51
|
Immunofluorescence localisation of Banana bunchy top virus (family Nanoviridae) within the aphid vector, Pentalonia nigronervosa, suggests a virus tropism distinct from aphid-transmitted luteoviruses. Virus Res 2010; 155:520-5. [PMID: 21167229 DOI: 10.1016/j.virusres.2010.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/02/2010] [Accepted: 12/05/2010] [Indexed: 11/27/2022]
Abstract
We have applied immunocapture PCR and developed an immunofluorescence assay to specifically detect Banana bunchy top virus (BBTV; family Nanoviridae, genus Babuvirus) within its aphid vector, Pentalonia nigronervosa (Hemiptera, Aphididae). BBTV was localised using either monoclonal or polyclonal antibodies into the anterior midgut (stomach) and into specific cells forming the principal salivary glands. These results suggest a distinct path of virus translocation that likely differs from the one described for aphid-transmitted luteovirus, which enter hemocoels through the hindguts and posterior midguts and that penetrate the accessory salivary glands of their competent vectors. To our understanding, this is the first work analysing the localisation of a virus member of the family Nanoviridae within an aphid vector.
Collapse
|
52
|
Bencharki B, Boissinot S, Revollon S, Ziegler-Graff V, Erdinger M, Wiss L, Dinant S, Renard D, Beuve M, Lemaitre-Guillier C, Brault V. Phloem protein partners of Cucurbit aphid borne yellows virus: possible involvement of phloem proteins in virus transmission by aphids. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:799-810. [PMID: 20459319 DOI: 10.1094/mpmi-23-6-0799] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Poleroviruses are phytoviruses strictly transmitted by phloem-feeding aphids in a circulative and nonpropagative mode. During ingestion, aphids sample virions in sieve tubes along with sap. Therefore, any sap protein bound to virions will be acquired by the insects and could potentially be involved in the transmission process. By developing in vitro virus-overlay assays on sap proteins collected from cucumber, we observed that approximately 20 proteins were able to bind to purified particles of Cucurbit aphid borne yellows virus (CABYV). Among them, eight proteins were identified by mass spectrometry. The role of two candidates belonging to the PP2-like family (predominant lectins found in cucurbit sap) in aphid transmission was further pursued by using purified orthologous PP2 proteins from Arabidopsis. Addition of these proteins to the virus suspension in the aphid artificial diet greatly increased virus transmission rate. This shift was correlated with an increase in the number of viral genomes in insect cells and with an increase of virion stability in vitro. Surprisingly, increase of the virus transmission rate was also monitored after addition of unrelated proteins in the aphid diet, suggesting that any soluble protein at sufficiently high concentration in the diet and acquired together with virions could stimulate virus transmission.
Collapse
Affiliation(s)
- B Bencharki
- INRA Université de Strasbourg, UMR SVQV, 28 rue de Herrlisheim BP 20507, 68021 Colmar, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
Plant viruses have evolved a wide array of strategies to ensure efficient transfer from one host to the next. Any organism feeding on infected plants and traveling between plants can potentially act as a virus transport device. Such organisms, designated vectors, are found among parasitic fungi, root nematodes and plant-feeding arthropods, particularly insects. Due to their extremely specialized feeding behavior - exploring and sampling all plant tissues, from the epidermis to the phloem and xylem - aphids are by far the most important vectors, transmitting nearly 30% of all plant virus species described to date. Several different interaction patterns have evolved between viruses and aphid vectors and, over the past century, a tremendous number of studies have provided details of the underlying mechanisms. This article presents an overview of the different types of virus-aphid relationships, state-of-the-art knowledge of the molecular processes underlying these interactions, and the remaining black boxes waiting to be opened in the near future.
Collapse
|
54
|
A reinvestigation provides no evidence for sugar residues on structural proteins of poleroviruses and argues against a role for glycosylation of virus structural proteins in aphid transmission. Virology 2010; 402:303-14. [PMID: 20416918 DOI: 10.1016/j.virol.2010.03.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 11/22/2022]
Abstract
Poleroviruses are strictly transmitted by aphids. Glycosylation of Turnip yellows virus (TuYV) was previously reported and this modification was supposed to be required for aphid transmission. Using different approaches based on (i) a lectin-binding assay, (ii) use of specific complex glycan antibodies and (iii) mass spectrometry, we found no evidence that the structural proteins of TuYV and Cucurbit aphid-borne yellow virus (CABYV) carry glycan residues. Moreover, mutation of each of the four potential N-glycosylation sites of the structural protein sequences of CABYV indicated that, unless more than one site on the structural protein is glycosylated, N-glycosylation is not involved in aphid transmission. These results did not corroborate the previous hypothesis for the role of glycosylation in aphid transmission. They, however, revealed the presence of a glycosylated plant protein in purified polerovirus suspensions, whose function in aphid transmission should be further investigated.
