51
|
Microbiome Analysis Reveals Diversity and Function of Mollicutes Associated with the Eastern Oyster, Crassostrea virginica. mSphere 2021; 6:6/3/e00227-21. [PMID: 33980678 PMCID: PMC8125052 DOI: 10.1128/msphere.00227-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite their biological and ecological significance, a mechanistic characterization of microbiome function is frequently missing from many nonmodel marine invertebrates. As an initial step toward filling this gap for the eastern oyster, Crassostrea virginica, this study provides an integrated taxonomic and functional analysis of the oyster microbiome using samples from a coastal salt pond in August 2017. Marine invertebrate microbiomes play important roles in diverse host and ecological processes. However, a mechanistic understanding of host-microbe interactions is currently available for a small number of model organisms. Here, an integrated taxonomic and functional analysis of the microbiome of the eastern oyster, Crassostrea virginica, was performed using 16S rRNA gene-based amplicon profiling, shotgun metagenomics, and genome-scale metabolic reconstruction. Relatively high variability of the microbiome was observed across individual oysters and among different tissue types. Specifically, a significantly higher alpha diversity was observed in the inner shell than in the gut, gill, mantle, and pallial fluid samples, and a distinct microbiome composition was revealed in the gut compared to other tissues examined in this study. Targeted metagenomic sequencing of the gut microbiota led to further characterization of a dominant bacterial taxon, the class Mollicutes, which was captured by the reconstruction of a metagenome-assembled genome (MAG). Genome-scale metabolic reconstruction of the oyster Mollicutes MAG revealed a reduced set of metabolic functions and a high reliance on the uptake of host-derived nutrients. A chitin degradation and an arginine deiminase pathway were unique to the MAG compared to closely related genomes of Mollicutes isolates, indicating distinct mechanisms of carbon and energy acquisition by the oyster-associated Mollicutes. A systematic reanalysis of public eastern oyster-derived microbiome data revealed a high prevalence of the Mollicutes among adult oyster guts and a significantly lower relative abundance of the Mollicutes in oyster larvae and adult oyster biodeposits. IMPORTANCE Despite their biological and ecological significance, a mechanistic characterization of microbiome function is frequently missing from many nonmodel marine invertebrates. As an initial step toward filling this gap for the eastern oyster, Crassostrea virginica, this study provides an integrated taxonomic and functional analysis of the oyster microbiome using samples from a coastal salt pond in August 2017. The study identified high variability of the microbiome across tissue types and among individual oysters, with some dominant taxa showing higher relative abundance in specific tissues. A high prevalence of Mollicutes in the adult oyster gut was revealed by comparative analysis of the gut, biodeposit, and larva microbiomes. Phylogenomic analysis and metabolic reconstruction suggested the oyster-associated Mollicutes is closely related but functionally distinct from Mollicutes isolated from other marine invertebrates. To the best of our knowledge, this study represents the first metagenomics-derived functional inference of Mollicutes in the eastern oyster microbiome.
Collapse
|
52
|
Timmins-Schiffman E, White SJ, Thompson RE, Vadopalas B, Eudeline B, Nunn BL, Roberts SB. Coupled microbiome analyses highlights relative functional roles of bacteria in a bivalve hatchery. ENVIRONMENTAL MICROBIOME 2021; 16:7. [PMID: 33902744 PMCID: PMC8066469 DOI: 10.1186/s40793-021-00376-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microbial communities are ubiquitous throughout ecosystems and are commensal with hosts across taxonomic boundaries. Environmental and species-specific microbiomes are instrumental in maintaining ecosystem and host health, respectively. The introduction of pathogenic microbes that shift microbiome community structure can lead to illness and death. Understanding the dynamics of microbiomes across a diversity of environments and hosts will help us to better understand which taxa forecast survival and which forecast mortality events. RESULTS We characterized the bacterial community microbiome in the water of a commercial shellfish hatchery in Washington state, USA, where the hatchery has been plagued by recurring and unexplained larval mortality events. By applying the complementary methods of metagenomics and metaproteomics we were able to more fully characterize the bacterial taxa in the hatchery at high (pH 8.2) and low (pH 7.1) pH that were metabolically active versus present but not contributing metabolically. There were shifts in the taxonomy and functional profile of the microbiome between pH and over time. Based on detected metagenomic reads and metaproteomic peptide spectral matches, some taxa were more metabolically active than expected based on presence alone (Deltaproteobacteria, Alphaproteobacteria) and some were less metabolically active than expected (e.g., Betaproteobacteria, Cytophagia). There was little correlation between potential and realized metabolic function based on Gene Ontology analysis of detected genes and peptides. CONCLUSION The complementary methods of metagenomics and metaproteomics contribute to a more full characterization of bacterial taxa that are potentially active versus truly metabolically active and thus impact water quality and inter-trophic relationships.
