51
|
Wang Z, Liu J, Shan H, Li G, Wang Z, Si Z, Cai D, Qin P. A polyvinyl alcohol‐based mixed matrix membrane with uniformly distributed Schiff base network‐1 for ethanol dehydration. J Appl Polym Sci 2020. [DOI: 10.1002/app.49308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zhanbin Wang
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Jiahao Liu
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Houchao Shan
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Guozhen Li
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Ze Wang
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Zhihao Si
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Di Cai
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Peiyong Qin
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| |
Collapse
|
52
|
Abstract
Over the past five years, a lot of research activities in polymer composites were done in order to improve environmental sustainability and to present advantages for commercial applications of water treatment and desalination. Polymers offered tunable properties, improved processability, remarkable stability, high surface area for fast decontamination, selectivity to eliminate different pollutants, and cost-cutting of water treatment. Hence, the development of polymeric materials is one of the future directions to meet the environmental water standards and to supply the water requirements of the growing populations. This review highlighted the very recent achievements in fabrication, characterization, and applications of polymeric composites used for water treatment and desalination. The polymeric modifications, the addition of functional groups, and the assemblies of nanomaterials were also discussed in detail. In particular, great attention was paid to the recent advances in polymer/polymer composites, polymer/carbon composites, and polymer/clay composites, presenting their usage in the removal of various types of contaminants, e.g., metal ions, dyes, and other toxic pollutants. The review also summarized the main advantages and disadvantages of the different adsorbent materials. Specific attention was paid to the mechanism of adsorption, including chemisorption and physisorption mechanisms. In addition, the challenges and the future perspectives were identified to reach the optimal performance of the different adsorbents.
Collapse
|
53
|
Novel Mixed Matrix Sodium Alginate-Fullerenol Membranes: Development, Characterization, and Study in Pervaporation Dehydration of Isopropanol. Polymers (Basel) 2020; 12:polym12040864. [PMID: 32283648 PMCID: PMC7240529 DOI: 10.3390/polym12040864] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 11/24/2022] Open
Abstract
Novel mixed matrix dense and supported membranes based on biopolymer sodium alginate (SA) modified by fullerenol were developed. Two kinds of SA–fullerenol membranes were investigated: untreated and cross-linked by immersing the dry membranes in 1.25 wt % calcium chloride (CaCl2) in water for 10 min. The structural and physicochemical characteristics features of the SA–fullerenol composite were investigated by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopic methods, scanning electron (SEM) and atomic force (AFM) microscopies, thermogravimetric analysis (TGA), and swelling experiments. Transport properties were evaluated in pervaporation dehydration of isopropanol in a wide concentration range. It was found that the developed supported cross-linked SA-5/PANCaCl2 membrane (modified by 5 wt % fullerenol) possessed the best transport properties (the highest permeation fluxes 0.64–2.9 kg/(m2 h) and separation factors 26–73,326) for the pervaporation separation of the water–isopropanol mixture in the wide concentration range (12–90 wt % water) at 22 °C and is suitable for the promising application in industry.
