51
|
Basta HA, Ashraf S, Sgro JY, Bochkov YA, Gern JE, Palmenberg AC. Modeling of the human rhinovirus C capsid suggests possible causes for antiviral drug resistance. Virology 2013; 448:82-90. [PMID: 24314639 DOI: 10.1016/j.virol.2013.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/19/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
Human rhinoviruses of the RV-C species are recently discovered pathogens with greater clinical significance than isolates in the RV-A+B species. The RV-C cannot be propagated in typical culture systems; so much of the virology is necessarily derivative, relying on comparative genomics, relative to the better studied RV-A+B. We developed a bioinformatics-based structural model for a C15 isolate. The model showed the VP1-3 capsid proteins retain their fundamental cores relative to the RV-A+B, but conserved, internal RV-C residues affect the shape and charge of the VP1 hydrophobic pocket that confers antiviral drug susceptibility. When predictions of the model were tested in organ cultures or ALI systems with recombinant C15 virus, there was a resistance to capsid-binding drugs, including pleconaril, BTA-188, WIN56291, WIN52035 and WIN52084. Unique to all RV-C, the model predicts conserved amino acids within the pocket and capsid surface pore leading to the pocket may correlate with this activity.
Collapse
Affiliation(s)
- Holly A Basta
- Institute for Molecular Virology, University of Wisconsin, 1525 Linden Drive, Madison, WI 53706, United States of America
| | | | | | | | | | | |
Collapse
|
52
|
Identification of Recombinant Human Rhinovirus A and C in Circulating Strains from Upper and Lower Respiratory Infections. PLoS One 2013; 8:e68081. [PMID: 23826363 PMCID: PMC3695095 DOI: 10.1371/journal.pone.0068081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/24/2013] [Indexed: 01/15/2023] Open
Abstract
Human rhinoviruses (HRVs), in the Enterovirus genus within the family Picornaviridae, are a highly prevalent cause of acute respiratory infection (ARI). Enteroviruses are genetically highly variable, and recombination between serotypes is known to be a major contribution to their diversity. Recently it was reported that recombination events in HRVs cause the diversity of HRV-C. This study analyzed parts of the viral genes spanning the 5′ non- coding region (NCR) through to the viral protein (VP) encoding sequences of 105 HRV field isolates from 51 outpatient cases of Acute Respiratory Infectious Network (ARINET) and 54 inpatient cases of severe lower respiratory infection (SLRI) surveillance, in order to identify recombination in field samples. When analyzing parts of the 5′NCR and VP4/VP2 encoding sequences, we found intra- and interspecies recombinants in field strains of HRV-A and -C. Nineteen cases of recombination events (18.1%) were found among 105 field strains. For HRV-A, there were five cases (4.8%) of intraspecies recombination events and three cases (2.8%) of interspecies recombination events. For HRV-C, there were four cases (3.8%) of intraspecies recombination events and seven cases (6.7%) of interspecies recombination events. Recombination events were significantly more frequently observed in the ARINET samples (18 cases) than in the SLRI samples (1 case; P< 0.0001). The recombination breakpoints were located in nucleotides (nt) 472–554, which comprise stem-loop 5 in the internal ribosomal entry site (IRES), based on the HRV-B 35 sequence (accession no. FJ445187). Our findings regarding genomic recombination in circulating HRV-A and -C strains suggest that recombination might play a role in HRV fitness and could be a possible determinant of disease severity caused by various HRV infections in patients with ARI.
Collapse
|
53
|
Miller EK, Mackay IM. From sneeze to wheeze: what we know about rhinovirus Cs. J Clin Virol 2013; 57:291-9. [PMID: 23714395 DOI: 10.1016/j.jcv.2013.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/16/2013] [Accepted: 04/20/2013] [Indexed: 12/21/2022]
Abstract
While the discovery of HRV-Cs is recent, there are no indications that they are new viruses, or that they are emerging in real-time. Genetically, HRV-Cs are most closely related to the members of HRV-A and HRV-B but even a small genetic difference can impart encompass significant changes to their clinical impact, complicated by a diverse human background of prior virus exposure and underlying host immune and disease variability. It is well known that HRVs are a major trigger of asthma exacerbations and HRV-Cs are now under investigation for their potential involvement in asthma inception. The newly described HRV-Cs account for a large proportion of HRV-related illness, including common colds and wheezing exacerbations. HRV-Cs are genetically diverse and appear to circulate with seasonal variation, exchanging dominance with HRV-A. Whether HRV-Cs are consistently more pathogenic or "asthmagenic" is unproven. Antigenic diversity complicates passive and active prophylactic interventions (i.e. antibodies or vaccines), so further identification and characterisation of individual types (and their neutralising antigens) is likely to inform future preventive strategies. In the meantime, new antivirals should benefit groups at risk of the most severe disease.
Collapse
Affiliation(s)
- E Kathryn Miller
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | |
Collapse
|
54
|
|
55
|
Pierangeli A, Ciccozzi M, Chiavelli S, Concato C, Giovanetti M, Cella E, Spano L, Scagnolari C, Moretti C, Papoff P, Muraca M, Midulla F, Antonelli G. Molecular epidemiology and genetic diversity of human rhinovirus affecting hospitalized children in Rome. Med Microbiol Immunol 2013; 202:303-11. [PMID: 23625169 DOI: 10.1007/s00430-013-0296-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
Human rhinoviruses (HRV) have been re-classified into three species (A-C), but the recently discovered HRV-C strains are not fully characterized yet. This study aimed to undertake a molecular and epidemiological characterization of HRV strains infecting children hospitalized over one year in two large research hospitals in Rome. Nasal washings from single HRV infections were retrospectively subjected to phylogenetic analysis on two genomic regions: the central part of the 5'Untranslated Region (5'UTR) and the Viral Protein (VP) 4 gene with the 5' portion of the VP2 gene (VP4/2). Forty-five different strains were identified in 73 HRV-positive children: 55 % of the cases were HRV-A, 38 % HRV-C and only 7 % HRV-B. HRV-C cases were less frequent than HRV-A during summer months and more frequent in cases presenting wheezing with respect to HRV-A. Species distribution was similar with respect to patient age, and seasonality differed during summer months with fewer HRV-C than HRV-A cases. On admission, a significantly higher number of HRV-C cases presented with wheezing with respect to HRV-A. The inter- and intra-genotype variability in VP4/2 was higher than in 5'UTR; in particular, HRV-A patient VP4/2 sequences were highly divergent (8-14 %) at the nucleotide level from those of their reference strains, but VP4 amino acid sequence was highly conserved. In HRV-C isolates, the region preceding the initiator AUG, the amino acids involved in VP4 myristoylation, the VP4-VP2 cleavage site and the cis-acting replication element were highly conserved. Differently, VP4 amino acid conservation was significantly lower in HRV-C than in HRV-A strains, especially in the transiently exposed VP4 N-terminus. This study confirmed the high number of different HRV genotypes infecting hospitalized children over one year and reveals a greater than expected variability in HRV-C VP4 protein, potentially suggestive of differences in replication.
Collapse
Affiliation(s)
- Alessandra Pierangeli
- Istituto Pasteur-Fondazione Cenci Bolognetti, Laboratory of Virology, Department of Molecular Medicine, Sapienza University, V.le Porta Tiburtina, 28, 00185 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Human rhinoviruses (HRVs), first discovered in the 1950s, are responsible for more than one-half of cold-like illnesses and cost billions of dollars annually in medical visits and missed days of work. Advances in molecular methods have enhanced our understanding of the genomic structure of HRV and have led to the characterization of three genetically distinct HRV groups, designated groups A, B, and C, within the genus Enterovirus and the family Picornaviridae. HRVs are traditionally associated with upper respiratory tract infection, otitis media, and sinusitis. In recent years, the increasing implementation of PCR assays for respiratory virus detection in clinical laboratories has facilitated the recognition of HRV as a lower respiratory tract pathogen, particularly in patients with asthma, infants, elderly patients, and immunocompromised hosts. Cultured isolates of HRV remain important for studies of viral characteristics and disease pathogenesis. Indeed, whether the clinical manifestations of HRV are related directly to viral pathogenicity or secondary to the host immune response is the subject of ongoing research. There are currently no approved antiviral therapies for HRVs, and treatment remains primarily supportive. This review provides a comprehensive, up-to-date assessment of the basic virology, pathogenesis, clinical epidemiology, and laboratory features of and treatment and prevention strategies for HRVs.