Collapse
Affiliation(s)
- Emma Timmins-Schiffman
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195 USA
| | - Samuel J. White
- School of Aquatic and Fishery Sciences, University of Washington, 1122 Boat St., Seattle, WA 98195 USA
| | - Rhonda Elliott Thompson
- Taylor Shellfish Hatchery, 701 Broadspit Rd., Quilcene, WA 98376 USA
- Mason County Public Health, 415 N 6th St., Shelton, WA 98584 USA
| | - Brent Vadopalas
- Washington Sea Grant, University of Washington, 3716 Brooklyn Ave NE, Seattle, WA 98105 USA
| | - Benoit Eudeline
- Taylor Shellfish Hatchery, 701 Broadspit Rd., Quilcene, WA 98376 USA
| | - Brook L. Nunn
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195 USA
| | - Steven B. Roberts
- School of Aquatic and Fishery Sciences, University of Washington, 1122 Boat St., Seattle, WA 98195 USA
| |
Collapse
|
53
|
Chalifour B, Li J. A Review of the Molluscan Microbiome: Ecology, Methodology and Future. MALACOLOGIA 2021. [DOI: 10.4002/040.063.0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Bridget Chalifour
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 334 UCB, Boulder, Colorado, 80309, U.S.A
| | - Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 334 UCB, Boulder, Colorado, 80309, U.S.A
| |
Collapse
|
54
|
Richard M, Rolland JL, Gueguen Y, de Lorgeril J, Pouzadoux J, Mostajir B, Bec B, Mas S, Parin D, Le Gall P, Mortreux S, Fiandrino A, Lagarde F, Messiaen G, Fortune M, Roque d'Orbcastel E. In situ characterisation of pathogen dynamics during a Pacific oyster mortality syndrome episode. MARINE ENVIRONMENTAL RESEARCH 2021; 165:105251. [PMID: 33548594 DOI: 10.1016/j.marenvres.2020.105251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Significant mortality of Crassostrea gigas juveniles is observed systematically every year worldwide. Pacific Oyster Mortality Syndrome (POMS) is caused by Ostreid Herpesvirus 1 (OsHV-1) infection leading to immune suppression, followed by bacteraemia caused by a consortium of opportunistic bacteria. Using an in-situ approach and pelagic chambers, our aim in this study was to identify pathogen dynamics in oyster flesh and in the water column during the course of a mortality episode in the Mediterranean Thau lagoon (France). OsHV-1 concentrations in oyster flesh increased before the first clinical symptoms of the disease appeared, reached maximum concentrations during the moribund phase and the mortality peak. The structure of the bacterial community associated with oyster flesh changed in favour of bacterial genera previously associated with oyster mortality including Vibrio, Arcobacter, Psychrobium, and Psychrilyobacter. During the oyster mortality episode, releases of OsHV-1 and opportunistic bacteria were observed, in succession, in the water surrounding the oyster lanterns. These releases may favour the spread of disease within oyster farms and potentially impact other marine species, thereby reducing marine biodiversity in shellfish farming areas.
Collapse
Affiliation(s)
- Marion Richard
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France.