Collapse
|
54
|
Cui K, Li P, Zhang R, Cao B. Preparation of pervaporation membranes by interfacial polymerization for acid wastewater purification. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
55
|
The in-situ synthesis of a high-flux ZIF-8/polydimethylsiloxane mixed matrix membrane for n-butanol pervaporation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
56
|
Han G, Chen Z, Cai L, Zhang Y, Tian J, Ma H, Fang S. Poly(vinyl alcohol)/Carboxyl Graphene Membranes for Ethanol Dehydration by Pervaporation. Chem Eng Technol 2020. [DOI: 10.1002/ceat.201900149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Guanglu Han
- Zhengzhou University of Light IndustrySchool of Material and Chemical Engineering Kexue Avenue 450001 Zhengzhou China
| | - Zhe Chen
- Zhengzhou University of Light IndustrySchool of Material and Chemical Engineering Kexue Avenue 450001 Zhengzhou China
| | - Lifang Cai
- Zhengzhou University of Light IndustrySchool of Material and Chemical Engineering Kexue Avenue 450001 Zhengzhou China
| | - Yonghui Zhang
- Zhengzhou University of Light IndustrySchool of Material and Chemical Engineering Kexue Avenue 450001 Zhengzhou China
| | - Junfeng Tian
- Zhengzhou University of Light IndustrySchool of Material and Chemical Engineering Kexue Avenue 450001 Zhengzhou China
| | - Huanhuan Ma
- Zhengzhou University of Light IndustrySchool of Material and Chemical Engineering Kexue Avenue 450001 Zhengzhou China
| | - Shaoming Fang
- Zhengzhou University of Light IndustrySchool of Material and Chemical Engineering Kexue Avenue 450001 Zhengzhou China
| |
Collapse
|
57
|
Li S, Dai J, Geng X, Li J, Li P, Lei J, Wang L, He J. Highly selective sodium alginate mixed-matrix membrane incorporating multi-layered MXene for ethanol dehydration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116206] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
58
|
Yang Y, Si Z, Cai D, Teng X, Li G, Wang Z, Li S, Qin P. High-hydrophobic CF3 groups within PTFPMS membrane for enhancing the furfural pervaporation performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116144] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
59
|
Liu G, Liu S, Ma K, Wang H, Wang X, Liu G, Jin W. Polyelectrolyte Functionalized Ti2CTx MXene Membranes for Pervaporation Dehydration of Isopropanol/Water Mixtures. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06881] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Song Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Kang Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Haoyu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Xiaoyue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
60
|
Eren B, Eren E, Guney M, Jean Y, Van Horn JD. Positron annihilation lifetime spectroscopy study of polyvinylpyrrolidone‐added polyvinylidene fluoride membranes: Investigation of free volume and permeation relationships. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bilge Eren
- Faculty of Science and Arts, Department of ChemistryBilecik Seyh Edebali University 11210 Bilecik Turkey
| | - Erdal Eren
- Faculty of Science and Arts, Department of ChemistryBilecik Seyh Edebali University 11210 Bilecik Turkey
| | - Murat Guney
- Faculty of Science and Arts, Department of ChemistryBilecik Seyh Edebali University 11210 Bilecik Turkey
| | - Yan‐Ching Jean
- Department of ChemistryUniversity of Missouri‐Kansas City Kansas City Missouri 64110
| | - J. David Van Horn
- Department of ChemistryUniversity of Missouri‐Kansas City Kansas City Missouri 64110
| |
Collapse
|
61
|
Pan F, Li Y, Song Y, Wang M, Zhang Y, Yang H, Wang H, Jiang Z. Graphene oxide membranes with fixed interlayer distance via dual crosslinkers for efficient liquid molecular separations. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117486] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
62
|
Ma MQ, Zhang C, Zhu CY, Huang S, Yang J, Xu ZK. Nanocomposite membranes embedded with functionalized MoS2 nanosheets for enhanced interfacial compatibility and nanofiltration performance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117316] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
63
|
Gao X, Wang S, Wang J, Xu S, Gu X. The study on the coupled process of column distillation and vapor permeation by NaA zeolite membrane for ethanol dehydration. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
64
|
Nanocomposite membranes based on sodium alginate/poly(ε-caprolactone)/graphene oxide for methanol, ethanol and isopropanol dehydration via pervaporation. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02921-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
65
|
Xie D, Liu Q, Xu D, Ren D, Wu X. Graphene oxide–polyoctahedral silsesquioxane–chitosan composite films with improved mechanical and water‐vapor‐transport properties. J Appl Polym Sci 2019. [DOI: 10.1002/app.47748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Dongmei Xie
- College of Food ScienceSouthwest University Chongqing 400700 People's Republic of China
