51
|
Chiu CF, Bai LY, Kapuriya N, Peng SY, Wu CY, Sargeant AM, Chen MY, Weng JR. Antitumor effects of BI-D1870 on human oral squamous cell carcinoma. Cancer Chemother Pharmacol 2013; 73:237-47. [DOI: 10.1007/s00280-013-2349-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 11/01/2013] [Indexed: 12/15/2022]
|
52
|
Epigenetic downregulation of RUNX3 by DNA methylation induces docetaxel chemoresistance in human lung adenocarcinoma cells by activation of the AKT pathway. Int J Biochem Cell Biol 2013; 45:2369-78. [DOI: 10.1016/j.biocel.2013.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/27/2013] [Accepted: 07/16/2013] [Indexed: 12/26/2022]
|
53
|
Chen Y, Tsai YH, Tseng SH. RECK regulated endoplasmic reticulum stress response and enhanced cisplatin-induced cell death in neuroblastoma cells. Surgery 2013; 154:968-79. [DOI: 10.1016/j.surg.2013.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
|
54
|
Xu Y, Wang C, Li Z. A new strategy of promoting cisplatin chemotherapeutic efficiency by targeting endoplasmic reticulum stress. Mol Clin Oncol 2013; 2:3-7. [PMID: 24649299 DOI: 10.3892/mco.2013.202] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/12/2013] [Indexed: 11/06/2022] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum II, CDDP) is one of the most effective chemotherapeutic agents and is widely used in the treatment of solid tumors. However, its side effects and acquired resistance gained during the course of treatment may limit its usage. It is generally considered to be a cytotoxic drug that kills cancer cells by damaging their DNA and inhibiting DNA synthesis to induce apoptosis via the mitochondrial death pathway or through plasma membrane disruption, triggering the Fas death receptor pathway. The endoplasmic reticulum (ER) is one of the most important protein-folding compartments within the cell and an intracellular Ca2+ storage organelle. The ER contains a number of molecular chaperones, which may play an important role in determining cellular sensitivity to ER stress and apoptosis. The aim of this review was to summarize our current understanding regarding the mechanisms of ER stress response by which cisplatin induces cell death and the basis for cisplatin resistance. Various aspects were addressed, including the two-way regulation of ER stress, the involvement of ER stress in cisplatin-induced cell death and drug resistance and the drugs enhancing cisplatin-induced cell death by interfering with ER stress. An understanding of how ER stress signaling pathways regulate cisplatin-induced cell death may enable the development of more effective therapeutic strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Ye Xu
- Medical Research Laboratory, Jilin Medical College, Jilin, Jilin 132013, P.R. China ; Department of Histology and Embryology, Jilin Medical College, Jilin, Jilin 132013, P.R. China
| | - Chunyan Wang
- Medical Research Laboratory, Jilin Medical College, Jilin, Jilin 132013, P.R. China
| | - Zhixin Li
- Department of Histology and Embryology, Jilin Medical College, Jilin, Jilin 132013, P.R. China
| |
Collapse
|
55
|
Karasawa T, Sibrian-Vazquez M, Strongin RM, Steyger PS. Identification of cisplatin-binding proteins using agarose conjugates of platinum compounds. PLoS One 2013; 8:e66220. [PMID: 23755301 PMCID: PMC3670892 DOI: 10.1371/journal.pone.0066220] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/07/2013] [Indexed: 12/31/2022] Open
Abstract
Cisplatin is widely used as an antineoplastic drug, but its ototoxic and nephrotoxic side-effects, as well as the inherent or acquired resistance of some cancers to cisplatin, remain significant clinical problems. Cisplatin's selectivity in killing rapidly proliferating cancer cells is largely dependent on covalent binding to DNA via cisplatin's chloride sites that had been aquated. We hypothesized that cisplatin's toxicity in slowly proliferating or terminally differentiated cells is primarily due to drug-protein interactions, instead of drug-DNA binding. To identify proteins that bind to cisplatin, we synthesized two different platinum-agarose conjugates, one with two amino groups and another with two chlorides attached to platinum that are available for protein binding, and conducted pull-down assays using cochlear and kidney cells. Mass spectrometric analysis on protein bands after gel electrophoresis and Coomassie blue staining identified several proteins, including myosin IIA, glucose-regulated protein 94 (GRP94), heat shock protein 90 (HSP90), calreticulin, valosin containing protein (VCP), and ribosomal protein L5, as cisplatin-binding proteins. Future studies on the interaction of these proteins with cisplatin will elucidate whether these drug-protein interactions are involved in ototoxicity and nephrotoxicity, or contribute to tumor sensitivity or resistance to cisplatin treatment.