| | - Jean Luc Rolland
- IHPE, Univ Montpellier, CNRS, Ifremer, UPVD, Montpellier, France
| | - Yannick Gueguen
- IHPE, Univ Montpellier, CNRS, Ifremer, UPVD, Montpellier, France
| | - Julien de Lorgeril
- IHPE, Univ Montpellier, CNRS, Ifremer, UPVD, Montpellier, France; Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, F-98800 Nouméa, Nouvelle-Calédonie, France
| | | | - Behzad Mostajir
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Béatrice Bec
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Sébastien Mas
- OSU-OREME, Univ Montpellier, CNRS, IRD, IRSTEA, Sète, France
| | - David Parin
- OSU-OREME, Univ Montpellier, CNRS, IRD, IRSTEA, Sète, France
| | - Patrik Le Gall
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Serge Mortreux
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | | | - Franck Lagarde
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | | | | | | |
Collapse
|
55
|
Scanes E, Parker LM, Seymour JR, Siboni N, King WL, Danckert NP, Wegner KM, Dove MC, O'Connor WA, Ross PM. Climate change alters the haemolymph microbiome of oysters. MARINE POLLUTION BULLETIN 2021; 164:111991. [PMID: 33485019 DOI: 10.1016/j.marpolbul.2021.111991] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The wellbeing of marine organisms is connected to their microbiome. Oysters are a vital food source and provide ecological services, yet little is known about how climate change such as ocean acidification and warming will affect their microbiome. We exposed the Sydney rock oyster, Saccostrea glomerata, to orthogonal combinations of temperature (24, 28 °C) and pCO2 (400 and 1000 μatm) for eight weeks and used amplicon sequencing of the 16S rRNA (V3-V4) gene to characterise the bacterial community in haemolymph. Overall, elevated pCO2 and temperature interacted to alter the microbiome of oysters, with a clear partitioning of treatments in CAP ordinations. Elevated pCO2 was the strongest driver of species diversity and richness and elevated temperature also increased species richness. Climate change, both ocean acidification and warming, will alter the microbiome of S. glomerata which may increase the susceptibility of oysters to disease.
Collapse
Affiliation(s)
- Elliot Scanes
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia.
| | - Laura M Parker
- The University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington, New South Wales 2052, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - William L King
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia; Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nathan P Danckert
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - K Mathias Wegner
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Coastal Ecology, Wadden Sea Station, List, Sylt 25992, Germany
| | - Michael C Dove
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, New South Wales 2316, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, New South Wales 2316, Australia
| | - Pauline M Ross
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
56
|
Balbi T, Auguste M, Ciacci C, Canesi L. Immunological Responses of Marine Bivalves to Contaminant Exposure: Contribution of the -Omics Approach. Front Immunol 2021; 12:618726. [PMID: 33679759 PMCID: PMC7930816 DOI: 10.3389/fimmu.2021.618726] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
The increasing number of data studies on the biological impact of anthropogenic chemicals in the marine environment, together with the great development of invertebrate immunology, has identified marine bivalves as a key invertebrate group for studies on immunological responses to pollutant exposure. Available data on the effects of contaminants on bivalve immunity, evaluated with different functional and molecular endpoints, underline that individual functional parameters (cellular or humoral) and the expression of selected immune-related genes can distinctly react to different chemicals depending on the conditions of exposure. Therefore, the measurement of a suite of immune biomarkers in hemocytes and hemolymph is needed for the correct evaluation of the overall impact of contaminant exposure on the organism's immunocompetence. Recent advances in -omics technologies are revealing the complexity of the molecular players in the immune response of different bivalve species. Although different -omics represent extremely powerful tools in understanding the impact of pollutants on a key physiological function such as immune defense, the -omics approach has only been utilized in this area of investigation in the last few years. In this work, available information obtained from the application of -omics to evaluate the effects of pollutants on bivalve immunity is summarized. The data shows that the overall knowledge on this subject is still quite limited and that to understand the environmental relevance of any change in immune homeostasis induced by exposure to contaminants, a combination of both functional assays and cutting-edge technology (transcriptomics, proteomics, and metabolomics) is required. In addition, the utilization of metagenomics may explain how the complex interplay between the immune system of bivalves and its associated bacterial communities can be modulated by pollutants, and how this may in turn affect homeostatic processes of the host, host–pathogen interactions, and the increased susceptibility to disease. Integrating different approaches will contribute to knowledge on the mechanism responsible for immune dysfunction induced by pollutants in ecologically and economically relevant bivalve species and further explain their sensitivity to multiple stressors, thus resulting in health or disease.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Manon Auguste
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DIBS), University of Urbino, Urbino, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| |
Collapse
|
57
|
Bulteel L, Houwenhuyse S, Declerck SAJ, Decaestecker E. The Role of Microbiome and Genotype in Daphnia magna upon Parasite Re-Exposure. Genes (Basel) 2021; 12:70. [PMID: 33430247 PMCID: PMC7825712 DOI: 10.3390/genes12010070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, it has been shown that the community of gut microorganisms plays a crucial role in host performance with respect to parasite tolerance. Knowledge, however, is lacking on the role of the gut microbiome in mediating host tolerance after parasite re-exposure, especially considering multiple parasite infections. We here aimed to fill this knowledge gap by studying the role of the gut microbiome on tolerance in Daphnia magna upon multiple parasite species re-exposure. Additionally, we investigated the role of the host genotype in the interaction between the gut microbiome and the host phenotypic performance. A microbiome transplant experiment was performed in which three germ-free D. magna genotypes were exposed to a gut microbial inoculum and a parasite community treatment. The gut microbiome inocula were pre-exposed to the same parasite communities or a control treatment. Daphnia performance was monitored, and amplicon sequencing was performed to characterize the gut microbial community. Our experimental results showed that the gut microbiome plays no role in Daphnia tolerance upon parasite re-exposure. We did, however, find a main effect of the gut microbiome on Daphnia body size reflecting parasite specific responses. Our results also showed that it is rather the Daphnia genotype, and not the gut microbiome, that affected parasite-induced host mortality. Additionally, we found a role of the genotype in structuring the gut microbial community, both in alpha diversity as in the microbial composition.