| | - Qin Liu
- College of Food ScienceSouthwest University Chongqing 400700 People's Republic of China
| | - Dan Xu
- College of Food ScienceSouthwest University Chongqing 400700 People's Republic of China
- College of Food Science, Food Storage and Logistics Research CenterSouthwest University Chongqing 400700 People's Republic of China
| | - Dan Ren
- College of Food ScienceSouthwest University Chongqing 400700 People's Republic of China
- College of Food Science, Food Storage and Logistics Research CenterSouthwest University Chongqing 400700 People's Republic of China
| | - Xiyu Wu
- College of Food ScienceSouthwest University Chongqing 400700 People's Republic of China
- College of Food Science, Food Storage and Logistics Research CenterSouthwest University Chongqing 400700 People's Republic of China
| |
Collapse
|
66
|
Wang Y, Guo L, Qi P, Liu X, Wei G. Synthesis of Three-Dimensional Graphene-Based Hybrid Materials for Water Purification: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1123. [PMID: 31382648 PMCID: PMC6722807 DOI: 10.3390/nano9081123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022]
Abstract
Graphene-based nanostructures and nanomaterials have been widely used for the applications in materials science, biomedicine, tissue engineering, sensors, energy, catalysis, and environmental science due to their unique physical, chemical, and electronic properties. Compared to two-dimensional (2D) graphene materials, three-dimensional (3D) graphene-based hybrid materials (GBHMs) exhibited higher surface area and special porous structure, making them excellent candidates for practical applications in water purification. In this work, we present recent advances in the synthesis and water remediation applications of 3D GBHMs. More details on the synthesis strategies of GBHMs, the water treatment techniques, and the adsorption/removal of various pollutants from water systems with GBHMs are demonstrated and discussed. It is expected that this work will attract wide interests on the structural design and facile synthesis of novel 3D GBHMs, and promote the advanced applications of 3D GBHMs in energy and environmental fields.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Lei Guo
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Pengfei Qi
- College of Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
- Faculty of Production Engineering, University of Bremen, D-28359 Bremen, Germany.
| |
Collapse
|
67
|
Si Z, Cai D, Li S, Li G, Wang Z, Qin P. A high-efficiency diffusion process in carbonized ZIF-8 incorporated mixed matrix membrane for n-butanol recovery. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
68
|
Tang W, Lou H, Li Y, Kong X, Wu Y, Gu X. Ionic liquid modified graphene oxide-PEBA mixed matrix membrane for pervaporation of butanol aqueous solutions. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
69
|
Si Z, Cai D, Li S, Zhang C, Qin P, Tan T. Carbonized ZIF-8 incorporated mixed matrix membrane for stable ABE recovery from fermentation broth. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
70
|
Wu JK, Ye CC, Zhang WH, Wang NX, Lee KR, An QF. Construction of well-arranged graphene oxide/polyelectrolyte complex nanoparticles membranes for pervaporation ethylene glycol dehydration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
71
|
Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.030] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
72
|
|
73
|
Cheng C, Li P, Zhang T, Wang X, Hsiao BS. Enhanced pervaporation performance of polyamide membrane with synergistic effect of porous nanofibrous support and trace graphene oxide lamellae. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.11.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
74
|
He R, Cong S, Wang J, Liu J, Zhang Y. Porous Graphene Oxide/Porous Organic Polymer Hybrid Nanosheets Functionalized Mixed Matrix Membrane for Efficient CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4338-4344. [PMID: 30615834 DOI: 10.1021/acsami.8b17599] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The computational simulation of porous graphene oxide (PGO) indicated that it has great potential for the preparation of gas separation membranes. However, scaling up the manufacture of multilayer, defect-free porous graphene oxide membrane with consistently sized nanopores is extremely challenging. Here, we prepared layer-by-layer CO2-philic Pebax@1657 membranes that were functionalized by o-hydroxyazo-hierarchical porous organic polymers (o-POPs) and PGO. The d-spacing of pristine PGO could be finely regulated through CO2-philic o-POPs to facilitate the permeability of CO2. In addition, the o-POPs exhibit "N2-phobic, CO2-philic" properties with the phenolic hydroxyl and the azo group. The best of the POP-PGO membrane exhibits that the CO2 permeability and ideal selectivity of CO2/N2 are 232.7 Barrer and 80.7, respectively, and it has surpassed the Robeson's upper bound (2008).
