51
|
Quarch V, Brander L, Cioccari L. An Unexpected Case of Black Mamba ( Dendroaspis polylepis) Bite in Switzerland. Case Rep Crit Care 2017; 2017:5021924. [PMID: 28831315 PMCID: PMC5555024 DOI: 10.1155/2017/5021924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/16/2017] [Accepted: 07/02/2017] [Indexed: 12/31/2022] Open
Abstract
Mambas (genus Dendroaspis) are among the most feared venomous African snakes. Without medical treatment, mamba bites are frequently fatal. First-aid treatment includes lymphatic retardation with the pressure immobilization technique. Medical management comprises continuous monitoring, securing patency of the airway, ensuring adequate ventilation, symptomatic measures, and administration of specific antivenin. We report an unusual case of a snake breeder bitten by a black mamba in Switzerland, report the clinical course, and review the lifesaving emergency management of mamba bites. This case highlights the importance of early antivenin administration and suggests that emergency and critical care physicians as well as first responders all around the world should be familiar with clinical toxinology of exotic snake bites as well as with the logistics to most rapidly make the specific antivenin available.
Collapse
Affiliation(s)
- Verena Quarch
- Department of Intensive Care Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Lukas Brander
- Department of Intensive Care Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Luca Cioccari
- Department of Intensive Care Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland
| |
Collapse
|
52
|
Nalbantsoy A, Hempel BF, Petras D, Heiss P, Göçmen B, Iğci N, Yildiz MZ, Süssmuth RD. Combined venom profiling and cytotoxicity screening of the Radde's mountain viper (Montivipera raddei) and Mount Bulgar Viper (Montivipera bulgardaghica) with potent cytotoxicity against human A549 lung carcinoma cells. Toxicon 2017. [PMID: 28625888 DOI: 10.1016/j.toxicon.2017.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here we report the first characterization of the endemic Mount Bulgar Viper (Montivipera bulgardaghica) and Radde's mountain viper (Montivipera raddei) venom by a combined approach using intact mass profiling and bottom-up proteomics. The cytotoxicity screening of crude venom as well as isolated serine proteases revealed a high activity against A549 human lung carcinoma cells. By means of intact mass profiling of native and reduced venom we observed basic and acidic phospholipases type A2. Moreover, the analysis revealed snake venom metalloproteases, cysteine-rich secretory proteins, disintegrins, snake venom serine proteases, C-type lectins, a vascular endothelial growth factor and an L-amino acid oxidase.
Collapse
Affiliation(s)
- Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100, Izmir, Turkey
| | - Benjamin-Florian Hempel
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Daniel Petras
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany; University of California - San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, PSB 4231, 9500, Gilman Drive, La Jolla, CA, USA
| | - Paul Heiss
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Bayram Göçmen
- Zoology Section, Department of Biology, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Nasit Iğci
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Mehmet Zülfü Yildiz
- Zoology Section, Department of Biology, Faculty of Arts and Science, Adıyaman University, Adıyaman, Turkey
| | - Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany.