Collapse
Affiliation(s)
- Samantha E. Jacobs
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York, USA
| | - Daryl M. Lamson
- Laboratory of Viral Diseases, Wadsworth Center, Albany, New York, USA
| | | | - Thomas J. Walsh
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
57
|
Productive entry pathways of human rhinoviruses. Adv Virol 2012; 2012:826301. [PMID: 23227049 PMCID: PMC3513715 DOI: 10.1155/2012/826301] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 10/18/2012] [Indexed: 12/20/2022] Open
Abstract
Currently, complete or partial genome sequences of more than 150 human rhinovirus (HRV) isolates are known. Twelve species A use members of the low-density lipoprotein receptor family for cell entry, whereas the remaining HRV-A and all HRV-B bind ICAM-1. HRV-Cs exploit an unknown receptor. At least all A and B type viruses depend on receptor-mediated endocytosis for infection. In HeLa cells, they are internalized mainly by a clathrin- and dynamin-dependent mechanism. Upon uptake into acidic compartments, the icosahedral HRV capsid expands by ~4% and holes open at the 2-fold axes, close to the pseudo-3-fold axes and at the base of the star-shaped dome protruding at the vertices. RNA-protein interactions are broken and new ones are established, the small internal myristoylated capsid protein VP4 is expelled, and amphipathic N-terminal sequences of VP1 become exposed. The now hydrophobic subviral particle attaches to the inner surface of endosomes and transfers its genomic (+) ssRNA into the cytosol. The RNA leaves the virus starting with the poly(A) tail at its 3′-end and passes through a membrane pore contiguous with one of the holes in the capsid wall. Alternatively, the endosome is disrupted and the RNA freely diffuses into the cytoplasm.
Collapse
|
58
|
Debiaggi M, Canducci F, Ceresola ER, Clementi M. The role of infections and coinfections with newly identified and emerging respiratory viruses in children. Virol J 2012; 9:247. [PMID: 23102237 PMCID: PMC3573994 DOI: 10.1186/1743-422x-9-247] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/18/2012] [Indexed: 02/03/2023] Open
Abstract
Acute respiratory infections are a major cause of morbidity in children both in developed and developing countries. A wide range of respiratory viruses, including respiratory syncytial virus (RSV), influenza A and B viruses, parainfluenza viruses (PIVs), adenovirus, rhinovirus (HRV), have repeatedly been detected in acute lower respiratory tract infections (LRTI) in children in the past decades. However, in the last ten years thanks to progress in molecular technologies, newly discovered viruses have been identified including human Metapneumovirus (hMPV), coronaviruses NL63 (HcoV-NL63) and HKU1 (HcoV-HKU1), human Bocavirus (HBoV), new enterovirus (HEV), parechovirus (HpeV) and rhinovirus (HRV) strains, polyomaviruses WU (WUPyV) and KI (KIPyV) and the pandemic H1N1v influenza A virus. These discoveries have heavily modified previous knowledge on respiratory infections mainly highlighting that pediatric population is exposed to a variety of viruses with similar seasonal patterns. In this context establishing a causal link between a newly identified virus and the disease as well as an association between mixed infections and an increase in disease severity can be challenging. This review will present an overview of newly recognized as well as the main emerging respiratory viruses and seek to focus on the their contribution to infection and co-infection in LRTIs in childhood.
Collapse
Affiliation(s)
- Maurizia Debiaggi
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Sezione di Microbiologia, 20132 Milan, Italy
| | | | | | | |
Collapse
|
59
|
Schreiber MT, Schuler B, Li L, Hall DJ. Activation of the small G-protein Rac by human rhinovirus attenuates the TLR3/IFN-α axis while promoting CCL2 release in human monocyte-lineage cells. Innate Immun 2012; 19:278-89. [PMID: 23060458 DOI: 10.1177/1753425912460709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although rhinoviral infections, a major cause of asthma exacerbations, occur predominantly in upper airway bronchial epithelial cells, monocytic-lineage cells are implicated in establishing the inflammatory microenvironment observed during the disease. Human rhinovirus (HRV) is unique in that nearly genetically identical viruses bind either the ICAM-1 or low-density lipoprotein receptor (LDL-R). Within minutes of binding, HRV is capable of eliciting a signaling response in both epithelial cells and monocyte-derived macrophages. It is unclear whether this signaling response is important to the subsequent release of inflammatory mediators, particularly in cells not capable of supporting viral replication. We show here that the small molecular mass G-protein Rac is activated following exposure of macrophages to HRV serotypes known to be ICAM-1- and LDL-R-tropic. We demonstrate that inhibiting Rac resulted in the upregulation of TLR3 in macrophages exposed to major- and minor-group HRV, and resulted in increased release of IFN-α. Furthermore, inhibiting Rac in HRV-exposed macrophages attenuated activation of the stress kinase p38 and release of the pro-inflammatory cytokine CCL2, but inhibiting Rac did not affect release of the pro-inflammatory cytokine CCL5. These findings suggest that Rac is an important regulator in establishing the inflammatory microenvironment that is initiated in the human airway upon exposure to rhinovirus.
Collapse
|