Collapse
Affiliation(s)
- Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America.
| | | | | | | |
Collapse
|
56
|
Guo L, Chen R, Ma N, Xiao H, Chen Y, Chen F, Mei J, Ding F, Zhong H. Phosphorylation of eIF2α Suppresses Cisplatin-Induced A549 Cell Apoptosis via p38 Inhibition. Cancer Biother Radiopharm 2013; 28:268-73. [PMID: 23570372 DOI: 10.1089/cbr.2012.1340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Liang Guo
- Department of Cardio-Thoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P.R. China
| | - Run Chen
- Department of Public Health, Luzhou Medical College, Luzhou, Sichuan, China
| | - Nan Ma
- Department of Cardio-Thoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P.R. China
| | - Haibo Xiao
- Department of Cardio-Thoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P.R. China
| | - Yin Chen
- Department of Cardio-Thoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P.R. China
| | - Fei Chen
- Department of Cardio-Thoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P.R. China
| | - Ju Mei
- Department of Cardio-Thoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P.R. China
| | - Fangbao Ding
- Department of Cardio-Thoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P.R. China
| | - Hong Zhong
- Department of Cardio-Thoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P.R. China
- Department of Cardio-Thoracic Surgery, Xinhua Hospital (Chongming) Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 202150, P.R. China
| |
Collapse
|
57
|
Avila MF, Cabezas R, Torrente D, Gonzalez J, Morales L, Alvarez L, Capani F, Barreto GE. Novel interactions of GRP78: UPR and estrogen responses in the brain. Cell Biol Int 2013; 37:521-32. [DOI: 10.1002/cbin.10058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/22/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Marco Fidel Avila
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Ricardo Cabezas
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Daniel Torrente
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Janneth Gonzalez
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Ludis Morales
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Lisandro Alvarez
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), Facultad de Medicina, UBA-CONICET; Marcelo T. de Alvear 2270, C1122AAJ Buenos Aires; Argentina
| | - Francisco Capani
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), Facultad de Medicina, UBA-CONICET; Marcelo T. de Alvear 2270, C1122AAJ Buenos Aires; Argentina
| | - George E. Barreto
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| |
Collapse
|
58
|
Gray MJ, Mhawech-Fauceglia P, Yoo E, Yang W, Wu E, Lee AS, Lin YG. AKT inhibition mitigates GRP78 (glucose-regulated protein) expression and contribution to chemoresistance in endometrial cancers. Int J Cancer 2013; 133:21-30. [PMID: 23280503 DOI: 10.1002/ijc.27994] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/06/2012] [Indexed: 02/06/2023]
Abstract
Overexpression of the unfolded protein response master regulator GRP78 is associated with poor prognosis and therapeutic resistance in numerous human cancers, yet its role in endometrial cancers (EC) is undefined. To better understand the contribution of GRP78 to EC, we examined its expression levels in EC patient samples and EC cell lines. We demonstrate that GRP78 overexpression occurs more frequently in EC tissues compared with that found in normal endometrium, and that GRP78 expression occurs in most EC cell lines examined. Functional analysis demonstrated that GRP78 is inducible by cisplatin in EC cells, and siRNA knockdown of GRP78 augments chemotherapy-mediated cell death. Examination of AKT and GRP78 expression demonstrated that inhibition of AKT activity by MK2206 blocks GRP78 expression in EC cells. SiRNA studies also revealed that knockdown of GRP78 reduces but does not abrogate AKT activity, demonstrating that GRP78 is required for optimal AKT activity. In the presence of MK2206, siRNA knockdown of GRP78 does not augment AKT mediated survival in response to cisplatin treatment, suggesting that GRP78's antiapoptosis functions are part of the AKT survival pathway. Targeted therapies that reduce GRP78 expression or activity in cancers may serve to increase the effectiveness of current therapies for EC patients.