Collapse
Affiliation(s)
- Lore Bulteel
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven-Campus Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (S.H.); (E.D.)
| | - Shira Houwenhuyse
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven-Campus Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (S.H.); (E.D.)
| | - Steven A. J. Declerck
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6700 AB Wageningen, The Netherlands;
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, KULeuven, 3000 Leuven, Belgium
| | - Ellen Decaestecker
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven-Campus Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (S.H.); (E.D.)
| |
Collapse
|
58
|
Stevick RJ, Post AF, Gómez-Chiarri M. Functional plasticity in oyster gut microbiomes along a eutrophication gradient in an urbanized estuary. Anim Microbiome 2021; 3:5. [PMID: 33499983 PMCID: PMC7934548 DOI: 10.1186/s42523-020-00066-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/29/2020] [Indexed: 01/04/2023] Open
Abstract
Background Oysters in coastal environments are subject to fluctuating environmental conditions that may impact the ecosystem services they provide. Oyster-associated microbiomes are responsible for some of these services, particularly nutrient cycling in benthic habitats. The effects of climate change on host-associated microbiome composition are well-known, but functional changes and how they may impact host physiology and ecosystem functioning are poorly characterized. We investigated how environmental parameters affect oyster-associated microbial community structure and function along a trophic gradient in Narragansett Bay, Rhode Island, USA. Adult eastern oyster, Crassostrea virginica, gut and seawater samples were collected at 5 sites along this estuarine nutrient gradient in August 2017. Samples were analyzed by 16S rRNA gene sequencing to characterize bacterial community structures and metatranscriptomes were sequenced to determine oyster gut microbiome responses to local environments. Results There were significant differences in bacterial community structure between the eastern oyster gut and water samples, suggesting selection of certain taxa by the oyster host. Increasing salinity, pH, and dissolved oxygen, and decreasing nitrate, nitrite and phosphate concentrations were observed along the North to South gradient. Transcriptionally active bacterial taxa were similar for the different sites, but expression of oyster-associated microbial genes involved in nutrient (nitrogen and phosphorus) cycling varied throughout the Bay, reflecting the local nutrient regimes and prevailing environmental conditions. Conclusions The observed shifts in microbial community composition and function inform how estuarine conditions affect host-associated microbiomes and their ecosystem services. As the effects of estuarine acidification are expected to increase due to the combined effects of eutrophication, coastal pollution, and climate change, it is important to determine relationships between host health, microbial community structure, and environmental conditions in benthic communities. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-020-00066-0.