Collapse
|
55
|
Tamborindeguy C, Monsion B, Brault V, Hunnicutt L, Ju HJ, Nakabachi A, Van Fleet E. A genomic analysis of transcytosis in the pea aphid, Acyrthosiphon pisum, a mechanism involved in virus transmission. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 2:259-72. [PMID: 20482656 DOI: 10.1111/j.1365-2583.2009.00956.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Aphids are the primary vectors of plant viruses. Transmission can occur via attachment to the cuticle lining of the insect (non-circulative transmission) or after internalization in the insect cells with or without replication (circulative transmission). In this paper, we have focused on the circulative and non-propagative mode during which virions enter the cell following receptor-mediated endocytosis, are transported across the cell in vesicles and released by exocytosis without replicating. The correct uptake, transport and delivery of the vesicles cargo relies on the participation of proteins from different families which have been identified in the Acyrthosiphon pisum genome. Assemblage of this annotated dataset provides a useful basis to improve our understanding of the molecules and mechanisms involved in virus transmission by A. pisum and other aphid species.
Collapse
Affiliation(s)
- C Tamborindeguy
- USDA-ARS, Robert W. Holley Center for Agriculture and Health Department of Plant Pathology and Plant-Microbe Biology, Cornell University, USA.
| | | | | | | | | | | | | |
Collapse
|
56
|
Brault V, Tanguy S, Reinbold C, Le Trionnaire G, Arneodo J, Jaubert-Possamai S, Guernec G, Tagu D. Transcriptomic analysis of intestinal genes following acquisition of pea enation mosaic virus by the pea aphid Acyrthosiphon pisum. J Gen Virol 2009; 91:802-8. [DOI: 10.1099/vir.0.012856-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
57
|
Caciagli P, Medina Piles V, Marian D, Vecchiati M, Masenga V, Mason G, Falcioni T, Noris E. Virion stability is important for the circulative transmission of tomato yellow leaf curl sardinia virus by Bemisia tabaci, but virion access to salivary glands does not guarantee transmissibility. J Virol 2009; 83:5784-95. [PMID: 19321611 PMCID: PMC2681986 DOI: 10.1128/jvi.02267-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 03/18/2009] [Indexed: 11/20/2022] Open
Abstract
The capsid protein (CP) of the monopartite begomovirus Tomato yellow leaf curl Sardinia virus (TYLCSV), family Geminiviridae, is indispensable for plant infection and vector transmission. A region between amino acids 129 and 152 is critical for virion assembly and insect transmissibility. Two previously described mutants, one with a double Q129P Q134H mutation (PNHD) and another with a further D152E change (PNHE), were found nontransmissible (NT). Another NT mutant with a single N130D change (QDQD) was retrieved from a new mutational analysis. In this study, these three NT mutants and the wild-type (wt) virus were compared in their relationships with the whitefly vector Bemisia tabaci and the nonvector Trialeurodes vaporariorum. Retention kinetics of NT mutants were analyzed by quantitative dot blot hybridization in whiteflies fed on infected plants. The QDQD mutant, whose virions appeared nongeminate following purification, was hardly detectable in either whitefly species at any sampling time. The PNHD mutant was acquired and circulated in both whitefly species for up to 10 days, like the wt virus, while PNHE circulated in B. tabaci only. Using immunogold labeling, both PNHD and PNHE CPs were detected in B. tabaci salivary glands (SGs) like the wt virus, while no labeling was found in any whitefly tissue with the QDQD mutant. Significant inhibition of transmission of the wt virus was observed after prior feeding of the insects on plants infected with the PNHE mutant, but not on plants infected with the other mutants. Virion stability and ability to cross the SG barrier are necessary for TYLCSV transmission, but interactions with molecular components inside the SGs are also critical for transmissibility.
Collapse
Affiliation(s)
- Piero Caciagli
- Istituto di Virologia Vegetale, Consiglio Nazionale delle Ricerche, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
58
|
The C terminus of the polerovirus p5 readthrough domain limits virus infection to the phloem. J Virol 2009; 83:5419-29. [PMID: 19297484 DOI: 10.1128/jvi.02312-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poleroviruses are restricted to vascular phloem tissues from which they are transmitted by their aphid vectors and are not transmissible mechanically. Phloem limitation has been attributed to the absence of virus proteins either facilitating movement or counteracting plant defense. The polerovirus capsid is composed of two forms of coat protein, the major P3 protein and the minor P3/P5 protein, a translational readthrough of P3. P3/P5 is required for insect transmission and acts in trans to facilitate long-distance virus movement in phloem tissue. Specific potato leafroll virus mutants lacking part or all of the P5 domain moved into and infected nonvascular mesophyll tissue when the source-sink relationship of the plant (Solanum sarrachoides) was altered by pruning, with the progeny virus now being transmissible mechanically. However, in a period of months, a phloem-specific distribution of the virus was reestablished in the absence of aphid transmission. Virus from the new phloem-limited infection showed compensatory mutations that would be expected to restore the production of full-length P3/P5 as well as the loss of mechanical transmissibility. The data support our hypothesis that phloem limitation in poleroviruses presumably does not result from a deficiency in the repertoire of virus genes but rather results from P3/P5 accumulation under selection in the infected plant, with the colateral effect of facilitating transmission by phloem-feeding aphid vectors.
