51
|
Rosanò L, Spinella F, Bagnato A. Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2013; 13:637-51. [PMID: 23884378 DOI: 10.1038/nrc3546] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activation of autocrine and paracrine signalling by endothelin 1 (ET1) binding to its receptors elicits pleiotropic effects on tumour cells and on the host microenvironment. This activation modulates cell proliferation, apoptosis, migration, epithelial-to-mesenchymal transition, chemoresistance and neovascularization, thus providing a strong rationale for targeting ET1 receptors in cancer. In this Review, we discuss the advances in our understanding of the diverse biological roles of ET1 in cancer and describe the latest preclinical and clinical progress that has been made using small-molecule antagonists of ET1 receptors that inhibit ET1-driven signalling.
Collapse
Affiliation(s)
- Laura Rosanò
- Laboratory of Molecular Pathology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | | | | |
Collapse
|
52
|
Fleming JL, Gable DL, Samadzadeh-Tarighat S, Cheng L, Yu L, Gillespie JL, Toland AE. Differential expression of miR-1, a putative tumor suppressing microRNA, in cancer resistant and cancer susceptible mice. PeerJ 2013; 1:e68. [PMID: 23646287 PMCID: PMC3642704 DOI: 10.7717/peerj.68] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/25/2013] [Indexed: 12/14/2022] Open
Abstract
Mus spretus mice are highly resistant to several types of cancer compared to Mus musculus mice. To determine whether differences in microRNA (miRNA) expression account for some of the differences in observed skin cancer susceptibility between the strains, we performed miRNA expression profiling of skin RNA for over 300 miRNAs. Five miRNAs, miR-1, miR-124a-3, miR-133a, miR-134, miR-206, were differentially expressed by array and/or qPCR. miR-1 was previously shown to have tumor suppressing abilities in multiple tumor types. We found miR-1 expression to be lower in mouse cutaneous squamous cell carcinomas (cSCCs) compared to normal skin. Based on the literature and our expression data, we performed detailed studies on predicted miR-1 targets and evaluated the effect of miR-1 expression on two murine cSCC cell lines, A5 and B9. Following transfection of miR-1, we found decreased mRNA expression of three validated miR-1 targets, Met, Twf1 and Ets1 and one novel target Bag4. Decreased expression of Ets1 was confirmed by Western analysis and by 3’ reporter luciferase assays containing wildtype and mutated Ets1 3’UTR. We evaluated the effect of miR-1 on multiple tumor phenotypes including apoptosis, proliferation, cell cycle and migration. In A5 cells, expression of miR-1 led to decreased proliferation compared to a control miR. miR-1 expression also led to increased apoptosis at later time points (72 and 96 h) and to a decrease in cells in S-phase. In summary, we identified five miRNAs with differential expression between cancer resistant and cancer susceptible mice and found that miR-1, a candidate tumor suppressor, has targets with defined roles in tumorigenesis.
Collapse
Affiliation(s)
- Jessica L Fleming
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Dustin L Gable
- Biomedical Science Program, The Ohio State University, Columbus, OH, USA
| | - Somayeh Samadzadeh-Tarighat
- Division of Hematology/Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Luke Cheng
- Biomedical Science Program, The Ohio State University, Columbus, OH, USA
| | - Lianbo Yu
- The Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Jessica L Gillespie
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Amanda Ewart Toland
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
53
|
Jacobs ME, Wingo CS, Cain BD. An emerging role for microRNA in the regulation of endothelin-1. Front Physiol 2013; 4:22. [PMID: 23424003 PMCID: PMC3575574 DOI: 10.3389/fphys.2013.00022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/28/2013] [Indexed: 12/11/2022] Open
Abstract
Endothelin-1 (ET-1) is a peptide signaling molecule serving diverse functions in many different tissues such as the vasculature and the kidney. The primary mechanism thought to control ET-1 bioavailability is the rate of transcription from the ET-1 gene (EDN1), but recent research suggests that EDN1 expression is attenuated by microRNA (miRNA)—mediated regulation. The action of specific miRNAs on EDN1 mRNA appears to vary greatly in a tissue specific manner. This review provides a summary of our current understanding of miRNA-EDN1 interaction.
Collapse
Affiliation(s)
- Mollie E Jacobs
- Cain Laboratory, Department of Biochemistry and Molecular Biology, University of Florida Gainesville, FL, USA
| | | | | |
Collapse
|
54
|
MicroRNAs in hepatocellular carcinoma: regulation, function, and clinical implications. ScientificWorldJournal 2013; 2013:924206. [PMID: 23431261 PMCID: PMC3575633 DOI: 10.1155/2013/924206] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/13/2013] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and the third cause of cancer-related death. Poor understanding of the mechanisms underlying the pathogenesis of HCC makes it difficult to be diagnosed and treated at early stage. MicroRNAs (miRNAs), a class of noncoding single-stranded RNAs of ~22 nucleotides in length, posttranscriptionally regulate gene expression by base pairing with the 3' untranslated regions (3'UTRs) of target messenger RNAs (mRNAs). Aberrant expression of miRNAs is found in many if not all cancers, and many deregulated miRNAs have been proved to play crucial roles in the initiation and progression of cancers by regulating the expression of various oncogenes or tumor suppressor genes. In this Paper, we will summarize the regulations and functions of miRNAs aberrantly expressed in HCC and discuss the potential application of miRNAs as diagnostic and prognostic biomarkers of HCC and their potential roles in the intervention of HCC.
Collapse
|