Collapse
Affiliation(s)
- Rebecca J Stevick
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Anton F Post
- Division of Research, Florida Atlantic University, Boca Raton, FL, USA
| | - Marta Gómez-Chiarri
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
59
|
King WL, Siboni N, Kahlke T, Dove M, O'Connor W, Mahbub KR, Jenkins C, Seymour JR, Labbate M. Regional and oyster microenvironmental scale heterogeneity in the Pacific oyster bacterial community. FEMS Microbiol Ecol 2020; 96:5813259. [PMID: 32221598 DOI: 10.1093/femsec/fiaa054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/22/2020] [Indexed: 01/04/2023] Open
Abstract
Different organs of a host represent distinct microenvironments resulting in the establishment of multiple discrete bacterial communities within a host. These discrete bacterial communities can also vary according to geographical location. For the Pacific oyster, Crassostrea gigas, the factors governing bacterial diversity and abundance of different oyster microenvironments are poorly understood. In this study, the factors shaping bacterial abundance, diversity and composition associated with the C. gigas mantle, gill, adductor muscle and digestive gland were characterised using 16S (V3-V4) rRNA amplicon sequencing across six discrete estuaries. Both location and tissue-type, with tissue-type being the stronger determinant, were factors driving bacterial community composition. Bacterial communities from wave-dominated estuaries had similar compositions and higher bacterial abundance despite being geographically distant from one another, possibly indicating that functional estuarine morphology characteristics are a factor shaping the oyster bacterial community. Despite the bacterial community heterogeneity, examinations of the core bacterial community identified Spirochaetaceae bacteria as conserved across all sites and samples. Whereas members of the Vulcaniibacterium, Spirochaetaceae and Margulisbacteria, and Polynucleobacter were regionally conserved members of the digestive gland, gill and mantle bacterial communities, respectively. This indicates that baseline bacterial community profiles for specific locations are necessary when investigating bacterial communities in oyster health.
Collapse
Affiliation(s)
- William L King
- University of Technology Sydney, The School of Life Sciences, Ultimo, New South Wales, 2007, Australia.,University of Technology Sydney, Climate Change Cluster, Ultimo, New South Wales, 2007, Australia
| | - Nachshon Siboni
- University of Technology Sydney, Climate Change Cluster, Ultimo, New South Wales, 2007, Australia
| | - Tim Kahlke
- University of Technology Sydney, Climate Change Cluster, Ultimo, New South Wales, 2007, Australia
| | - Michael Dove
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Port Stephens, New South Wales, 2316, Australia
| | - Wayne O'Connor
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Port Stephens, New South Wales, 2316, Australia
| | - Khandaker Rayhan Mahbub
- University of Technology Sydney, The School of Life Sciences, Ultimo, New South Wales, 2007, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, 2568, Australia
| | - Justin R Seymour
- University of Technology Sydney, Climate Change Cluster, Ultimo, New South Wales, 2007, Australia
| | - Maurizio Labbate
- University of Technology Sydney, The School of Life Sciences, Ultimo, New South Wales, 2007, Australia
| |
Collapse
|
60
|
Offret C, Paulino S, Gauthier O, Château K, Bidault A, Corporeau C, Miner P, Petton B, Pernet F, Fabioux C, Paillard C, Blay GL. The marine intertidal zone shapes oyster and clam digestive bacterial microbiota. FEMS Microbiol Ecol 2020; 96:fiaa078. [PMID: 32353873 DOI: 10.1093/femsec/fiaa078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/29/2020] [Indexed: 02/05/2023] Open
Abstract
Digestive microbiota provide a wide range of beneficial effects on host physiology and are therefore likely to play a key role in marine intertidal bivalve ability to acclimatize to the intertidal zone. This study investigated the effect of intertidal levels on the digestive bacterial microbiota of oysters (Crassostrea gigas) and clams (Ruditapes philippinarum), two bivalves with different ecological niches. Based on 16S rRNA region sequencing, digestive glands, seawater and sediments harbored specific bacterial communities, dominated by operational taxonomic units assigned to the Mycoplasmatales,Desulfobacterales and Rhodobacterales orders, respectively. Field implantation modified digestive bacterial microbiota of both bivalve species according to their intertidal position. Rhodospirillales and Legionellales abundances increased in oysters and clams from the low intertidal level, respectively. After a 14-day depuration process, these effects were still observed, especially for clams, while digestive bacterial microbiota of oysters were subjected to more short-term environmental changes. Nevertheless, 3.5 months stay on an intertidal zone was enough to leave an environmental footprint on the digestive bacterial microbiota, suggesting the existence of autochthonous bivalve bacteria. When comparing clams from the three intertidal levels, 20% of the bacterial assemblage was shared among the levels and it was dominated by an operational taxonomic unit affiliated to the Mycoplasmataceae and Spirochaetaceae families.
