetically difficult oxidation of water. Using recent results, including the characteristics of site-directed mutants, the role of the second sphere of amino acid ligands and the associated network of water molecules surrounding the Mn4CaOx is discussed in relation to proton transport in other systems. In addition to the redox-leveling function, a trapping function is assigned to the proton release step occurring immediately prior to the dioxygen chemistry. This trapping appears to involve a yet-to-be clarified gating mechanism that facilitates to coordinated release of a proton from the neighborhood of the active site thereby insuring that the backward charge-recombination reaction does not out-compete the forward reaction of dioxygen chemistry during this final step of H2O-oxidation.
Collapse
Affiliation(s)
- Han Bao
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK, 74078, USA
| | | | | |
Collapse
|
90
|
Dilbeck PL, Bao H, Neveu CL, Burnap RL. Perturbing the Water Cavity Surrounding the Manganese Cluster by Mutating the Residue D1-Valine 185 Has a Strong Effect on the Water Oxidation Mechanism of Photosystem II. Biochemistry 2013; 52:6824-33. [DOI: 10.1021/bi400930g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Preston L. Dilbeck
- Department of Microbiology and Molecular
Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| | - Han Bao
- Department of Microbiology and Molecular
Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| | - Curtis L. Neveu
- Department of Microbiology and Molecular
Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| | - Robert L. Burnap
- Department of Microbiology and Molecular
Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
91
|
Chen K, Chen L, Fan J, Fu J. Alleviation of heat damage to photosystem II by nitric oxide in tall fescue. PHOTOSYNTHESIS RESEARCH 2013; 116:21-31. [PMID: 23832593 DOI: 10.1007/s11120-013-9883-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 07/01/2013] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) has been found to mediate plant responses to heat stress. The objective of this study was to investigate the protective role of NO in the recovery process of photosystem II (PSII) in tall fescue (Festuca arundinacea) against heat stress. Treatment of tall fescue leaves with NO donor sodium nitroprusside significantly improved the overall behavior of PSII probed by the chlorophyll a fluorescence transients, while the inhibition of NO accumulation by 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (PTIO, a NO scavenger) plus N (G)-nitro-L-arginine-methyl ester (L-NAME, NO synthase inhibitor) dramatically disrupted the operation of PSII. Specifically, under heat stress, the exogenous NO reduced the initial fluorescence (F 0), increased the maximal quantum yield (F V/F M), and disappeared the K-step of 0.3 ms. By the analysis of the JIP-test, the exogenous NO improved the quantum yield of the electron transport flux from Q A to Q B (ET0/ABS), and decreased the trapped excitation flux per reaction center (RC) (TR0/RC), electron transport flux per RC (ET0/RC), and electron flux reducing end electron acceptors per RC (RE0/RC). In addition, the exogenous NO reduced the content of H2O2, O 2 (•-) , and malondialdehyde and electrolyte leakage of tall fescue leaves. These data suggest that exogenous NO could protect plants, increase the amount of activated RC and improve the electron transport from oxygen evolving complex to D1 protein. Moreover, quantitative RT-PCR revealed that, in the presence of hydrogen peroxide, NO induced the gene expression of psbA, psbB, and psbC, which encode proteins belonging to subunits of PSII core reaction center (Psb) complex. These findings indicate that, as an important strategy to protect plants against heat stress, NO could improve the recovery process of PSII by the up regulation of the transcriptions of genes encoding PSII core proteins.
Collapse
Affiliation(s)
- Ke Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo Street, Wuhan, 430074, Hubei, People's Republic of China.
