51
|
|
52
|
Thin Film Composite Forward Osmosis Membrane with Single-Walled Carbon Nanotubes Interlayer for Alleviating Internal Concentration Polarization. Polymers (Basel) 2020; 12:polym12020260. [PMID: 31979382 PMCID: PMC7077303 DOI: 10.3390/polym12020260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/03/2022] Open
Abstract
This study reported a series of thin film composite (TFC) membranes with single-walled nanotubes (SWCNTs) interlayers for the forward osmosis (FO) application. Pure SWCNTs with ultrahigh length-to-diameter ratio and without any functional group were applied to form an interconnect network interlayer via strong π-π interactions. Compared to the TFC membrane without SWCNTs interlayer, our TFC membrane with optimal SWCNTs interlayer exhibited more than three times the water permeability (A) of 3.3 L m−2h−1bar−1 in RO mode with 500 mg L−1 NaCl as feed solution and nearly three-fold higher FO water flux of 62.8 L m−2 h−1 in FO mode with the deionized water as feed solution and 1 M NaCl as draw solution. Meanwhile, the TFC membrane with SWCNTs interlayer exhibited significantly reduced membrane structure parameters (S) to immensely mitigate the effect of internal concentration polarization (ICP) in support layer with micro-sized pores in favor of higher water flux. It showed that the pure SWCNTs interlayer could be an effective strategy to apply in FO membranes.
Collapse
|
53
|
Aghapour Aktij S, Zirehpour A, Mollahosseini A, Taherzadeh MJ, Tiraferri A, Rahimpour A. Feasibility of membrane processes for the recovery and purification of bio-based volatile fatty acids: A comprehensive review. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
54
|
Xiao F, Hu X, Chen Y, Zhang Y. Porous Zr-Based Metal-Organic Frameworks (Zr-MOFs)-Incorporated Thin-Film Nanocomposite Membrane toward Enhanced Desalination Performance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47390-47403. [PMID: 31729858 DOI: 10.1021/acsami.9b17212] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Four different thin-film nanocomposite (TFN) membranes were prepared by adding different concentrations of porous Zr-metal-organic frameworks (MOFs) (UiO-66 and UiO-66-NH2) to piperazine aqueous solution (aqueous phase) or 1,3,5-benzenetricarbonyl trichloride-n-hexane solution (organic phase) by interfacial polymerization. The main purpose is to study the specific effects of different addition methods and addition amounts of nanoparticles on the structure and performance of the TFN membranes by interfacial polymerization. All four TFN membranes exhibited a higher water permeability while maintaining high salt rejection compared to thin-film composite membrane. On the one hand, the TFN membranes behave differently, which are prepared by adding the same kind of nanoparticles to the aqueous phase or organic phase, respectively. The TFN membrane prepared by adding 0.2 w/v% UiO-66 to the organic phase had a high water flux of 87.86 L m-2 h-1, compared to 46.31 L m-2 h-1 of the membrane prepared by adding 0.3 w/v% UiO-66 in the aqueous phase. This is due to the fact that UiO-66 greatly slows the interfacial polymerization rate when UiO-66 is added to the organic phase, resulting in a thinner and wider-aperture polyamide thin-film layer, reducing the water transmission resistance during filtration. Therefore, it is more economical by adding nanoparticles to organic phase than aqueous phase under the same filtering effect. On the other hand, different nanoparticles can also cause differences in performance and structure of the TFN membranes even in the same preparation manner. TFN membrane with UiO-66-NH2 in the aqueous phase has higher water permeance than the one with UiO-66 in the aqueous phase, owing to the good hydrophilicity of the amino group, which improves the water dispersibility of UiO-66-NH2 so that the TFN membrane is more uniform. In addition, UiO-66-NH2 slows down the process of interface polymerization, making the membrane more porous. The monomers in the aqueous phase and organic phase can be adsorbed in the pores of Zr-MOFs, which makes the interfacial polymerization occur both in the pores and on the surface of the pores. Thus, the compatibility between the polyamide and MOFs was enhanced and less defects were formed in the thin-film layer, resulting in a high salt rejection even when the concentration of Zr-MOFs increased. This is the first time to explain that polyamide membrane has not obvious salt rejection attenuation with increasing porous material content using pore adsorption reaction monomer principle. Also, the Zr-MOFs-based TFN membrane exhibited good heat resistance and antifouling property. This work shows that porous Zr-MOFs nanomaterials have significant advantages in the development of nanofiltration membranes with high water flux and rejection.
