51
|
Wang Y, Liu Z, Bian X, Zhao C, Zhang X, Liu X, Wang N. Function and regulation of ubiquitin-like SUMO system in heart. Front Cell Dev Biol 2023; 11:1294717. [PMID: 38033852 PMCID: PMC10687153 DOI: 10.3389/fcell.2023.1294717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
The small ubiquitin-related modifier (SUMOylation) system is a conserved, reversible, post-translational protein modification pathway covalently attached to the lysine residues of proteins in eukaryotic cells, and SUMOylation is catalyzed by SUMO-specific activating enzyme (E1), binding enzyme (E2) and ligase (E3). Sentrin-specific proteases (SENPs) can cleave the isopeptide bond of a SUMO conjugate and catalyze the deSUMOylation reaction. SUMOylation can regulate the activity of proteins in many important cellular processes, including transcriptional regulation, cell cycle progression, signal transduction, DNA damage repair and protein stability. Biological experiments in vivo and in vitro have confirmed the key role of the SUMO conjugation/deconjugation system in energy metabolism, Ca2+ cycle homeostasis and protein quality control in cardiomyocytes. In this review, we summarized the research progress of the SUMO conjugation/deconjugation system and SUMOylation-mediated cardiac actions based on related studies published in recent years, and highlighted the further research areas to clarify the role of the SUMO system in the heart by using emerging technologies.
Collapse
Affiliation(s)
- Ying Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Zhihao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Chenxu Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xin Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
52
|
Rungratanawanich W, Ballway JW, Wang X, Won KJ, Hardwick JP, Song BJ. Post-translational modifications of histone and non-histone proteins in epigenetic regulation and translational applications in alcohol-associated liver disease: Challenges and research opportunities. Pharmacol Ther 2023; 251:108547. [PMID: 37838219 DOI: 10.1016/j.pharmthera.2023.108547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Epigenetic regulation is a process that takes place through adaptive cellular pathways influenced by environmental factors and metabolic changes to modulate gene activity with heritable phenotypic variations without altering the DNA sequences of many target genes. Epigenetic regulation can be facilitated by diverse mechanisms: many different types of post-translational modifications (PTMs) of histone and non-histone nuclear proteins, DNA methylation, altered levels of noncoding RNAs, incorporation of histone variants, nucleosomal positioning, chromatin remodeling, etc. These factors modulate chromatin structure and stability with or without the involvement of metabolic products, depending on the cellular context of target cells or environmental stimuli, such as intake of alcohol (ethanol) or Western-style high-fat diets. Alterations of epigenetics have been actively studied, since they are frequently associated with multiple disease states. Consequently, explorations of epigenetic regulation have recently shed light on the pathogenesis and progression of alcohol-associated disorders. In this review, we highlight the roles of various types of PTMs, including less-characterized modifications of nuclear histone and non-histone proteins, in the epigenetic regulation of alcohol-associated liver disease (ALD) and other disorders. We also describe challenges in characterizing specific PTMs and suggest future opportunities for basic and translational research to prevent or treat ALD and many other disease states.
Collapse
Affiliation(s)
- Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Jacob W Ballway
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kyoung-Jae Won
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, 90069, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
53
|
Kinjo T, Ebisawa S, Nokubo T, Hashimoto M, Yamada T, Oshio M, Nakamura R, Uno K, Kuramoto N. Post-translational modifications of the apelin receptor regulate its functional expression. AIMS Neurosci 2023; 10:282-299. [PMID: 38188005 PMCID: PMC10767067 DOI: 10.3934/neuroscience.2023022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 01/09/2024] Open
Abstract
Post-translational modifications (PTMs) are protein modifications that occur after protein biosynthesis, playing a crucial role in regulating protein function. They are involved in the functional expression of G-protein-coupled receptors (GPCRs), as well as intracellular and secretory protein signaling. Here, we aimed to investigate the PTMs of the apelin receptor (APLNR), a GPCR and their potential influence on the receptor's function. In an in vitro experiment using HEK cells, we only observed glycosylation as a PTM of the APLNR and ineffective receptor signaling by the agonist, (Pyr1)-apelin-13. In contrast, when analyzing mouse spinal cord, we detected glycosylation and other PTMs, excluding isopeptidation. This suggests that additional PTMs are involved in the functional expression of the APLNR in vitro. In summary, these findings suggest that the APLNR in vivo requires multiple PTMs for functional expression. To comprehensively understand the pharmacological effects of the APLNR, it is essential to establish an in vitro system that adequately replicates the receptor's PTM profile. Nonetheless, it is crucial to overcome the challenge of heat-sensitive proteolysis in APLNR studies. By elucidating the regulation of PTMs, further research has the potential to advance the analysis and pharmacological studies of both the apelin/APLNR system and GPCR signal modulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nobuyuki Kuramoto
- Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
54
|
Li J, Krause GJ, Gui Q, Kaushik S, Rona G, Zhang Q, Liang FX, Dhabaria A, Anerillas C, Martindale JL, Vasilyev N, Askenazi M, Ueberheide B, Nudler E, Gorospe M, Cuervo AM, Pagano M. A noncanonical function of SKP1 regulates the switch between autophagy and unconventional secretion. SCIENCE ADVANCES 2023; 9:eadh1134. [PMID: 37831778 PMCID: PMC10575587 DOI: 10.1126/sciadv.adh1134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Intracellular degradation of proteins and organelles by the autophagy-lysosome system is essential for cellular quality control and energy homeostasis. Besides degradation, endolysosomal organelles can fuse with the plasma membrane and contribute to unconventional secretion. Here, we identify a function for mammalian SKP1 in endolysosomes that is independent of its established role as an essential component of the family of SCF/CRL1 ubiquitin ligases. We found that, under nutrient-poor conditions, SKP1 is phosphorylated on Thr131, allowing its interaction with V1 subunits of the vacuolar ATPase (V-ATPase). This event, in turn, promotes V-ATPase assembly to acidify late endosomes and enhance endolysosomal degradation. Under nutrient-rich conditions, SUMOylation of phosphorylated SKP1 allows its binding to and dephosphorylation by the PPM1B phosphatase. Dephosphorylated SKP1 interacts with SEC22B to promote unconventional secretion of the content of less acidified hybrid endosomal/autophagic compartments. Collectively, our study implicates SKP1 phosphorylation as a switch between autophagy and unconventional secretion in a manner dependent on cellular nutrient status.
Collapse
Affiliation(s)
- Jie Li
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gregory J. Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qi Gui
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Avantika Dhabaria
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Biomedical Hosting LLC, 33 Lewis Avenue, Arlington, MA 02474, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
55
|
Lin X, Gao Y, Lei F. An application of topological data analysis in predicting sumoylation sites. PeerJ 2023; 11:e16204. [PMID: 37846308 PMCID: PMC10576966 DOI: 10.7717/peerj.16204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023] Open
Abstract
Sumoylation is a reversible post-translational modification that regulates certain significant biochemical functions in proteins. The protein alterations caused by sumoylation are associated with the incidence of some human diseases. Therefore, identifying the sites of sumoylation in proteins may provide a direction for mechanistic research and drug development. Here, we propose a new computational approach for identifying sumoylation sites using an encoding method based on topological data analysis. The features of our model captured the key physical and biological properties of proteins at multiple scales. In a 10-fold cross validation, the outcomes of our model showed 96.45% of sensitivity (Sn), 94.65% of accuracy (Acc), 0.8946 of Matthew's correlation coefficient (MCC), and 0.99 of area under curve (AUC). The proposed predictor with only topological features achieves the best MCC and AUC in comparison to the other released methods. Our results suggest that topological information is an additional parameter that can assist in the prediction of sumoylation sites and provide a novel perspective for further research in protein sumoylation.
Collapse
Affiliation(s)
- Xiaoxi Lin
- School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, China
| | - Yaru Gao
- School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, China
| | - Fengchun Lei
- School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
56
|
Arora S, Roy DS, Maiti S, Ainavarapu SRK. Phase Separation and Aggregation of a Globular Folded Protein Small Ubiquitin-like Modifier 1 (SUMO1). J Phys Chem Lett 2023; 14:9060-9068. [PMID: 37782899 DOI: 10.1021/acs.jpclett.3c02092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Liquid-liquid phase separation (LLPS) plays a crucial role in cellular organization, primarily driven by intrinsically disordered proteins (IDPs) leading to the formation of biomolecular condensates. A folded protein SUMO that post-translationally modifies cellular proteins has recently emerged as a regulator of LLPS. Given its compact structure and limited flexibility, the precise role of SUMO in condensate formation remains to be investigated. Here, we show the rapid phase separation of SUMO1 into micrometer-sized liquid-like condensates in inert crowders under physiological conditions. Subsequent time-dependent conformational changes and aggregation are probed by label-free methods (tryptophan fluorescence and Raman spectroscopy). Remarkably, experiments on a SUMO1 variant lacking the N-terminal disordered region further corroborate the role of its structured part in phase transitions. Our findings highlight the potential of folded proteins to engage in LLPS and emphasize further investigation into the influence of the SUMO tag on IDPs associated with membrane-less assemblies in cells.
Collapse
Affiliation(s)
- