51
|
Vater J, Herfort S, Doellinger J, Weydmann M, Borriss R, Lasch P. Genome Mining of the Lipopeptide Biosynthesis of Paenibacillus polymyxa
E681 in Combination with Mass Spectrometry: Discovery of the Lipoheptapeptide Paenilipoheptin. Chembiochem 2018; 19:744-753. [DOI: 10.1002/cbic.201700615] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Joachim Vater
- Robert Koch-Institut Berlin; ZBS6 Proteomics and Spectroscopy; Seestrasse 10 13353 Berlin Germany
| | - Stefanie Herfort
- Robert Koch-Institut Berlin; ZBS6 Proteomics and Spectroscopy; Seestrasse 10 13353 Berlin Germany
| | - Joerg Doellinger
- Robert Koch-Institut Berlin; ZBS6 Proteomics and Spectroscopy; Seestrasse 10 13353 Berlin Germany
| | - Max Weydmann
- Robert Koch-Institut Berlin; ZBS6 Proteomics and Spectroscopy; Seestrasse 10 13353 Berlin Germany
| | - Rainer Borriss
- Humboldt Universität Berlin; Fachgebiet Phytomedizin; Lentzeallee 55-57 14195 Berlin Germany
- NordReet UG; Marienstrasse 27a 17489 Greifswald Germany
| | - Peter Lasch
- Robert Koch-Institut Berlin; ZBS6 Proteomics and Spectroscopy; Seestrasse 10 13353 Berlin Germany
| |
Collapse
|
52
|
Durairaj K, Velmurugan P, Park JH, Chang WS, Park YJ, Senthilkumar P, Choi KM, Lee JH, Oh BT. Potential for plant biocontrol activity of isolated Pseudomonas aeruginosa and Bacillus stratosphericus strains against bacterial pathogens acting through both induced plant resistance and direct antagonism. FEMS Microbiol Lett 2018; 364:4563579. [PMID: 29069329 DOI: 10.1093/femsle/fnx225] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 10/23/2017] [Indexed: 11/12/2022] Open
Abstract
Phytopathogenic bacteria have caused significant damage to agricultural crops in both controlled and open cultivation practices, imposing heavy losses to farmers. Thereby, the goal of this study was to evaluate Pseudomonas aeruginosa and Bacillus stratosphericus isolated from soil has antagonistic activity against bacterial phytopathogens with the potential to control plant diseases. Isolated novel strains of P. aeruginosa and B. stratosphericus showed broad spectrum of antagonistic activity against five bacterial phytopathogens. Antagonistic activity was examined under optimized pH (8 and 7), carbon sources (lactose and starch), nitrogen sources (ammonium chloride, peptone and ammonium nitrate) for P. aeruginosa and B. stratosphericus, respectively, and biocatalyst production (chitinase, protease and amylase) was studied. Additionally, up-regulation of defense-related genes (PR-1a and PAL) was studied in tomato plants treated with P. aeruginosa and B. stratosphericus. The induction of defense-related genes in tomato plant was triggered after 12 h treatment with a cell concentration of 0.20 O.D. for P. aeruginosa and 0.21 O.D. for B. stratosphericus during treatment period. Broad spectrum antagonistic activity was observed due to antibiotic and siderophore production by P. aeruginosa and B. stratosphericus.