Collapse
Affiliation(s)
- Clément Offret
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Sauvann Paulino
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | | | - Kevin Château
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Adeline Bidault
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | | | - Philippe Miner
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Bruno Petton
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Fabrice Pernet
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | | | | | | |
Collapse
|
61
|
Robinson AN, Green TJ. Fitness costs associated with maternal immune priming in the oyster. FISH & SHELLFISH IMMUNOLOGY 2020; 103:32-36. [PMID: 32334127 DOI: 10.1016/j.fsi.2020.04.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Maternal immune priming is the transfer of immunity from mother to offspring, which may reduce the offspring's risk of disease from a pathogen that previously infected its mother. Maternal immune priming has been described in at least 25 invertebrate taxa, including Crassostrea gigas. Larvae of C. gigas have improved survival to Ostreid herpesvirus (OsHV-1) if their mothers are either infected with OsHV-1 or were injected with a virus mimic called poly(I:C). However, fitness costs associated with maternal immune priming in C. gigas are unknown. Here, we show C. gigas larvae produced from poly(I:C)-treated mothers are smaller, and have higher total bacteria and Vibrio loads compared to control larvae. These results suggest that the improved offspring survival of C. gigas to OsHV-1 due to maternal immune priming with poly(I:C) is potentially traded off with other important life history traits, such as larval growth rate and destabilisation of the microbiome.
Collapse
Affiliation(s)
- Andrew N Robinson
- Vancouver Island University, Centre for Shellfish Research, Nanaimo, British Columbia, Canada
| | - Timothy J Green
- Vancouver Island University, Centre for Shellfish Research, Nanaimo, British Columbia, Canada.
| |
Collapse
|
62
|
King WL, Siboni N, Kahlke T, Green TJ, Labbate M, Seymour JR. A New High Throughput Sequencing Assay for Characterizing the Diversity of Natural Vibrio Communities and Its Application to a Pacific Oyster Mortality Event. Front Microbiol 2019; 10:2907. [PMID: 31921078 PMCID: PMC6932961 DOI: 10.3389/fmicb.2019.02907] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/03/2019] [Indexed: 01/08/2023] Open
Abstract
The Vibrio genus is notable for including several pathogens of marine animals and humans, yet characterization of Vibrio diversity using routine 16S rRNA sequencing methods is often constrained by poor resolution beyond the genus level. Here, a new high throughput sequencing approach targeting the heat shock protein (hsp60) as a phylogenetic marker was developed to more precisely discriminate members of the Vibrio genus in environmental samples. The utility of this new assay was tested using mock communities constructed from known dilutions of Vibrio isolates. Relative to standard and Vibrio-specific 16S rRNA sequencing assays, the hsp60 assay delivered high levels of fidelity with the mock community composition at the species level, including discrimination of species within the Vibrio harveyi clade. This assay was subsequently applied to characterize Vibrio community composition in seawater and delivered substantially improved taxonomic resolution of Vibrio species compared to 16S rRNA analysis. Finally, this assay was applied to examine patterns in the Vibrio community within oysters during a Pacific oyster mortality event. In these oysters, the hsp60 assay identified species-level Vibrio community shifts prior to disease onset, pinpointing V. harveyi as a putative pathogen. Given that shifts in the Vibrio community can precede, cause, and follow disease onset in numerous marine organisms, there is a need for an accurate high throughput assay for defining Vibrio community composition in natural samples. This Vibrio-centric hsp60 sequencing assay offers the potential for precise high throughput characterization of Vibrio diversity, providing an enhanced platform for dissecting Vibrio dynamics in the environment.
Collapse
Affiliation(s)
- William L. King
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Timothy J. Green
- Centre for Shellfish Research, Vancouver Island University, Nanaimo, BC, Canada
| | - Maurizio Labbate
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Justin R. Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
63
|
Stevick RJ, Sohn S, Modak TH, Nelson DR, Rowley DC, Tammi K, Smolowitz R, Markey Lundgren K, Post AF, Gómez-Chiarri M. Bacterial Community Dynamics in an Oyster Hatchery in Response to Probiotic Treatment. Front Microbiol 2019; 10:1060. [PMID: 31156583 PMCID: PMC6530434 DOI: 10.3389/fmicb.2019.01060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/26/2019] [Indexed: 01/10/2023] Open
Abstract
Larval oysters in hatcheries are susceptible to diseases caused by bacterial pathogens, including Vibrio spp. Previous studies have shown that daily addition of the probiotic Bacillus pumilus RI06-95 to water in rearing tanks increases larval survival when challenged with the pathogen Vibrio coralliilyticus. We propose that the presence of probiotics causes shifts in bacterial community structure in rearing tanks, leading to a net decrease in the relative abundance of potential pathogens. During three trials spanning the 2012-2015 hatchery seasons, larvae, tank biofilm, and rearing water samples were collected from control and probiotic-treated tanks in an oyster hatchery over a 12-day period after spawning. Samples were analyzed by 16S rRNA sequencing of the V4 or V6 regions followed by taxonomic classification, in order to determine bacterial community structures. There were significant differences in bacterial composition over time and between sample types, but no major effect of probiotics on the structure and diversity of bacterial communities (phylum level, Bray-Curtis k = 2, 95% confidence). Probiotic treatment, however, led to a higher relative percent abundance of Oceanospirillales and Bacillus spp. in water and oyster larvae. In the water, an increase in Vibrio spp. diversity in the absence of a net increase in relative read abundance suggests a likely decrease in the abundance of specific pathogenic Vibrio spp., and therefore lower chances of a disease outbreak. Co-occurrence network analysis also suggests that probiotic treatment had a systemic effect on targeted members of the bacterial community, leading to a net decrease in potentially pathogenic species.