Collapse
Affiliation(s)
- Michael J Gray
- Women's Cancer Program, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Sancho-Martínez SM, Prieto-García L, Prieto M, López-Novoa JM, López-Hernández FJ. Subcellular targets of cisplatin cytotoxicity: An integrated view. Pharmacol Ther 2012; 136:35-55. [DOI: 10.1016/j.pharmthera.2012.07.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 12/29/2022]
|
60
|
Merrick DT. GRP78, intronic polymorphisms, and pharmacogenomics in non-small cell lung cancer. Chest 2012; 141:1377-1378. [PMID: 22670016 DOI: 10.1378/chest.11-2662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Daniel T Merrick
- Department of Pathology, Denver Veterans Affairs Medical Center, Denver, CO.
| |
Collapse
|
61
|
Hill R, Li Y, Tran LM, Dry S, Calvopina JH, Garcia A, Kim C, Wang Y, Donahue TR, Herschman HR, Wu H. Cell intrinsic role of COX-2 in pancreatic cancer development. Mol Cancer Ther 2012; 11:2127-37. [PMID: 22784710 DOI: 10.1158/1535-7163.mct-12-0342] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
COX-2 is upregulated in pancreatic ductal adenocarcinomas (PDAC). However, how COX-2 promotes PDAC development is unclear. While previous studies have evaluated the efficacy of COX-2 inhibition via the use of nonsteroidal anti-inflammatory drugs (NSAID) or the COX-2 inhibitor celecoxib in PDAC models, none have addressed the cell intrinsic versus microenvironment roles of COX-2 in modulating PDAC initiation and progression. We tested the cell intrinsic role of COX-2 in PDAC progression using both loss-of-function and gain-of-function approaches. Cox-2 deletion in Pdx1+ pancreatic progenitor cells significantly delays the development of PDAC in mice with K-ras activation and Pten haploinsufficiency. Conversely, COX-2 overexpression promotes early onset and progression of PDAC in the K-ras mouse model. Loss of PTEN function is a critical factor in determining lethal PDAC onset and overall survival. Mechanistically, COX-2 overexpression increases p-AKT levels in the precursor lesions of Pdx1(+); K-ras(G12D)(/+); Pten(lox)(/+) mice in the absence of Pten LOH. In contrast, Cox-2 deletion in the same setting diminishes p-AKT levels and delays cancer progression. These data suggest an important cell intrinsic role for COX-2 in tumor initiation and progression through activation of the PI3K/AKT pathway. PDAC that is independent of intrinsic COX-2 expression eventually develops with decreased FKBP5 and increased GRP78 expression, two alternate pathways leading to AKT activation. Together, these results support a cell intrinsic role for COX-2 in PDAC development and suggest that while anti-COX-2 therapy may delay the development and progression of PDAC, mechanisms known to increase chemoresistance through AKT activation must also be overcome.
Collapse
Affiliation(s)
- Reginald Hill
- Corresponding Author: Hong Wu, Department of Molecular and Medical Pharmacology, CHS 33-131, 650 CE Young Drive South, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Chang YJ, Huang YP, Li ZL, Chen CH. GRP78 knockdown enhances apoptosis via the down-regulation of oxidative stress and Akt pathway after epirubicin treatment in colon cancer DLD-1 cells. PLoS One 2012; 7:e35123. [PMID: 22529978 PMCID: PMC3329422 DOI: 10.1371/journal.pone.0035123] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/13/2012] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION The 78-kDa glucose-regulated protein (GRP78) is induced in the cancer microenvironment and can be considered as a novel predictor of responsiveness to chemotherapy in many cancers. In this study, we found that intracellular reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation were higher in GRP78 knockdown DLD-1 colon cancer cells compared with scrambled control cells. METHODOLOGY/PRINCIPAL FINDINGS Treatment with epirubicin in GRP78 knockdown DLD-1 cells enhanced apoptosis and was associated with decreased production of intracellular ROS. In addition, apoptosis was increased by the antioxidants propyl gallate (PG) and dithiothreitol (DTT) in epirubicin-treated scrambled control cells. Epirubicin-treated GRP78 knockdown cells resulted in more inactivated Akt pathway members, such as phosphorylated Akt and GSK-3β, as well as downstream targets of β-catenin expression. Knockdown of Nrf2 with small interfering RNA (siRNA) increased apoptosis in epirubicin-treated GRP78 knockdown cells, which suggested that Nrf2 may be a primary defense mechanism in GRP78 knockdown cells. We also demonstrated that epirubicin-treated GRP78 knockdown cells could decrease survival pathway signaling through the redox activation of protein phosphatase 2A (PP2A), which is a serine/threonine phosphatase that negatively regulates the Akt pathway. CONCLUSIONS Our results indicate that epirubicin decreased the intracellular ROS in GRP78 knockdown cells, which decreased survival signaling through both the Akt pathway and the activation of PP2A. Together, these mechanisms contributed to the enhanced level of epirubicin-induced apoptosis that was observed in the GRP78 knockdown cells.