Collapse
Affiliation(s)
- Kaliannan Durairaj
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea.,Department of Environmental Science, Periyar University, Periyar Palkalai Nagar, Salem-636011, Tamil Nadu, India
| | - Palanivel Velmurugan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Woo-Suk Chang
- Department of Biology, University of Texas, 701 S Nedderman Dr, Arlington, TX 76019, USA
| | - Yool-Jin Park
- Department of Ecology Landscape Architecture-Design, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Palaninaicker Senthilkumar
- Department of Environmental Science, Periyar University, Periyar Palkalai Nagar, Salem-636011, Tamil Nadu, India
| | - Kyung-Min Choi
- Nakdonggang Institute of Biological Resources, Sangju, Gyeongbuk 37242, South Korea
| | - Jeong-Ho Lee
- Sunchang Research Institute of Health and Longevity, Sunchang, Jeonbuk 56015, South Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea.,Plant Medical Research Center, College of Agricultural and Life Sciences, Chonbuk National University, Jenoju, Jeonbuk 54896, South Korea
| |
Collapse
|
53
|
Khan N, Maymon M, Hirsch AM. Combating Fusarium Infection Using Bacillus-Based Antimicrobials. Microorganisms 2017; 5:E75. [PMID: 29165349 PMCID: PMC5748584 DOI: 10.3390/microorganisms5040075] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/19/2023] Open
Abstract
Despite efforts to control toxigenic Fusarium species, wilt and head-blight infections are destructive and economically damaging diseases that have global effects. The utilization of biological control agents in disease management programs has provided an effective, safe, and sustainable means to control Fusarium-induced plant diseases. Among the most widely used microbes for biocontrol agents are members of the genus Bacillus. These species influence plant and fungal pathogen interactions by a number of mechanisms such as competing for essential nutrients, antagonizing pathogens by producing fungitoxic metabolites, or inducing systemic resistance in plants. The multivariate interactions among plant-biocontrol agent-pathogen are the subject of this study, in which we survey the advances made regarding the research on the Bacillus-Fusarium interaction and focus on the principles and mechanisms of action among plant-growth promoting Bacillus species. In particular, we highlight their use in limiting and controlling Fusarium spread and infestations of economically important crops. This knowledge will be useful to define strategies for exploiting this group of beneficial bacteria for use as inoculants by themselves or in combination with other microbes for enhanced crop protection.
Collapse
Affiliation(s)
- Noor Khan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.
| | - Maskit Maymon
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.
| | - Ann M Hirsch
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.
- The Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
54
|
Comby M, Gacoin M, Robineau M, Rabenoelina F, Ptas S, Dupont J, Profizi C, Baillieul F. Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiol Res 2017. [PMID: 28647118 DOI: 10.1016/j.micres.2017.04.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In order to find biological control agents (BCAs) for the management of Fusarium head blight (FHB), a major disease on wheat crops worldwide, 86 microorganisms isolated from inner tissues of wheat plants were discriminated for their ability to inhibit the growth of Fusarium graminearum and Fusarium culmorum by in vitro dual culture assays. A group of 22 strains appeared very effective to inhibit F. graminearum (inhibition of 30-51%) and they were also globally effective in controlling F. culmorum (inhibition of 15-53%). Further evaluation of a subselection of strains by screening on detached spikelets in vitro confirmed three species, namely Phoma glomerata, Aureobasidium proteae and Sarocladium kiliense, that have not yet been reported for their efficacy against Fusarium spp., indicating that looking for BCAs toward FHB among wheat endophytes proved to be promising. The efficacy of some strains turned out different between both in vitro screening approaches, raising the importance of finding the most appropriate screening approach for the search of BCAs. This study pointed out the interest of the test on detached wheat spikelets that provided information about a potential pathogenicity, the growth capacity and efficacy of the endophyte strains on the targeted plant, before testing them on whole plants.
Collapse
Affiliation(s)
- Morgane Comby
- Institut de Systématique, Evolution et Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP39, 75005 Paris, France; Soufflet Biotechnologies, Quai Sarrail, 10400 Nogent-sur-Seine, France; Laboratoire de Stress, Défenses et Reproduction des Plantes - EA 4707, Faculté des Sciences, Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
| | - Marie Gacoin
- Soufflet Biotechnologies, Quai Sarrail, 10400 Nogent-sur-Seine, France
| | - Mathilde Robineau
- Soufflet Biotechnologies, Quai Sarrail, 10400 Nogent-sur-Seine, France
| | - Fanja Rabenoelina
- Laboratoire de Stress, Défenses et Reproduction des Plantes - EA 4707, Faculté des Sciences, Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
| | - Sébastien Ptas
- Soufflet Biotechnologies, Quai Sarrail, 10400 Nogent-sur-Seine, France
| | - Joëlle Dupont
- Institut de Systématique, Evolution et Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP39, 75005 Paris, France
| | - Camille Profizi
- Soufflet Biotechnologies, Quai Sarrail, 10400 Nogent-sur-Seine, France.
| | - Fabienne Baillieul
- Laboratoire de Stress, Défenses et Reproduction des Plantes - EA 4707, Faculté des Sciences, Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
| |
Collapse
|