| |
Collapse
|
53
|
Calderón-Celis F, Cid-Barrio L, Encinar JR, Sanz-Medel A, Calvete JJ. Absolute venomics: Absolute quantification of intact venom proteins through elemental mass spectrometry. J Proteomics 2017; 164:33-42. [PMID: 28579478 DOI: 10.1016/j.jprot.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
Abstract
We report the application of a hybrid element and molecular MS configuration for the parallel absolute quantification of μHPLC-separated intact sulfur-containing venom proteins, via ICP triple quadrupole MS and 32S/34S isotope dilution analysis, and identification by ESI-QToF-MS of the toxins of the medically important African black-necked spitting cobra, Naja nigricollis (Tanzania); New Guinea small-eyed snake, Micropechis ikaheka; and Papuan black snake, Pseudechis papuanus. The main advantage of this approach is that only one generic sulfur-containing standard is required to quantify each and all intact Cys- and/or Met-containing toxins of the venom proteome. The results of absolute quantification are in reasonably good agreement with previously reported relative quantification of the most abundant protein families. However, both datasets depart in the quantification of the minor ones, showing a tendency for this set of proteins to be underestimated in standard peptide-centric venomics approaches. The molecular identity, specific toxic activity, and concentration in the venom, are the pillars on which the toxicovenomics-aimed discovery of the most medically-relevant venom toxins, e.g. those that need to be neutralized by an effective therapeutic antivenom, should be based. The pioneering venom proteome-wide absolute quantification shown in this paper represents thus a significant advance towards this goal. The potential of ICP triple quadrupole MS in proteomics in general, and venomics in particular, is critically discussed. BIOLOGICAL SIGNIFICANCE Animal venoms provide excellent model systems for investigating interactions between predators and prey, and the molecular mechanisms that contribute to adaptive protein evolution. On the other hand, numerous cases of snake bites occur yearly by encounters of humans and snakes in their shared natural environment. Snakebite envenoming is a serious global public health issue that affects the most impoverished and geopolitically disadvantaged rural communities in many tropical and subtropical countries. Unveiling the temporal and spatial patterns of venom variability is of fundamental importance to understand the molecular basis of envenoming, a prerequisite for developing therapeutic strategies against snakebite envenoming. Research on venoms has been continuously enhanced by advances in technology. The combined application of next-generation transcriptomic and venomic workflows has demonstrated unparalleled capabilities for venom characterization in unprecedented detail. However, mass spectrometry is not inherently quantitative, and this analytical limitation has sparked the development of methods to determine absolute abundance of proteins in biological samples. Here we show the potential of a hybrid element and molecular MS configuration for the parallel ESI-QToF-MS and ICP-QQQ detection and absolute quantification of intact sulfur-containing venom proteins via 32S/34S isotope dilution analysis. This configuration has been applied to quantify the toxins of the medically important African snake Naja nigricollis (Tanzania), and the Papuan species Micropechis ikaheka and Pseudechis papuanus.
Collapse
Affiliation(s)
- Francisco Calderón-Celis
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Laura Cid-Barrio
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain.
| |
Collapse
|
54
|
Gutiérrez JM, Solano G, Pla D, Herrera M, Segura Á, Vargas M, Villalta M, Sánchez A, Sanz L, Lomonte B, León G, Calvete JJ. Preclinical Evaluation of the Efficacy of Antivenoms for Snakebite Envenoming: State-of-the-Art and Challenges Ahead. Toxins (Basel) 2017; 9:toxins9050163. [PMID: 28505100 PMCID: PMC5450711 DOI: 10.3390/toxins9050163] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/17/2017] [Accepted: 05/10/2017] [Indexed: 01/09/2023] Open
Abstract
Animal-derived antivenoms constitute the mainstay in the therapy of snakebite envenoming. The efficacy of antivenoms to neutralize toxicity of medically-relevant snake venoms has to be demonstrated through meticulous preclinical testing before their introduction into the clinical setting. The gold standard in the preclinical assessment and quality control of antivenoms is the neutralization of venom-induced lethality. In addition, depending on the pathophysiological profile of snake venoms, the neutralization of other toxic activities has to be evaluated, such as hemorrhagic, myotoxic, edema-forming, dermonecrotic, in vitro coagulant, and defibrinogenating effects. There is a need to develop laboratory assays to evaluate neutralization of other relevant venom activities. The concept of the 3Rs (Replacement, Reduction, and Refinement) in Toxinology is of utmost importance, and some advances have been performed in their implementation. A significant leap forward in the study of the immunological reactivity of antivenoms against venoms has been the development of “antivenomics”, which brings the analytical power of mass spectrometry to the evaluation of antivenoms. International partnerships are required to assess the preclinical efficacy of antivenoms against snake venoms in different regions of the world in order to have a detailed knowledge on the neutralizing profile of these immunotherapeutics.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Gabriela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Davinia Pla
- Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain.