Collapse
Affiliation(s)
- Yu-Jia Chang
- Graduate Institute of Clinical Medicine College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
- Cancer Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Ping Huang
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan
| | - Zih-Ling Li
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan
| | - Ching-Hsein Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan
- * E-mail:
| |
Collapse
|
63
|
Li Z, Li Z. Glucose regulated protein 78: a critical link between tumor microenvironment and cancer hallmarks. Biochim Biophys Acta Rev Cancer 2012; 1826:13-22. [PMID: 22426159 DOI: 10.1016/j.bbcan.2012.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/26/2012] [Accepted: 02/27/2012] [Indexed: 12/27/2022]
Abstract
Glucose regulated protein 78 (GRP78) has long been recognized as a molecular chaperone in the endoplasmic reticulum (ER) and can be induced by the ER stress response. Besides its location in the ER, GRP78 has been found to be present in cell plasma membrane, cytoplasm, mitochondria, nucleus as well as cellular secretions. GRP78 is implicated in tumor cell proliferation, apoptosis resistance, immune escape, metastasis and angiogenesis, and its elevated expression usually correlates with a variety of tumor microenvironmental stresses, including hypoxia, glucose deprivation, lactic acidosis and inflammatory response. GRP78 protein acts as a centrally located sensor of stress, which feels and adapts to the alteration in the tumor microenvironment. This article reviews the potential contributions of GRP78 to the acquisition of cancer hallmarks based on intervening in stress responses caused by tumor niche alterations. The paper also introduces several potential GRP78 relevant targeted therapies.
Collapse
Affiliation(s)
- Zongwei Li
- Institute of Biotechnology, The Key Laboratory of Clinical Biology and Molecular Engineering of Education Ministry, Shanxi University, 030006 Taiyuan, PR China
| | | |
Collapse
|
64
|
Lincet H, Guével B, Pineau C, Allouche S, Lemoisson E, Poulain L, Gauduchon P. Comparative 2D-DIGE proteomic analysis of ovarian carcinoma cells: Toward a reorientation of biosynthesis pathways associated with acquired platinum resistance. J Proteomics 2012; 75:1157-69. [DOI: 10.1016/j.jprot.2011.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/29/2011] [Accepted: 10/27/2011] [Indexed: 01/08/2023]
|
65
|
Bago-Horvath Z, Sieghart W, Grusch M, Lackner A, Hayden H, Pirker C, Komina O, Węsierska-Gądek J, Haitel A, Filipits M, Berger W, Schmid K. Synergistic effects of erlotinib and everolimus on bronchial carcinoids and large-cell neuroendocrine carcinomas with activated EGFR/AKT/mTOR pathway. Neuroendocrinology 2012; 96:228-37. [PMID: 22378048 DOI: 10.1159/000337257] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/14/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR) are crucial targets in cancer therapy. Combined inhibition of both targets yielded synergistic effects in vitro and in vivo in several cancer entities. However, the impact of EGFR and mTOR expression and combined inhibition in neuroendocrine lung tumors other than small-cell lung cancer remains unclear. MATERIAL AND METHODS Expression and activation of EGFR/AKT/mTOR pathway constituents were investigated in typical and atypical bronchial carcinoid (AC) tumors and large-cell neuroendocrine lung carcinomas (LCNEC) by immunohistochemistry in 110 tumor samples, and correlated with clinicopathological parameters and patient survival. Cytotoxicity of mTOR inhibitor everolimus and EGFR inhibitor erlotinib alone and in combination was assessed using growth inhibition assay in NCI-H720 AC and SHP-77 LCNEC cells. Cell cycle phase distribution was determined by FACS. Apoptosis-associated activation of caspase-3/7 was measured by Caspase-Glo® assay. Activity status of EGFR and mTOR pathway components was analyzed by immunoblotting. RESULTS Activation of the EGFR/AKT/mTOR axis could be demonstrated in all entities and was significantly increased in higher grade tumors. Neoadjuvant chemotherapy correlated significantly with p-AKT expression and p-ERK loss. Erlotinib combined with everolimus exerted synergistic combination effects in AC and LCNEC cells by induction of apoptosis, while cell cycle phase distribution remained unaffected. These effects could be explained by synergistic downregulation of phospho-mTOR, phospho-p70S6 kinase and phospho-AKT expression by everolimus and erlotinib. CONCLUSIONS Our study indicates that EGFR and mTOR are clinically important targets in bronchial neuroendocrine tumors, and further in vivo and clinical exploration of combined inhibition is warranted.