Collapse
Affiliation(s)
- Fan Xiao
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes , Tiangong University , Tianjin 300387 , P. R. China
| | - Xiaoyu Hu
- State Key Laboratory of Membrane Materials and Membrane Applications , Tianjin Motimo Membrane Technology Co., Ltd. , Tianjin 300042 , P. R. China
| | - Yingbo Chen
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes , Tiangong University , Tianjin 300387 , P. R. China
| | - Yufeng Zhang
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes , Tiangong University , Tianjin 300387 , P. R. China
| |
Collapse
|
55
|
Bagherzadeh M, Bayrami A, Amini M. Thin‐film nanocomposite forward osmosis membranes modified with Zr‐based metal–organic framework to improve desalination performance. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Arshad Bayrami
- Chemistry DepartmentSharif University of Technology Tehran Iran
| | - Mojtaba Amini
- Chemistry Department, Faculty of ScienceUniversity of Maragheh Maragheh Iran
| |
Collapse
|
56
|
Arjmandi M, Pourafshari Chenar M, Peyravi M, Jahanshahi M. Physical modification of polymeric support layer for thin film composite forward osmosis membranes by metal–organic framework‐based porous matrix membrane strategy. J Appl Polym Sci 2019. [DOI: 10.1002/app.48672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mehrzad Arjmandi
- Chemical Engineering Department, Faculty of EngineeringFerdowsi University of Mashhad Mashhad Iran
- Research Center of Membrane Processes and Membrane, Faculty of EngineeringFerdowsi University of Mashhad Mashhad Iran
| | - Mahdi Pourafshari Chenar
- Chemical Engineering Department, Faculty of EngineeringFerdowsi University of Mashhad Mashhad Iran
- Research Center of Membrane Processes and Membrane, Faculty of EngineeringFerdowsi University of Mashhad Mashhad Iran
| | - Majid Peyravi
- Membrane Research Group, Nanotechnology Research InstituteBabol Noshirvani University of Technology Babol Iran
| | - Mohsen Jahanshahi
- Membrane Research Group, Nanotechnology Research InstituteBabol Noshirvani University of Technology Babol Iran
| |
Collapse
|
57
|
Wang X, Ba X, Cui N, Ma Z, Wang L, Wang Z, Gao X. Preparation, characterisation, and desalination performance study of cellulose acetate membranes with MIL-53(Fe) additive. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
58
|
Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.064] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
59
|
Shakeri A, Salehi H, Razavi SR, Mirahmadi Babaheydari SM. Blue lemon@quaternary graphene oxide open frameworks: As a novel nanostructure for performance enhancement of thin film nanocomposite forward osmosis membrane. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
60
|
Thin-film nanocomposite membranes incorporated with water stable metal-organic framework CuBTTri for mitigating biofouling. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
61
|
Fang Z, Jiao S, Wang B, Yin W, Pang G. A Flexible, Self-Floating Composite for Efficient Water Evaporation. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1800085. [PMID: 31565378 PMCID: PMC6551412 DOI: 10.1002/gch2.201800085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Indexed: 06/10/2023]
Abstract
A flexible, self-floating W18O49/carbon foam composite is fabricated by calcining melamine foam with W18O49 as an adsorbate in N2 atmosphere. This self-floating property is simply realized by a carbonization process other than the complicated surface modification process. The simple synthesis procedure helps to increase not only the solar absorption but also the retention of W18O49 in the porous net structure. This composite absorbs almost the whole solar spectrum and generates localized heat at the surface, which is beneficial for water evaporation. Its water evaporation rate is 6.6 times higher than that of pure water. It has a stable cyclic performance over ten cycles under the illumination of simulated sunlight (500 W Xe lamp). Its flexibility makes it easy to reuse and transfer, which is evaluated by the bending deformation test. The W18O49/carbon foam composite is a prospective material in solar energy conversion field, and the preparation procedure is feasible to scale-up.