Collapse
|
59
|
Liu S, Sivakumar S, Wang Z, Bonning BC, Miller WA. The readthrough domain of pea enation mosaic virus coat protein is not essential for virus stability in the hemolymph of the pea aphid. Arch Virol 2009; 154:469-79. [PMID: 19240978 DOI: 10.1007/s00705-009-0327-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
Abstract
A fraction of the coat protein (CP) subunits in virions of members of the family Luteoviridae contain a C-terminal extension called the readthrough domain (RTD). The RTD is necessary for persistent aphid transmission, but its role is unknown. It has been reported to be required for virion stability in the hemolymph. Here, we tested whether this was the case for pea enation mosaic virus (PEMV) virions in the pea aphid (Acyrthosiphon pisum) using RNA1Delta, a natural deletion mutant lacking the middle portion of the RTD ORF, and CPDeltaRTD, in which the entire RTD ORF was deleted. In infected plants, RNA1Delta virions were as abundant and stable as wild-type (WT) virions, while CPDeltaRTD virions were unstable. No RTD of any size was translated from artificial subgenomic mRNA of CPDeltaRTD or RNA1Delta in vitro. Thus, only the major CP was present in the mutant virions. Using real-time RT-PCR to detect virion RNA, no significant differences in the concentration or stability of WT and RNA1Delta virions were detected in the aphid hemolymph at much longer times than are necessary for virus transmission. Thus, the RTD is not necessary for stability of PEMV RNA in the aphid hemolymph, and it must play another role in aphid transmission.
Collapse
Affiliation(s)
- Sijun Liu
- Department of Entomology, 418 Science II, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
60
|
Ammar ED, Gargani D, Lett JM, Peterschmitt M. Large accumulations of maize streak virus in the filter chamber and midgut cells of the leafhopper vector Cicadulina mbila. Arch Virol 2009; 154:255-62. [DOI: 10.1007/s00705-008-0308-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 12/11/2008] [Indexed: 11/29/2022]
|
61
|
Peter KA, Liang D, Palukaitis P, Gray SM. Small deletions in the potato leafroll virus readthrough protein affect particle morphology, aphid transmission, virus movement and accumulation. J Gen Virol 2008; 89:2037-2045. [PMID: 18632976 DOI: 10.1099/vir.0.83625-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Potato leafroll virus (PLRV) capsid comprises 180 coat protein (CP) subunits, with some percentage containing a readthrough domain (RTD) extension located on the particle's surface. The RTD N terminus is highly conserved in luteovirids and this study sought to identify biologically active sites within this region of the PLRV RTD. Fourteen three-amino-acid-deletion mutants were generated from a cloned infectious PLRV cDNA and delivered to plants by Agrobacterium inoculations. All mutant viruses accumulated locally in infiltrated tissues and expressed the readthrough protein (RTP) containing the CP and RTD sequences in plant tissues; however, when purified, only three mutant viruses incorporated the RTP into the virion. None of the mutant viruses were aphid transmissible, but the viruses persisted in aphids for a period sufficient to allow for virus transmission. Several mutant viruses were examined further for systemic infection in four host species. All mutant viruses, regardless of RTP incorporation, moved systemically in each host, although they accumulated at different rates in systemically infected tissues. The biological properties of the RTP are sensitive to modifications in both the RTD conserved and variable regions.
Collapse
Affiliation(s)
- Kari A Peter
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
- USDA/ARS, Biological Integrated Pest Management Research Unit, Ithaca, NY 14853, USA
| | - Delin Liang
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
- USDA/ARS, Biological Integrated Pest Management Research Unit, Ithaca, NY 14853, USA
| | - Peter Palukaitis
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Stewart M Gray
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
- USDA/ARS, Biological Integrated Pest Management Research Unit, Ithaca, NY 14853, USA
| |
Collapse
|
62
|
Abstract
Most phytoviruses rely on vectors for their spread and survival. Although a great variety of virus vectors have been described, there are relatively few different mechanisms mediating virus transmission by vectors: virions can either be internalized into vector cells where replication may or may not take place or they can simply be adsorbed on the vector's surface or cuticle. Virus transmission by vectors requires tight associations between viral proteins, generally capsid proteins, and vector compounds, usually referred to as receptors. This review will focus on the viral determinants involved in virus transmission. Only the best-known models for which molecular data are available are described.
Collapse
Affiliation(s)
- Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, Strasbourg, 67084, France
| | | |
Collapse
|
63
|
Yang X, Thannhauser TW, Burrows M, Cox-Foster D, Gildow FE, Gray SM. Coupling genetics and proteomics to identify aphid proteins associated with vector-specific transmission of polerovirus (luteoviridae). J Virol 2008; 82:291-9. [PMID: 17959668 PMCID: PMC2224398 DOI: 10.1128/jvi.01736-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 10/15/2007] [Indexed: 11/20/2022] Open
Abstract
Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F(2) progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F(2) genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission.
Collapse
Affiliation(s)
- Xiaolong Yang
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|