Collapse
|
66
|
Meng S, Zhou Z, Chen F, Kong X, Liu H, Jiang K, Liu W, Hu M, Zhang X, Ding C, Wu Y. Newcastle disease virus induces apoptosis in cisplatin-resistant human lung adenocarcinoma A549 cells in vitro and in vivo. Cancer Lett 2011; 317:56-64. [PMID: 22095029 DOI: 10.1016/j.canlet.2011.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/07/2011] [Accepted: 11/07/2011] [Indexed: 11/17/2022]
Abstract
Cisplatin (DDP) is widely used in lung cancer chemotherapy. However, cisplatin resistance represents a major obstacle in effective clinical treatment. This study aims to investigate whether Newcastle disease virus (NDV) exhibits an oncolytic effect on cisplatin-resistant A549 lung cancer cells. We found that NDV induced A549/DDP cell apoptosis via the caspase pathway, particularly involving caspase-9, while the mitogen-activated protein kinase (MAPK) and Akt pathways also contributed to apoptotic induction. Furthermore, NDV displayed oncolytic effects in a mouse A549/DDP lung cancer model. Collectively, our data indicate that NDV could overcome the cisplatin resistance in lung cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Songshu Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin 150001, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Zhang J, Wen HJ, Guo ZM, Zeng MS, Li MZ, Jiang YE, He XG, Sun CZ. TRB3 overexpression due to endoplasmic reticulum stress inhibits AKT kinase activation of tongue squamous cell carcinoma. Oral Oncol 2011; 47:934-9. [DOI: 10.1016/j.oraloncology.2011.06.512] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/19/2011] [Accepted: 06/25/2011] [Indexed: 11/29/2022]
|
68
|
Abstract
Changes in metabolic processes play a critical role in the survival or death of cells subjected to various stresses. In the present study, we have investigated the effects of ER (endoplasmic reticulum) stress on cellular metabolism. A major difficulty in studying metabolic responses to ER stress is that ER stress normally leads to apoptosis and metabolic changes observed in dying cells may be misleading. Therefore we have used IL-3 (interleukin 3)-dependent Bak-/-Bax-/- haemopoietic cells which do not die in the presence of the ER-stress-inducing drug tunicamycin. Tunicamycin-treated Bak-/-Bax-/- cells remain viable, but cease growth, arresting in G1-phase and undergoing autophagy in the absence of apoptosis. In these cells, we used NMR-based SIRM (stable isotope-resolved metabolomics) to determine the metabolic effects of tunicamycin. Glucose was found to be the major carbon source for energy production and anabolic metabolism. Following tunicamycin exposure, glucose uptake and lactate production are greatly reduced. Decreased 13C labelling in several cellular metabolites suggests that mitochondrial function in cells undergoing ER stress is compromised. Consistent with this, mitochondrial membrane potential, oxygen consumption and cellular ATP levels are much lower compared with untreated cells. Importantly, the effects of tunicamycin on cellular metabolic processes may be related to a reduction in cell-surface GLUT1 (glucose transporter 1) levels which, in turn, may reflect decreased Akt signalling. These results suggest that ER stress exerts profound effects on several central metabolic processes which may help to explain cell death arising from ER stress in normal cells.