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
- Sección de Química Analítica, Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Andrés Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Libia Sanz
- Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain.
| |
Collapse
|
55
|
Calvete JJ, Petras D, Calderón-Celis F, Lomonte B, Encinar JR, Sanz-Medel A. Protein-species quantitative venomics: looking through a crystal ball. J Venom Anim Toxins Incl Trop Dis 2017; 23:27. [PMID: 28465678 PMCID: PMC5408492 DOI: 10.1186/s40409-017-0116-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 12/16/2022] Open
Abstract
In this paper we discuss recent significant developments in the field of venom research, specifically the emergence of top-down proteomic applications that allow achieving compositional resolution at the level of the protein species present in the venom, and the absolute quantification of the venom proteins (the term “protein species” is used here to refer to all the different molecular forms in which a protein can be found. Please consult the special issue of Jornal of Proteomics “Towards deciphering proteomes via the proteoform, protein speciation, moonlighting and protein code concepts” published in 2016, vol. 134, pages 1-202). Challenges remain to be solved in order to achieve a compact and automated platform with which to routinely carry out comprehensive quantitative analysis of all toxins present in a venom. This short essay reflects the authors’ view of the immediate future in this direction for the proteomic analysis of venoms, particularly of snakes.
Collapse
Affiliation(s)
- Juan J Calvete
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, C.S.I.C, Jaime Roig 11, 46010 Valencia, Spain
| | - Daniel Petras
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA USA
| | | | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
56
|
Sousa LF, Portes-Junior JA, Nicolau CA, Bernardoni JL, Nishiyama-Jr MY, Amazonas DR, Freitas-de-Sousa LA, Mourão RHV, Chalkidis HM, Valente RH, Moura-da-Silva AM. Functional proteomic analyses of Bothrops atrox venom reveals phenotypes associated with habitat variation in the Amazon. J Proteomics 2017; 159:32-46. [DOI: 10.1016/j.jprot.2017.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 12/17/2022]
|
57
|
Venomics: integrative venom proteomics and beyond*. Biochem J 2017; 474:611-634. [DOI: 10.1042/bcj20160577] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 01/15/2023]
Abstract
Venoms are integrated phenotypes that evolved independently in, and are used for predatory and defensive purposes by, a wide phylogenetic range of organisms. The same principles that contribute to the evolutionary success of venoms, contribute to making the study of venoms of great interest in such diverse fields as evolutionary ecology and biotechnology. Evolution is profoundly contingent, and nature also reinvents itself continuosly. Changes in a complex phenotypic trait, such as venom, reflect the influences of prior evolutionary history, chance events, and selection. Reconstructing the natural history of venoms, particularly those of snakes, which will be dealt with in more detail in this review, requires the integration of different levels of knowledge into a meaningful and comprehensive evolutionary framework for separating stochastic changes from adaptive evolution. The application of omics technologies and other disciplines have contributed to a qualitative and quantitative advance in the road map towards this goal. In this review we will make a foray into the world of animal venoms, discuss synergies and complementarities of the different approaches used in their study, and identify current bottlenecks that prevent inferring the evolutionary mechanisms and ecological constraints that molded snake venoms to their present-day variability landscape.
Collapse
|
58
|
Engmark M, Andersen MR, Laustsen AH, Patel J, Sullivan E, de Masi F, Hansen CS, Kringelum JV, Lomonte B, Gutiérrez JM, Lund O. High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays. Sci Rep 2016; 6:36629. [PMID: 27824133 PMCID: PMC5100549 DOI: 10.1038/srep36629] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/14/2016] [Indexed: 11/10/2022] Open
Abstract
Snakebite envenoming is a serious condition requiring medical attention and administration of antivenom. Current antivenoms are antibody preparations obtained from the plasma of animals immunised with whole venom(s) and contain antibodies against snake venom toxins, but also against other antigens. In order to better understand the molecular interactions between antivenom antibodies and epitopes on snake venom toxins, a high-throughput immuno-profiling study on all manually curated toxins from Dendroaspis species and selected African Naja species was performed based on custom-made high-density peptide microarrays displaying linear toxin fragments. By detection of binding for three different antivenoms and performing an alanine scan, linear elements of epitopes and the positions important for binding were identified. A strong tendency of antivenom antibodies recognizing and binding to epitopes at the functional sites of toxins was observed. With these results, high-density peptide microarray technology is for the first time introduced in the field of toxinology and molecular details of the evolution of antibody-toxin interactions based on molecular recognition of distinctive toxic motifs are elucidated.