| | | | | | | |
Collapse
|
92
|
Hasni I, Hamdani S, Carpentier R. Destabilization of the Oxygen Evolving Complex of Photosystem II by Al3+. Photochem Photobiol 2013; 89:1135-42. [DOI: 10.1111/php.12116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/11/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Imed Hasni
- Groupe de Recherche en Biologie Végétale (GRBV); Département de chimie; biochimie et physique; Université du Québec à Trois-Rivières; Trois-Rivières; QC; Canada
| | - Saber Hamdani
- Groupe de Recherche en Biologie Végétale (GRBV); Département de chimie; biochimie et physique; Université du Québec à Trois-Rivières; Trois-Rivières; QC; Canada
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale (GRBV); Département de chimie; biochimie et physique; Université du Québec à Trois-Rivières; Trois-Rivières; QC; Canada
| |
Collapse
|
93
|
Importance of trivalency and the e(g)(1) configuration in the photocatalytic oxidation of water by Mn and Co oxides. Proc Natl Acad Sci U S A 2013; 110:11704-7. [PMID: 23818589 DOI: 10.1073/pnas.1310703110] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prompted by the early results on the catalytic activity of LiMn2O4 and related oxides in the photochemical oxidation of water, our detailed study of several manganese oxides has shown that trivalency of Mn is an important factor in determining the catalytic activity. Thus, Mn2O3, LaMnO3, and MgMn2O4 are found to be very good catalysts with turnover frequencies of 5 × 10(-4) s(-1), 4.8 × 10(-4) s(-1), and 0.8 × 10(-4) s(-1), respectively. Among the cobalt oxides, Li2Co2O4 and LaCoO3--especially the latter--exhibit excellent catalytic activity, with the turnover frequencies being 9 × 10(-4) s(-1) and 1.4 × 10(-3) s(-1), respectively. The common feature among the catalytic Mn and Co oxides is not only that Mn and Co are in the trivalent state, but Co(3+) in the Co oxides is in the intermediate t2g(5)e(g)(1) state whereas Mn(3+) is in the t2g(3e(g)(1) state. The presence of the e(g)(1) electron in these Mn and Co oxides is considered to play a crucial role in the photocatalytic properties of the oxides.
Collapse
|
94
|
Yamaguchi K, Kitagawa Y, Isobe H, Shoji M, Yamanaka S, Okumura M. Theory of chemical bonds in metalloenzymes XVIII. Importance of mixed-valence configurations for Mn5O5, CaMn4O5 and Ca2Mn3O5 clusters revealed by UB3LYP computations. A bio-inspired strategy for artificial photosynthesis. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
95
|
Najafpour MM, Amouzadeh Tabrizi M, Haghighi B, Govindjee. A 2-(2-hydroxyphenyl)-1H-benzimidazole-manganese oxide hybrid as a promising structural model for the tyrosine 161/histidine 190-manganese cluster in photosystem II. Dalton Trans 2013. [PMID: 23178300 DOI: 10.1039/c2dt32236f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this communication, we report the synthesis, characterization, and electrochemistry of a 2-(2-hydroxyphenyl)-1H-benzimidazole-manganese oxide hybrid. Our results suggest that this compound is a promising model for the manganese cluster together with tyrosine-161 and histidine-190 in photosystem II of plants, algae and cyanobacteria.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan, 45137-66731, Iran.
| | | | | | | |
Collapse
|
96
|
Summerfield TC, Crawford TS, Young RD, Chua JPS, Macdonald RL, Sherman LA, Eaton-Rye JJ. Environmental pH affects photoautotrophic growth of Synechocystis sp. PCC 6803 strains carrying mutations in the lumenal proteins of PSII. PLANT & CELL PHYSIOLOGY 2013; 54:859-74. [PMID: 23444302 DOI: 10.1093/pcp/pct036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Synechocystis sp. strain PCC 6803 grows photoautotrophically across a broad pH range, but wild-type cultures reach a higher density at elevated pH; however, photoheterotrophic growth is similar at high and neutral pH. A number of PSII mutants each lacking at least one lumenal extrinsic protein, and carrying a second PSII lumenal mutation, are able to grow photoautotrophically in BG-11 medium at pH 10.0, but not pH 7.5. We investigated the basis of this pH effect and observed no pH-specific change in variable fluorescence yield from PSII centers of the wild type or the pH-dependent ΔPsbO:ΔPsbU and ΔPsbV:ΔCyanoQ strains; however, 77 K fluorescence emission spectra indicated increased coupling of the phycobilisome (PBS) antenna at pH 10.0 in all mutants. DNA microarray data showed a cell-wide response to transfer from pH 10.0 to pH 7.5, including decreased mRNA levels of a number of oxidative stress-responsive transcripts. We hypothesize that this transcriptional response led to increased tolerance against reactive oxygen species and in particular singlet oxygen. This response enabled photoautotrophic growth of the PSII mutants at pH 10.0. This hypothesis was supported by increased resistance of all strains to rose bengal at pH 10.0 compared with pH 7.5.