Collapse
|
69
|
Uckun FM, Qazi S, Ozer Z, Garner AL, Pitt J, Ma H, Janda KD. Inducing apoptosis in chemotherapy-resistant B-lineage acute lymphoblastic leukaemia cells by targeting HSPA5, a master regulator of the anti-apoptotic unfolded protein response signalling network. Br J Haematol 2011; 153:741-52. [PMID: 21517817 DOI: 10.1111/j.1365-2141.2011.08671.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We present previously unknown evidence that the immunoglobulin heavy chain binding protein BIP/HSPA5, also known as glucose regulated protein (GRP)78, serving as a pivotal component of the pro-survival axis of the unfolded protein response (UPR) signalling network, is abundantly expressed in relapsed B-lineage acute lymphoblastic leukaemia (ALL) and contributes to chemotherapy resistance of leukaemic B-cell precursors. The resistance of B-lineage ALL cells to the standard anti-leukaemic drug vincristine was overcome by the HSPA5 inhibitor epigallocatechin gallate, which inhibits the anti-apoptotic function of HSPA5 by targeting its ATP-binding domain. Notably, chemotherapy-resistant B-lineage ALL cells underwent apoptosis within 48 h of exposure to a doxorubicin-conjugated cell-penetrating cyclic anti-HSPA5 peptide targeting surface-expressed HSPA5 molecules on leukaemia cells. The identification of the HSPA5 as a chemoresistance biomarker and molecular target for B-lineage ALL may lead to new anti-leukaemic treatment strategies that are much needed.
Collapse
Affiliation(s)
- Fatih M Uckun
- Department of Pediatrics, Division of Hematology-Oncology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
70
|
Yung HW, Charnock-Jones DS, Burton GJ. Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner. PLoS One 2011; 6:e17894. [PMID: 21445305 PMCID: PMC3061875 DOI: 10.1371/journal.pone.0017894] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/14/2011] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a common factor in the pathophysiology of diverse human diseases that are characterised by contrasting cellular behaviours, from proliferation in cancer to apoptosis in neurodegenerative disorders. Coincidently, dysregulation of AKT/PKB activity, which is the central regulator of cell growth, proliferation and survival, is often associated with the same diseases. Here, we demonstrate that ER stress modulates AKT substrate specificity in a severity-dependent manner, as shown by phospho-specific antibodies against known AKT targets. ER stress also reduces both total and phosphorylated AKT in a severity-dependent manner, without affecting activity of the upstream kinase PDK1. Normalisation to total AKT revealed that under ER stress phosphorylation of Thr308 is suppressed while that of Ser473 is increased. ER stress induces GRP78, and siRNA-mediated knock-down of GRP78 enhances phosphorylation at Ser473 by 3.6 fold, but not at Thr308. Substrate specificity is again altered. An in-situ proximity ligation assay revealed a physical interaction between GRP78 and AKT at the plasma membrane of cells following induction of ER stress. Staining was weak in cells with normal nuclear morphology but stronger in those displaying rounded, condensed nuclei. Co-immunoprecipitation of GRP78 and P-AKT(Ser473) confirmed the immuno-complex consists of non-phosphorylated AKT (Ser473 and Thr308). The interaction is likely specific as AKT did not bind to all molecular chaperones, and GRP78 did not bind to p70 S6 kinase. These findings provide one mechanistic explanation for how ER stress contributes to human pathologies demonstrating contrasting cell fates via modulation of AKT signalling.