Collapse
Affiliation(s)
- Zhenxing Fang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
- College of Science and TechnologyNingbo UniversityNingbo315200P. R. China
| | - Shihui Jiao
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Boran Wang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Wen Yin
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Guangsheng Pang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|
62
|
Pauzi MZM, Mahpoz NM, Abdullah N, Rahman MA, Abas KH, Aziz AA, Padzillah MH, Othman MHD, Jaafar J, Ismail AF. Feasibility study of CAU-1 deposited on alumina hollow fiber for desalination applications. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
63
|
Arjmandi M, Peyravi M, Pourafshari Chenar M, Jahanshahi M. A new concept of MOF-based PMM by modification of conventional dense film casting method: Significant impact on the performance of FO process. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
64
|
Evaluation of the effect of body fluid analogs on the parameters of nanofiltration during the purification of swimming pool water. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0568-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
65
|
Modified forward osmosis membranes by two amino-functionalized ZnO nanoparticles: A comparative study. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
66
|
Qiu M, He C. Efficient removal of heavy metal ions by forward osmosis membrane with a polydopamine modified zeolitic imidazolate framework incorporated selective layer. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:339-347. [PMID: 30599406 DOI: 10.1016/j.jhazmat.2018.12.096] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/09/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
A novel thin film nanocomposite (TFN) forward osmosis (FO) membrane with a positively charged and nano-functional selective layer has been developed for effective heavy metal ions removal. The selective layer is constructed by penetrating the polydopamine modified zeolitic imidazolate framework (ZIF-8@PDA) in the poly(ethyleneimine)/1,3,5-benzenetricarboxylic acid chloride (PEI/TMC) crosslinked matrix. Compared with the pristine thin film composite (TFC) membrane, the thin film nanocomposite membrane (0.05 wt % nanofillers loading) exhibits a higher water flux (20.8 vs12.8 LMH) without losing of selectivity in terms of Js/Jw ratio (0.25 vs 0.20 g L-1) in FO mode. This improvement of the permeability is mainly attributed to the optimized selective layer with good wettability and loose structure. Besides, the modified PDA layer facilitates the affinity between the nanofillers and selective layer, which results in an ideal selectivity. In addition, this modified membrane shows a high heavy metal ion (Cu2+, and Ni2+ and Pb2+) rejection (>96%) in FO mode. Our finding offers a simple and efficient method to enhance the FO performance of membrane by designing the selective layer for treating heavy metal wastewater.
Collapse
Affiliation(s)
- Ming Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, China
| | - Chunju He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, China.
| |
Collapse
|
67
|
Esfahani MR, Aktij SA, Dabaghian Z, Firouzjaei MD, Rahimpour A, Eke J, Escobar IC, Abolhassani M, Greenlee LF, Esfahani AR, Sadmani A, Koutahzadeh N. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.050] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
68
|
Dai R, Zhang X, Liu M, Wu Z, Wang Z. Porous metal organic framework CuBDC nanosheet incorporated thin-film nanocomposite membrane for high-performance forward osmosis. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.075] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
69
|
Duong PHH, Daumann K, Hong PY, Ulbricht M, Nunes SP. Interfacial Polymerization of Zwitterionic Building Blocks for High-Flux Nanofiltration Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1284-1293. [PMID: 29983069 DOI: 10.1021/acs.langmuir.8b00960] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A simple scalable strategy is proposed to fabricate highly permeable antifouling nanofiltration membranes. Membranes with a selective thin polyamide layer were prepared via interfacial polymerization incorporating building blocks of zwitterionic copolymers. The zwitterionic copolymer, poly(aminopropyldimethylaminoethyl methacrylate)- co-poly(sulfobetaine methacrylate) with an average molecular weight of 6.1 kg mol-1, was synthesized in three steps: (i) polymerization of dimethylaminoethyl methacrylate to yield the base polymer by atom transfer radical polymerization (ATRP), (ii) fractional sulfobetainization via quaternization, and (iii) amination via quaternization. The effect of the zwitterionic polymer content on the polyamide surface characteristics, fouling resistance, and permeance is demonstrated. The zwitterion-modified membrane becomes more hydrophilic with lower surface roughness, as the zwitterionic polymer fraction increases. The excellent fouling resistance of the zwitterion-modified membrane was confirmed by the negligible protein adsorption and low bacteria fouling compared to a pristine membrane without zwitterionic segments. In addition, the zwitterion-modified membranes achieve a water permeation around 135 L m-2 h-1bar-1, which is 27-fold higher than that of the pristine membrane, along with good selectivity in the nanofiltration range, confirmed by the rejection of organic dyes. This permeance is about 10 times higher than that of other reported loose nanofiltration membranes with comparable dye rejection. The newly designed membrane is promising as a highly permeable fouling resistant cross-linked polyamide network for various water treatment applications.