Collapse
Affiliation(s)
- Rongrong He
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
| | - Shenzhen Cong
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
| | - Jing Wang
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
| | - Jindun Liu
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
| | - Yatao Zhang
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
| |
Collapse
|
75
|
Liu G, Jiang Z, Li C, Hou L, Chen C, Yang H, Pan F, Wu H, Zhang P, Cao X. Layer-by-layer self-assembled nanocomposite membranes via bio-inspired mineralization for pervaporation dehydration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.09.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
76
|
Highly water-selective membranes based on hollow covalent organic frameworks with fast transport pathways. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
77
|
Jansto A, Davis EM. Role of Surface Chemistry on Nanoparticle Dispersion and Vanadium Ion Crossover in Nafion Nanocomposite Membranes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36385-36397. [PMID: 30256611 DOI: 10.1021/acsami.8b11297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While the introduction of nanoparticles into Nafion membranes has proven to be a viable method to tune the ion selectivity in energy storage technologies such as the vanadium redox flow battery, there still remains a limited understanding of the fundamental mechanism by which the nanoparticles selectively restrict ion crossover. Herein, the surface chemistry and loading of SiO2 nanoparticles (SiNPs) were systematically varied to elucidate the relationship between nanoparticle dispersion (or dispersion state) and vanadium ion permeability in Nafion nanocomposite membranes. Specifically, nanoparticle surface functionalization was altered to achieve both attractive (amine-functionalized) and repulsive (unfunctionalized and sulfonic acid-functionalized) electrostatic interactions between the SiNPs and the ionic groups of Nafion. At a nanoparticle loading of 5 wt %, membranes containing unfunctionalized and amine-functionalized SiNPs demonstrated ∼25% reduction in vanadium ion permeability as compared to unmodified Nafion. Drastically different dispersion states were observed in the electron microscopy images of each nanocomposite membrane, where most notably, aggregates on the order of 500 nm were observed for membranes containing amine-functionalized SiNPs (at all nanoparticle loadings). Results from this work indicate that both dispersion state and surface chemistry of the SiNPs play a critical role in governing the vanadium ion transport in these ionomer nanocomposite membranes.
Collapse
Affiliation(s)
- Allison Jansto
- Department of Chemical and Biological Engineering , Clemson University , Clemson , South Carolina 29634 , United States
| | - Eric M Davis
- Department of Chemical and Biological Engineering , Clemson University , Clemson , South Carolina 29634 , United States
| |
Collapse
|
78
|
Xu Z, Liu G, Ye H, Jin W, Cui Z. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.044] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
79
|
Wang M, Pan F, Yang L, Song Y, Wu H, Cheng X, Liu G, Yang H, Wang H, Jiang Z, Cao X. Graphene oxide quantum dots incorporated nanocomposite membranes with high water flux for pervaporative dehydration. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
80
|
Liu G, Jin W. Graphene-based Membranes. GRAPHENE-BASED MEMBRANES FOR MASS TRANSPORT APPLICATIONS 2018. [DOI: 10.1039/9781788013017-00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Owing to their unique one-atom-thick structure, graphene and its derivatives (e.g., graphene oxide) have become emerging nano-building blocks for developing separation membranes. Extraordinary molecular separation properties for purifying water and gases have been demonstrated by graphene-based membranes, which has attracted a huge surge of interest during the last few years. Graphene and its derivatives can be processed into separation membranes with three types: porous graphene membranes, graphene laminate membranes and graphene-based hybrid membranes. This chapter will present the latest ground-breaking advances in both theoretical and experimental studies related to these graphene-based membranes, including their design, fabrication, characterization, as well as application for pressure filtration, pervaporation and gas separation.