Collapse
Affiliation(s)
- Hong Wa Yung
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - D. Stephen Charnock-Jones
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, United Kingdom
- Cambridge Comprehensive Biomedical Research Centre, National Institute for Health Research, Cambridge, United Kingdom
| | - Graham J. Burton
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Cambridge Comprehensive Biomedical Research Centre, National Institute for Health Research, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
71
|
Yu H, Su J, Xu Y, Kang J, Li H, Zhang L, Yi H, Xiang X, Liu F, Sun L. p62/SQSTM1 involved in cisplatin resistance in human ovarian cancer cells by clearing ubiquitinated proteins. Eur J Cancer 2011; 47:1585-94. [PMID: 21371883 DOI: 10.1016/j.ejca.2011.01.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 01/19/2011] [Accepted: 01/26/2011] [Indexed: 11/20/2022]
Abstract
Mechanisms of cisplatin resistance in cancer cells are not fully understood. Here, we show a critical role for the ubiquitin-binding protein p62/SQSTM1 in cisplatin resistance in human ovarian cancer cells (HOCCs). Specifically, we found that cisplatin-resistant SKOV3/DDP cells express much higher levels of p62 than do cisplatin-sensitive SKOV3 cells. The protein p62 binds ubiquitinated proteins for transport to autophagic degradation, reducing apoptosis induced by endoplasmic reticulum (ER) stress in SKOV3/DDP cells. Knockdown of p62 or inhibition of autophagy using 3-methyladenine resensitises SKOV3/DDP cells to cisplatin. Collectively, our data indicate that p62 acts as a receptor or adaptor for autophagic degradation of ubiquitinated proteins, and plays an important role in preventing ER stress-induced apoptosis, leading to cisplatin resistance in HOCCs.
Collapse
Affiliation(s)
- Huimei Yu
- Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Wu MJ, Jan CI, Tsay YG, Yu YH, Huang CY, Lin SC, Liu CJ, Chen YS, Lo JF, Yu CC. Elimination of head and neck cancer initiating cells through targeting glucose regulated protein78 signaling. Mol Cancer 2010; 9:283. [PMID: 20979610 PMCID: PMC2987982 DOI: 10.1186/1476-4598-9-283] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/27/2010] [Indexed: 01/06/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a highly lethal cancer that contains cellular and functional heterogeneity. Previously, we enriched a subpopulation of highly tumorigenic head and neck cancer initiating cells (HN-CICs) from HNSCC. However, the molecular mechanisms by which to govern the characteristics of HN-CICs remain unclear. GRP78, a stress-inducible endoplasmic reticulum chaperone, has been reported to play a crucial role in the maintenance of embryonic stem cells, but the role of GRP78 in CICs has not been elucidated. Results Initially, we recognized GRP78 as a putative candidate on mediating the stemness and tumorigenic properties of HN-CICs by differential systemic analyses. Subsequently, cells with GRP78 anchored at the plasma membrane (memGRP78+) exerted cancer stemness properties of self-renewal, differentiation and radioresistance. Of note, xenotransplantation assay indicated merely 100 memGRP78+ HNSCCs resulted in tumor growth. Moreover, knockdown of GRP78 significantly reduced the self-renewal ability, side population cells and expression of stemness genes, but inversely promoted cell differentiation and apoptosis in HN-CICs. Targeting GRP78 also lessened tumorigenicity of HN-CICs both in vitro and in vivo. Clinically, co-expression of GRP78 and Nanog predicted the worse survival prognosis of HNSCC patients by immunohistochemical analyses. Finally, depletion of GRP78 in HN-CICs induced the expression of Bax, Caspase 3, and PTEN. Conclusions In summary, memGRP78 should be a novel surface marker for isolation of HN-CICs, and targeting GRP78 signaling might be a potential therapeutic strategy for HNSCC through eliminating HN-CICs.
Collapse
Affiliation(s)
- Meng-Ju Wu
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Pfaffenbach KT, Lee AS. The critical role of GRP78 in physiologic and pathologic stress. Curr Opin Cell Biol 2010; 23:150-6. [PMID: 20970977 DOI: 10.1016/j.ceb.2010.09.007] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 09/25/2010] [Indexed: 11/17/2022]
Abstract
GRP78 is a major endoplasmic reticulum chaperone as well as a master regulator of the unfolded protein response. In addition to playing an essential role in early embryonic development, recent studies have emerged specifically implicating GRP78 and chaperone integrity in the aging process and age-related diseases. Another exciting discovery is the regulation of GRP78 by insulin/IGF-1 signaling pathways impacting cell proliferation and survival. Mouse models of cancer, in combination with cell culture studies, validate the critical role of GRP78 in tumorigenesis and tumor angiogenesis. Further, these studies demonstrate the ability of GRP78 to suppress oncogenic PI3K/AKT signaling. The discovery of cell surface GRP78, in cancer cells and cells undergoing ER stress, presents a novel therapeutic strategy.
Collapse
Affiliation(s)
- Kyle T Pfaffenbach
- Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089-9176, USA
| | | |
Collapse
|