Collapse
Affiliation(s)
| | - Kevin Daumann
- Lehrstuhl für Technische Chemie II , Universität Duisburg-Essen , 45117 Essen , Germany
| | | | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II , Universität Duisburg-Essen , 45117 Essen , Germany
| | | |
Collapse
|
70
|
Xiong S, Xu S, Zhang S, Phommachanh A, Wang Y. Highly permeable and antifouling TFC FO membrane prepared with CD-EDA monomer for protein enrichment. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
71
|
Salehi H, Shakeri A, Naslhajian H, Amini M. High-flux thin film nanocomposite forward osmosis membrane incorporated with blue lemon polyoxometalate based open-framework. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1713-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
72
|
Wang Y, Li X, Zhao S, Fang Z, Ng D, Xie C, Wang H, Xie Z. Thin-Film Composite Membrane with Interlayer Decorated Metal–Organic Framework UiO-66 toward Enhanced Forward Osmosis Performance. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04968] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Wang
- Water Industry and Environment Engineering Technology Research Centre, 401311, Chongqing, China
- CSIRO Manufacturing, Private bag 10, Clayton South, Victoria 3169, Australia
| | - Xingya Li
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3168, Australia
| | - Shuaifei Zhao
- Department of Environmental Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Zhendong Fang
- Water Industry and Environment Engineering Technology Research Centre, 401311, Chongqing, China
| | - Derrick Ng
- CSIRO Manufacturing, Private bag 10, Clayton South, Victoria 3169, Australia
| | - Chaoxin Xie
- Water Industry and Environment Engineering Technology Research Centre, 401311, Chongqing, China
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3168, Australia
| | - Zongli Xie
- CSIRO Manufacturing, Private bag 10, Clayton South, Victoria 3169, Australia
| |
Collapse
|
73
|
Khan NA, Hasan Z, Jhung SH. Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized, and analogous MOFs. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
74
|
Seyedpour SF, Rahimpour A, Shamsabadi AA, Soroush M. Improved performance and antifouling properties of thin-film composite polyamide membranes modified with nano-sized bactericidal graphene quantum dots for forward osmosis. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.09.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
75
|
Sublayer assisted by hydrophilic and hydrophobic ZnO nanoparticles toward engineered osmosis process. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0086-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
76
|
Kong Y, Zheng X, Chen G, Xu Z, Wu H, Wang Y. Effects of organic acids on the performance of cellulose triacetate forward osmosis membrane. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yafang Kong
- School of Chemical and Environmental EngineeringShanghai Institute of Technology 100 Haiquan Road, Shanghai 201418 China
| | - Xiaopeng Zheng
- School of Chemical and Environmental EngineeringShanghai Institute of Technology 100 Haiquan Road, Shanghai 201418 China
| | - Gui‐E Chen
- School of Chemical and Environmental EngineeringShanghai Institute of Technology 100 Haiquan Road, Shanghai 201418 China
| | - Zhenliang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology 130 Meilong Road, Shanghai 200237 China
| | - Hailing Wu
- School of Chemical and Environmental EngineeringShanghai Institute of Technology 100 Haiquan Road, Shanghai 201418 China
| | - Yang Wang
- School of Chemical and Environmental EngineeringShanghai Institute of Technology 100 Haiquan Road, Shanghai 201418 China
| |
Collapse
|
77
|
Influence of controlled functionalization of mesoporous silica nanoparticles as tailored fillers for thin-film nanocomposite membranes on desalination performance. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
78
|
Wan CF, Yang T, Gai W, Lee YD, Chung TS. Thin-film composite hollow fiber membrane with inorganic salt additives for high mechanical strength and high power density for pressure-retarded osmosis. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
79
|