Collapse
Affiliation(s)
- Gongping Liu
- Department of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University 5 Xinmofan Road Nanjing 210009 China
| | - Wanqin Jin
- Department of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University 5 Xinmofan Road Nanjing 210009 China
| |
Collapse
|
81
|
Hierarchical pore architectures from 2D covalent organic nanosheets for efficient water/alcohol separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
82
|
Wei Z, Liu Q, Wu C, Wang H, Wang H. Viscosity-driven in situ self-assembly strategy to fabricate cross-linked ZIF-90/PVA hybrid membranes for ethanol dehydration via pervaporation. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
83
|
Embedding hydrophobic MoS 2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.03.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
84
|
Wang L, Wang N, Yang H, An Q, Li B, Ji S. Facile fabrication of mixed matrix membranes from simultaneously polymerized hyperbranched polymer/modified graphene oxide for MTBE/MeOH separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
85
|
Shaari N, Kamarudin SK, Basri S, Shyuan LK, Masdar MS, Nordin D. Enhanced mechanical flexibility and performance of sodium alginate polymer electrolyte bio-membrane for application in direct methanol fuel cell. J Appl Polym Sci 2018. [DOI: 10.1002/app.46666] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- N. Shaari
- Fuel Cell Institute; Universiti Kebangsaan Malaysia; Ukm Bangi Selangor 43600 Malaysia
| | - S. K. Kamarudin
- Fuel Cell Institute; Universiti Kebangsaan Malaysia; Ukm Bangi Selangor 43600 Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment; Universiti Kebangsaan Malaysia; Ukm Bangi Selangor 43600 Malaysia
| | - S. Basri
- Fuel Cell Institute; Universiti Kebangsaan Malaysia; Ukm Bangi Selangor 43600 Malaysia
| | - L. K. Shyuan
- Fuel Cell Institute; Universiti Kebangsaan Malaysia; Ukm Bangi Selangor 43600 Malaysia
| | - M. S. Masdar
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment; Universiti Kebangsaan Malaysia; Ukm Bangi Selangor 43600 Malaysia
| | - D. Nordin
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment; Universiti Kebangsaan Malaysia; Ukm Bangi Selangor 43600 Malaysia
| |
Collapse
|
86
|
Zhou F, Feng X, Yu J, Jiang X. High performance of 3D porous graphene/lignin/sodium alginate composite for adsorption of Cd(II) and Pb(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15651-15661. [PMID: 29574641 DOI: 10.1007/s11356-018-1733-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/13/2018] [Indexed: 05/13/2023]
Abstract
A novel adsorbent, three-dimensional porous graphene/lignin/sodium alginate nanocomposite (denoted as 3D PG/L/SA) was fabricated by hydrothermal polymerization of lignin and sodium alginate in the presence of graphene oxide (GO) in an aqueous system. Fourier transform infrared spectra, thermo-gravimetric analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy were employed to characterize the morphology and structure of this novel functional PG/L/SA nanocomposite. A series of adsorption experiments for cleanup of Cd(II) and Pb(II) were conducted to investigate the effects of lignin and sodium alginate on the graphene structure. It was found that PG/L/SA showed a significant increase in adsorption capacity contrast to porous graphene (PG). The as-prepared material achieved the adsorption capacity for Cd(II) and Pb(II) of 79.88 and 226.24 mg/g, respectively. Meanwhile, the adsorption process matched well with the Langmuir isotherm model and the pseudo-second-order kinetic model. Studies were also conducted to demonstrate the applicability of the sorbent to the removal of heavy metal ions from metal smelting wastewater.
