51
|
Epigenetic Heterogeneity of B-Cell Lymphoma: Chromatin Modifiers. Genes (Basel) 2015; 6:1076-112. [PMID: 26506391 PMCID: PMC4690029 DOI: 10.3390/genes6041076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
Abstract
We systematically studied the expression of more than fifty histone and DNA (de)methylating enzymes in lymphoma and healthy controls. As a main result, we found that the expression levels of nearly all enzymes become markedly disturbed in lymphoma, suggesting deregulation of large parts of the epigenetic machinery. We discuss the effect of DNA promoter methylation and of transcriptional activity in the context of mutated epigenetic modifiers such as EZH2 and MLL2. As another mechanism, we studied the coupling between the energy metabolism and epigenetics via metabolites that act as cofactors of JmjC-type demethylases. Our study results suggest that Burkitt’s lymphoma and diffuse large B-cell Lymphoma differ by an imbalance of repressive and poised promoters, which is governed predominantly by the activity of methyltransferases and the underrepresentation of demethylases in this regulation. The data further suggest that coupling of epigenetics with the energy metabolism can also be an important factor in lymphomagenesis in the absence of direct mutations of genes in metabolic pathways. Understanding of epigenetic deregulation in lymphoma and possibly in cancers in general must go beyond simple schemes using only a few modes of regulation.
Collapse
|
52
|
Xu J, Shao Z, Li D, Xie H, Kim W, Huang J, Taylor JE, Pinello L, Glass K, Jaffe JD, Yuan GC, Orkin SH. Developmental control of polycomb subunit composition by GATA factors mediates a switch to non-canonical functions. Mol Cell 2015; 57:304-316. [PMID: 25578878 DOI: 10.1016/j.molcel.2014.12.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/20/2014] [Accepted: 12/02/2014] [Indexed: 02/07/2023]
Abstract
Polycomb repressive complex 2 (PRC2) plays crucial roles in transcriptional regulation and stem cell development. However, the context-specific functions associated with alternative subunits remain largely unexplored. Here we show that the related enzymatic subunits EZH1 and EZH2 undergo an expression switch during blood cell development. An erythroid-specific enhancer mediates transcriptional activation of EZH1, and a switch from GATA2 to GATA1 controls the developmental EZH1/2 switch by differential association with EZH1 enhancers. We further examine the in vivo stoichiometry of the PRC2 complexes by quantitative proteomics and reveal the existence of an EZH1-SUZ12 subcomplex lacking EED. EZH1 together with SUZ12 form a non-canonical PRC2 complex, occupy active chromatin, and positively regulate gene expression. Loss of EZH2 expression leads to repositioning of EZH1 to EZH2 targets. Thus, the lineage- and developmental stage-specific regulation of PRC2 subunit composition leads to a switch from canonical silencing to non-canonical functions during blood stem cell specification.
Collapse
Affiliation(s)
- Jian Xu
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.,Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhen Shao
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.,Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dan Li
- Harvard College, Cambridge, MA 02138, USA
| | - Huafeng Xie
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Woojin Kim
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jialiang Huang
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Jordan E Taylor
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Kimberly Glass
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Jacob D Jaffe
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
53
|
Bustos FJ, Varela-Nallar L, Campos M, Henriquez B, Phillips M, Opazo C, Aguayo LG, Montecino M, Constantine-Paton M, Inestrosa NC, van Zundert B. PSD95 suppresses dendritic arbor development in mature hippocampal neurons by occluding the clustering of NR2B-NMDA receptors. PLoS One 2014; 9:e94037. [PMID: 24705401 PMCID: PMC3976375 DOI: 10.1371/journal.pone.0094037] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/10/2014] [Indexed: 11/19/2022] Open
Abstract
Considerable evidence indicates that the NMDA receptor (NMDAR) subunits NR2A and NR2B are critical mediators of synaptic plasticity and dendritogenesis; however, how they differentially regulate these processes is unclear. Here we investigate the roles of the NR2A and NR2B subunits, and of their scaffolding proteins PSD-95 and SAP102, in remodeling the dendritic architecture of developing hippocampal neurons (2–25 DIV). Analysis of the dendritic architecture and the temporal and spatial expression patterns of the NMDARs and anchoring proteins in immature cultures revealed a strong positive correlation between synaptic expression of the NR2B subunit and dendritogenesis. With maturation, the pruning of dendritic branches was paralleled by a strong reduction in overall and synaptic expression of NR2B, and a significant elevation in synaptic expression of NR2A and PSD95. Using constructs that alter the synaptic composition, we found that either over-expression of NR2B or knock-down of PSD95 by shRNA-PSD95 augmented dendritogenesis in immature neurons. Reactivation of dendritogenesis could also be achieved in mature cultured neurons, but required both manipulations simultaneously, and was accompanied by increased dendritic clustering of NR2B. Our results indicate that the developmental increase in synaptic expression of PSD95 obstructs the synaptic clustering of NR2B-NMDARs, and thereby restricts reactivation of dendritic branching. Experiments with shRNA-PSD95 and chimeric NR2A/NR2B constructs further revealed that C-terminus of the NR2B subunit (tail) was sufficient to induce robust dendritic branching in mature hippocampal neurons, and suggest that the NR2B tail is important in recruiting calcium-dependent signaling proteins and scaffolding proteins necessary for dendritogenesis.
Collapse
Affiliation(s)
- Fernando J. Bustos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- Faculty of Biological Science, Universidad de Concepción, Concepción, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Lorena Varela-Nallar
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- Department of Molecular and Cellular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matias Campos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Berta Henriquez
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Marnie Phillips
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Carlos Opazo
- Faculty of Biological Science, Universidad de Concepción, Concepción, Chile
| | - Luis G. Aguayo
- Faculty of Biological Science, Universidad de Concepción, Concepción, Chile
| | - Martin Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Martha Constantine-Paton
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Nibaldo C. Inestrosa
- Department of Molecular and Cellular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Brigitte van Zundert
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- * E-mail:
| |
Collapse
|
54
|
Dharap A, Pokrzywa C, Murali S, Pandi G, Vemuganti R. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One 2013; 8:e79467. [PMID: 24265774 PMCID: PMC3827167 DOI: 10.1371/journal.pone.0079467] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/28/2013] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are known to repress translation by binding to the 3’UTRs of mRNAs. Using bioinformatics, we recently reported that several miRNAs also have target sites in DNA particularly in the promoters of the protein-coding genes. To understand the functional significance of this phenomenon, we tested the effects of miR-324-3p binding to RelA promoter. In PC12 cells, co-transfection with premiR-324-3p induced a RelA promoter plasmid in a dose-dependent manner and this effect was lost when the miR-324-3p binding site in the promoter was mutated. PremiR-324-3p transfection also significantly induced the endogenous RelA mRNA and protein expression in PC12 cells. Furthermore, transfection with premiR-324-3p increased the levels of cleaved caspase-3 which is a marker of apoptosis. Importantly, the miR-324-3p effects were Ago2 mediated as Ago2 knockdown prevented RelA expression and cleavage of caspase-3. Thus, our studies show that miRNA-mediated transcriptional activation can be seen in PC12 cells which are neural in origin.
Collapse
Affiliation(s)
- Ashutosh Dharap
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Courtney Pokrzywa
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Shruthi Murali
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Gopal Pandi
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|