Rahimpour A, Seyedpour SF, Aghapour Aktij S, Dadashi Firouzjaei M, Zirehpour A, Arabi Shamsabadi A, Khoshhal Salestan S, Jabbari M, Soroush M. Simultaneous Improvement of Antimicrobial, Antifouling, and Transport Properties of Forward Osmosis Membranes with Immobilized Highly-Compatible Polyrhodanine Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5246-5258. [PMID: 29589940 DOI: 10.1021/acs.est.8b00804] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This work shows that incorporating highly compatible polyrhodanine nanoparticles (PRh-NPs) into a polyamide (PA) active layer allows for fabricating forward osmosis (FO) thin-film composite (TFC)-PRh membranes that have simultaneously improved antimicrobial, antifouling, and transport properties. To the best of our knowledge, this is the first reported study of its kind to this date. The presence of the PRh-NPs on the surface of the TFC-PRh membranes active layers is evaluated using FT-IR spectroscopy, SEM, and XPS. The microscopic interactions and their impact on the compatibility of the PRh-NPs with the PA chains were studied using molecular dynamics simulations. When tested in forward osmosis, the TFC-PRh-0.01 membrane (with 0.01 wt % PRh) shows significantly improved permeability and selectivity because of the small size and the high compatibility of the PRh-NPs with PA chains. For example, the TFC-PRh-0.01 membrane exhibits a FO water flux of 41 l/(m2·h), higher than a water flux of 34 l/(m2·h) for the pristine TFC membrane, when 1.5 molar NaCl was used as draw solution in the active-layer feed-solution mode. Moreover, the reverse solute flux of the TFC-PRh-0.01 membrane decreases to about 115 mmol/(m2·h) representing a 52% improvement in the reverse solute flux of this membrane in comparison to the pristine TFC membrane. The surfaces of the TFC-PRh membranes were found to be smoother and more hydrophilic than those of the pristine TFC membrane, providing improved antifouling properties confirmed by a flux decline of about 38% for the TFC-PRh-0.01 membranes against a flux decline of about 50% for the pristine TFC membrane when evaluated with a sodium alginate solution. The antimicrobial traits of the TFC-PRh-0.01 membrane evaluated using colony-forming units and fluorescence imaging indicate that the PRh-NPs hinder cell deposition on the TFC-PRh-0.01 membrane surface effectively, limiting biofilm formation.
Collapse
Affiliation(s)
- Ahmad Rahimpour
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol , Mazandaran 4714871167 , Iran
| | - S Fatemeh Seyedpour
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol , Mazandaran 4714871167 , Iran
| | - Sadegh Aghapour Aktij
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol , Mazandaran 4714871167 , Iran
| | - Mostafa Dadashi Firouzjaei
- Department of Chemical & Biological Engineering , University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Alireza Zirehpour
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol , Mazandaran 4714871167 , Iran
| | - Ahmad Arabi Shamsabadi
- Department of Chemical and Biological Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Saeed Khoshhal Salestan
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol , Mazandaran 4714871167 , Iran
| | - Mostafa Jabbari
- Swedish Centre for Resource Recovery , University of Borås , S-50190 Borås , Sweden
| | - Masoud Soroush
- Department of Chemical and Biological Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
80
|
Ramezani Darabi R, Jahanshahi M, Peyravi M. A support assisted by photocatalytic Fe 3 O 4 /ZnO nanocomposite for thin-film forward osmosis membrane. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.02.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
81
|
Dai Y, Tang Q, Zhang Z, Yu C, Li H, Xu L, Zhang S, Zou Z. Enhanced mechanical, thermal, and UV-shielding properties of poly(vinyl alcohol)/metal–organic framework nanocomposites. RSC Adv 2018; 8:38681-38688. [PMID: 35559108 PMCID: PMC9090642 DOI: 10.1039/c8ra07143h] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Metal–organic framework (HKUST-1) nanoparticles were successfully synthesized, and poly(vinyl alcohol) (PVA)/HKUST-1 nanocomposite films were fabricated by a simple solution casting method. Our results showed that the addition of HKUST-1 caused a remarkable enhancement in both thermal stability and mechanical properties of the PVA nanocomposites, due to the homogeneous distribution of HKUST-1 and the strong interfacial interactions between PVA and HKUST-1. With incorporation of 2 wt% HKUST-1, the degradation temperature of the nanocomposites was about 33 °C higher than that of pure PVA. At the same time, the Young's modulus and tensile strength of the nanocomposites was approximately 137% and 32% higher than those of pure PVA, respectively. Moreover, the PVA/HKUST-1 nanocomposites also showed strikingly enhanced UV-shielding ability as well as satisfactory visible light transmittance, which revealed that HKUST-1 nanoparticles could act as a good UV absorber in nanocomposites. This work provides a novel and simple method for producing UV-shielding materials with simultaneously enhanced thermal and mechanical properties, which have potential applications in UV protection areas. PVA/HKUST-1 nanocomposites prepared by a simple solution casting method displayed significantly enhanced thermal stability, mechanical and UV-shielding properties.![]()