Collapse
Affiliation(s)
- Fang Zhou
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xuezhen Feng
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jingang Yu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xinyu Jiang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
87
|
Integrated polyamide thin-film nanofibrous composite membrane regulated by functionalized interlayer for efficient water/isopropanol separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.02.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
88
|
Graphene oxide-cation interaction: Inter-layer spacing and zeta potential changes in response to various salt solutions. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
89
|
Guan K, Liang F, Zhu H, Zhao J, Jin W. Incorporating Graphene Oxide into Alginate Polymer with a Cationic Intermediate To Strengthen Membrane Dehydration Performance. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13903-13913. [PMID: 29608270 DOI: 10.1021/acsami.8b04093] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two-dimensional graphene oxide (GO) in hybrid membranes provides fast water transfer across its surface due to the abundant oxygenated functional groups to afford water sorption and the hydrophobic basal plane to create fast transporting pathways. To establish more compatible and efficient interactions for GO and sodium alginate (SA) polymer chains, cations sourced from lignin are employed to decorate GO (labeled as cation-functionalized GO (CG)) nanosheets via cation-π and π-π interactions, providing more interactive sites to confer synergetic benefits with polymer matrix. Cations from CG are also functional to partially interlock SA chains and intensify water diffusion. And with the aid of two-dimensional pathways of CG, fast selective water permeation can be realized through hybrid membranes with CG fillers. In dehydrating aqueous ethanol solution, the hybrid membrane exhibits considerable performance compared with bare SA polymer membrane (long-term stable permeation flux larger than 2500 g m-2 h-1 and water content larger than 99.7 wt %, with feed water content of 10 wt % under 70 °C). The effects of CG content in SA membrane were investigated, and the transport mechanism was correspondingly studied through varying operation conditions and membrane materials. In addition, such a membrane possesses long-term stability and almost unchanged high dehydration capability.
Collapse
Affiliation(s)
- Kecheng Guan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 5 Xinmofan Road , Nanjing 210009 , P. R. China
| | - Feng Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 5 Xinmofan Road , Nanjing 210009 , P. R. China
| | - Haipeng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 5 Xinmofan Road , Nanjing 210009 , P. R. China
| | - Jing Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 5 Xinmofan Road , Nanjing 210009 , P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 5 Xinmofan Road , Nanjing 210009 , P. R. China
| |
Collapse
|
90
|
Shaari N, Kamarudin SK, Basri S, Shyuan LK, Masdar MS, Nordin D. Enhanced Proton Conductivity and Methanol Permeability Reduction via Sodium Alginate Electrolyte-Sulfonated Graphene Oxide Bio-membrane. NANOSCALE RESEARCH LETTERS 2018; 13:82. [PMID: 29536289 PMCID: PMC5849597 DOI: 10.1186/s11671-018-2493-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/02/2018] [Indexed: 06/02/2023]
Abstract
The high methanol crossover and high cost of Nafion® membrane are the major challenges for direct methanol fuel cell application. With the aim of solving these problems, a non-Nafion polymer electrolyte membrane with low methanol permeability and high proton conductivity based on the sodium alginate (SA) polymer as the matrix and sulfonated graphene oxide (SGO) as an inorganic filler (0.02-0.2 wt%) was prepared by a simple solution casting technique. The strong electrostatic attraction between -SO3H of SGO and the sodium alginate polymer increased the mechanical stability, optimized the water absorption and thus inhibited the methanol crossover in the membrane. The optimum properties and performances were presented by the SA/SGO membrane with a loading of 0.2 wt% SGO, which gave a proton conductivity of 13.2 × 10-3 Scm-1, and the methanol permeability was 1.535 × 10-7 cm2 s-1 at 25 °C, far below that of Nafion (25.1 × 10-7 cm2 s-1) at 25 °C. The mechanical properties of the sodium alginate polymer in terms of tensile strength and elongation at break were improved by the addition of SGO.