Collapse
Affiliation(s)
- Rebecca J. Stevick
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI, United States
| | - Saebom Sohn
- Department of Fisheries, Animal and Veterinary Sciences, The University of Rhode Island, Kingston, RI, United States
| | - Tejashree H. Modak
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, United States
| | - David R. Nelson
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, United States
| | - David C. Rowley
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - Karin Tammi
- Feinstein School of Social and Natural Sciences, Roger Williams University, Bristol, RI, United States
| | - Roxanna Smolowitz
- Feinstein School of Social and Natural Sciences, Roger Williams University, Bristol, RI, United States
| | - Kathryn Markey Lundgren
- Feinstein School of Social and Natural Sciences, Roger Williams University, Bristol, RI, United States
| | - Anton F. Post
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI, United States
- Division of Research, Florida Atlantic University, Boca Raton, FL, United States
| | - Marta Gómez-Chiarri
- Department of Fisheries, Animal and Veterinary Sciences, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
64
|
King WL, Siboni N, Williams NLR, Kahlke T, Nguyen KV, Jenkins C, Dove M, O'Connor W, Seymour JR, Labbate M. Variability in the Composition of Pacific Oyster Microbiomes Across Oyster Families Exhibiting Different Levels of Susceptibility to OsHV-1 μvar Disease. Front Microbiol 2019; 10:473. [PMID: 30915058 PMCID: PMC6421512 DOI: 10.3389/fmicb.2019.00473] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/22/2019] [Indexed: 11/13/2022] Open
Abstract
Oyster diseases are a major impediment to the profitability and growth of the oyster aquaculture industry. In recent years, geographically widespread outbreaks of disease caused by ostreid herpesvirus-1 microvariant (OsHV-1 μvar) have led to mass mortalities among Crassostrea gigas, the Pacific Oyster. Attempts to minimize the impact of this disease have been largely focused on breeding programs, and although these have shown some success in producing oyster families with reduced mortality, the mechanism(s) behind this protection is poorly understood. One possible factor is modification of the C. gigas microbiome. To explore how breeding for resistance to OsHV-1 μvar affects the oyster microbiome, we used 16S rRNA amplicon sequencing to characterize the bacterial communities associated with 35 C. gigas families, incorporating oysters with different levels of susceptibility to OsHV-1 μvar disease. The microbiomes of disease-susceptible families were significantly different to the microbiomes of disease-resistant families. OTUs assigned to the Photobacterium, Vibrio, Aliivibrio, Streptococcus, and Roseovarius genera were associated with low disease resistance. In partial support of this finding, qPCR identified a statistically significant increase of Vibrio-specific 16S rRNA gene copies in the low disease resistance families, possibly indicative of a reduced host immune response to these pathogens. In addition to these results, examination of the core microbiome revealed that each family possessed a small core community, with OTUs assigned to the Winogradskyella genus and the Bradyrhizobiaceae family consistent members across most disease-resistant families. This study examines patterns in the microbiome of oyster families exhibiting differing levels of OsHV-1 μvar disease resistance and reveals some key bacterial taxa that may provide a protective or detrimental role in OsHV-1 μvar disease outbreaks.
Collapse
Affiliation(s)
- William L King
- The School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia.,Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Nathan L R Williams
- The School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Khue Viet Nguyen
- The School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia.,Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Michael Dove
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Port Stephens, NSW, Australia
| | - Wayne O'Connor
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Port Stephens, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Maurizio Labbate
- The School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|