Collapse
Affiliation(s)
- Mikael Engmark
- Technical University of Denmark, Department of Bio and Health Informatics, Kgs. Lyngby, 2800, Denmark.,Technical University of Denmark, Department of Biotechnology and Biomedicine, Kgs. Lyngby, 2800, Denmark
| | - Mikael R Andersen
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Kgs. Lyngby, 2800, Denmark
| | - Andreas H Laustsen
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Kgs. Lyngby, 2800, Denmark.,University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen East, 2100, Denmark
| | - Jigar Patel
- Roche NimbleGen, Madison, Wisconsin 53719, USA
| | | | - Federico de Masi
- Technical University of Denmark, Department of Bio and Health Informatics, Kgs. Lyngby, 2800, Denmark
| | - Christian S Hansen
- Technical University of Denmark, Department of Bio and Health Informatics, Kgs. Lyngby, 2800, Denmark
| | - Jens V Kringelum
- Technical University of Denmark, Department of Bio and Health Informatics, Kgs. Lyngby, 2800, Denmark
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Ole Lund
- Technical University of Denmark, Department of Bio and Health Informatics, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
59
|
Lomonte B, Rey-Suárez P, Fernández J, Sasa M, Pla D, Vargas N, Bénard-Valle M, Sanz L, Corrêa-Netto C, Núñez V, Alape-Girón A, Alagón A, Gutiérrez JM, Calvete JJ. Venoms of Micrurus coral snakes: Evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon 2016; 122:7-25. [DOI: 10.1016/j.toxicon.2016.09.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/04/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
|
60
|
Calderón-Celis F, Diez-Fernández S, Costa-Fernández JM, Encinar JR, Calvete JJ, Sanz-Medel A. Elemental Mass Spectrometry for Absolute Intact Protein Quantification without Protein-Specific Standards: Application to Snake Venomics. Anal Chem 2016; 88:9699-9706. [PMID: 27593495 DOI: 10.1021/acs.analchem.6b02585] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Absolute protein quantification methods based on molecular mass spectrometry usually require stable isotope-labeled analogous standards for each target protein or peptide under study, which in turn must be certified using natural standards. In this work, we report a direct and accurate methodology based on capLC-ICP-QQQ and online isotope dilution analysis for the absolute and sensitive quantification of intact proteins. The combination of the postcolumn addition of 34S and a generic S-containing internal standard spiked to the sample provides full compound independent detector response and thus protein quantification without the need for specific standards. Quantitative recoveries, using a chromatographic core-shell C4 column for the various protein species assayed were obtained (96-100%). Thus, the proposed strategy enables the accurate quantification of proteins even if no specific standards are available for them. In addition, to the best of our knowledge, we obtained the lowest detection limits reported in the quantitative analysis of intact proteins by direct measurement of sulfur with ICPMS (358 fmol) and protein (ranging from 7 to 15 fmol depending on the assayed protein). The quantitative results for individual and simple mixtures of model proteins were statistically indistinguishable from the manufacturer's values. Finally, the suitability of the strategy for real sample analysis (including quantitative protein recovery from the column) was illustrated for the individual absolute quantification of the proteins and whole protein content in a venom sample. Parallel capLC-ESI-QTOF analysis was employed to identify the proteins, a prerequisite to translate the mass of quantified S for each chromatographic peak into individual protein mass.
Collapse
Affiliation(s)
- Francisco Calderón-Celis
- Department of Physical and Analytical Chemistry, University of Oviedo , Julián Clavería 8, 33006 Oviedo, Spain
| | - Silvia Diez-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo , Julián Clavería 8, 33006 Oviedo, Spain
| | - José Manuel Costa-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo , Julián Clavería 8, 33006 Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo , Julián Clavería 8, 33006 Oviedo, Spain
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia , Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo , Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|