Collapse
Affiliation(s)
- Yibo Dai
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Qun Tang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Ziang Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Caili Yu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Heping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Lin Xu
- Laboratory of Surface Physics and Chemistry
- Guizhou Education University
- Guiyang 550018
- China
| | - Shufen Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Zhiming Zou
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| |
Collapse
|
82
|
Lan X, Huang N, Wang J, Wang T. A general and facile strategy for precisely controlling the crystal size of monodispersed metal–organic frameworks via separating the nucleation and growth. Chem Commun (Camb) 2018; 54:584-587. [DOI: 10.1039/c7cc08244d] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nucleation and growth were separated to precisely control the crystal size of MOFs.
Collapse
Affiliation(s)
- Xiaocheng Lan
- Beijing Key Laboratory of Green Reaction Engineering and Technology
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Ning Huang
- Beijing Key Laboratory of Green Reaction Engineering and Technology
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Jinfu Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Tiefeng Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
83
|
Duong PHH, Zuo J, Nunes SP. Dendrimeric Thin-Film Composite Membranes: Free Volume, Roughness, and Fouling Resistance. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Phuoc H. H. Duong
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering
Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Jian Zuo
- National University of Singapore, Department of Chemical
and Biomolecular Engineering, 4 Engineering Drive 4, 117585 Singapore
| | - Suzana P. Nunes
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering
Division (BESE), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
84
|
Ding W, Li Y, Bao M, Zhang J, Zhang C, Lu J. Highly permeable and stable forward osmosis (FO) membrane based on the incorporation of Al2O3 nanoparticles into both substrate and polyamide active layer. RSC Adv 2017. [DOI: 10.1039/c7ra04046f] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, hydrophilic Al2O3 nanoparticles were used as additives in both substrate and polyamide active (PA) layer to improve forward osmosis (FO) membrane properties.
Collapse
Affiliation(s)
- Wande Ding
- Key Laboratory of Marine Chemistry Theory and Technology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Yiming Li
- Key Laboratory of Marine Chemistry Theory and Technology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Jianrui Zhang
- Key Laboratory of Marine Chemistry Theory and Technology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Congcong Zhang
- Key Laboratory of Marine Chemistry Theory and Technology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Jinren Lu
- College of Chemistry & Chemical Engineering
- Ocean University of China
- Qingdao 266100
- China
| |
Collapse
|
85
|
Li X, Liu Y, Wang J, Gascon J, Li J, Van der Bruggen B. Metal–organic frameworks based membranes for liquid separation. Chem Soc Rev 2017; 46:7124-7144. [DOI: 10.1039/c7cs00575j] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This Tutorial Review highlights the achievements in the rational design and the latest applications of MOF-based membranes in liquid separation.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environment and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Yuxin Liu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environment and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Jing Wang
- Department of Chemical Engineering
- KU Leuven
- B-3001 Leuven
- Belgium
| | - Jorge Gascon
- King Abdullah University of Science and Technology
- KAUST Catalysis Center
- Advanced Catalytic Materials
- Thuwal 23955
- Saudi Arabia
| | - Jiansheng Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environment and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Bart Van der Bruggen
- Department of Chemical Engineering
- KU Leuven
- B-3001 Leuven
- Belgium
- Faculty of Engineering and the Built Environment
| |
Collapse
|