Collapse
Affiliation(s)
- Tina C Summerfield
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Using quantum mechanics/molecular mechanics calculations and the 1.9-Å crystal structure of Photosystem II [Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Nature 473(7345):55-60], we investigated the H-bonding environment of the redox-active tyrosine D (TyrD) and obtained insights that help explain its slow redox kinetics and the stability of TyrD(•). The water molecule distal to TyrD, located ~4 Å away from the phenolic O of TyrD, corresponds to the presence of the tyrosyl radical state. The water molecule proximal to TyrD, in H-bonding distance to the phenolic O of TyrD, corresponds to the presence of the unoxidized tyrosine. The H(+) released on oxidation of TyrD is transferred to the proximal water, which shifts to the distal position, triggering a concerted proton transfer pathway involving D2-Arg180 and a series of waters, through which the proton reaches the aqueous phase at D2-His61. The water movement linked to the ejection of the proton from the hydrophobic environment near TyrD makes oxidation slow and quasiirreversible, explaining the great stability of the TyrD(•). A symmetry-related proton pathway associated with tyrosine Z is pointed out, and this is associated with one of the Cl(-) sites. This may represent a proton pathway functional in the water oxidation cycle.
Collapse
|
98
|
Structure of Sr-substituted photosystem II at 2.1 A resolution and its implications in the mechanism of water oxidation. Proc Natl Acad Sci U S A 2013; 110:3889-94. [PMID: 23426624 DOI: 10.1073/pnas.1219922110] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Oxygen-evolving complex of photosystem II (PSII) is a tetra-manganese calcium penta-oxygenic cluster (Mn4CaO5) catalyzing light-induced water oxidation through several intermediate states (S-states) by a mechanism that is not fully understood. To elucidate the roles of Ca(2+) in this cluster and the possible location of water substrates in this process, we crystallized Sr(2+)-substituted PSII from Thermosynechococcus vulcanus, analyzed its crystal structure at a resolution of 2.1 Å, and compared it with the 1.9 Å structure of native PSII. Our analysis showed that the position of Sr was moved toward the outside of the cubane structure of the Mn4CaO5-cluster relative to that of Ca(2+), resulting in a general elongation of the bond distances between Sr and its surrounding atoms compared with the corresponding distances in the Ca-containing cluster. In particular, we identified an apparent elongation in the bond distance between Sr and one of the two terminal water ligands of Ca(2+), W3, whereas that of the Sr-W4 distance was not much changed. This result may contribute to the decrease of oxygen evolution upon Sr(2+)-substitution, and suggests a weak binding and rather mobile nature of this particular water molecule (W3), which in turn implies the possible involvement of this water molecule as a substrate in the O-O bond formation. In addition, the PsbY subunit, which was absent in the 1.9 Å structure of native PSII, was found in the Sr-PSII structure.
Collapse
|
99
|
Zhou T, Lin X, Zheng X. First-Principles Study on Structural and Chemical Asymmetry of a Biomimetic Water-Splitting Dimanganese Complex. J Chem Theory Comput 2013; 9:1073-80. [DOI: 10.1021/ct301034j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ting Zhou
- Hefei National Laboratory
for
Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangsong Lin
- State Key Laboratory of Molecular
Reaction Dynamics and Center for Theoretical Computational Chemistry,
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Xiao Zheng
- Hefei National Laboratory
for
Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Guizhou Provincial Key Laboratory
of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Normal College, Guiyang, Guizhou 550018, China
| |
Collapse
|
100
|
Sartorel A, Bonchio M, Campagna S, Scandola F. Tetrametallic molecular catalysts for photochemical water oxidation. Chem Soc Rev 2013; 42:2262-80. [DOI: 10.1039/c2cs35287g] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|