Collapse
Affiliation(s)
- N. Shaari
- Fuel Cell Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Malaysia
| | - S. K. Kamarudin
- Fuel Cell Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Malaysia
- Department of Chemical and Process Engineering, Faculty Of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Malaysia
| | - S. Basri
- Fuel Cell Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Malaysia
| | - L. K. Shyuan
- Fuel Cell Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Malaysia
| | - M. S. Masdar
- Department of Chemical and Process Engineering, Faculty Of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Malaysia
| | - D. Nordin
- Department of Chemical and Process Engineering, Faculty Of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Malaysia
| |
Collapse
|
91
|
Enhanced dehydration performance of hybrid membranes by incorporating fillers with hydrophilic-hydrophobic regions. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2017.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
92
|
Liu Q, Wang H, Wu C, Wei Z, Wang H. In-situ generation of iron-dopamine nanoparticles with hybridization and cross-linking dual-functions in poly (vinyl alcohol) membranes for ethanol dehydration via pervaporation. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.06.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
93
|
Cheng X, Pan F, Wang M, Li W, Song Y, Liu G, Yang H, Gao B, Wu H, Jiang Z. Hybrid membranes for pervaporation separations. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.07.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
94
|
Li W, Pan F, Song Y, Wang M, Wang H, Walker S, Wu H, Jiang Z. Construction of molecule-selective mixed matrix membranes with confined mass transfer structure. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
95
|
Wang M, Xing R, Wu H, Pan F, Zhang J, Ding H, Jiang Z. Nanocomposite membranes based on alginate matrix and high loading of pegylated POSS for pervaporation dehydration. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
96
|
Preparation of ultrathin, robust membranes through reactive layer-by-layer (LbL) assembly for pervaporation dehydration. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
97
|
Structure, morphology and separation efficiency of hybrid Alg/Fe 3 O 4 membranes in pervaporative dehydration of ethanol. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.03.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
98
|
Zheng S, Tu Q, Urban JJ, Li S, Mi B. Swelling of Graphene Oxide Membranes in Aqueous Solution: Characterization of Interlayer Spacing and Insight into Water Transport Mechanisms. ACS NANO 2017; 11:6440-6450. [PMID: 28570812 DOI: 10.1021/acsnano.7b02999] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Graphene oxide (GO) has recently emerged as a promising 2D nanomaterial to make high-performance membranes for important applications. However, the aqueous-phase separation capability of a layer-stacked GO membrane can be significantly limited by its natural tendency to swell, that is, absorb water into the GO channel and form an enlarged interlayer spacing (d-spacing). In this study, the d-spacing of a GO membrane in an aqueous environment was experimentally characterized using an integrated quartz crystal microbalance with dissipation and ellipsometry. This method can accurately quantify a d-spacing in liquid and well beyond the typical measurement limit of ∼2 nm. Molecular simulations were conducted to fundamentally understand the structure and mobility of water in the GO channel, and a theoretical model was developed to predict the d-spacing. It was found that, as a dry GO membrane was soaked in water, it initially maintained a d-spacing of 0.76 nm, and water molecules in the GO channel formed a semiordered network with a density 30% higher than that of bulk water but 20% lower than that of the rhombus-shaped water network formed in a graphene channel. The corresponding mobility of water in the GO channel was much lower than in the graphene channel, where water exhibited almost the same mobility as in the bulk. As the GO membrane remained in water, its d-spacing increased and reached 6 to 7 nm at equilibrium. In comparison, the d-spacing of a GO membrane in NaCl and Na2SO4 solutions decreased as the ionic strength increased and was ∼2 nm at 100 mM.
Collapse
Affiliation(s)
- Sunxiang Zheng
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
| | - Qingsong Tu
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
| | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Shaofan Li
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
| | - Baoxia Mi
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
| |
Collapse
|
99
|
Wang J, Bai H, Zhang J, Zhao L, Chen P, Li Y, Liu J. Acid-base block copolymer brushes grafted graphene oxide to enhance proton conduction of polymer electrolyte membrane. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.02.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
100
|
|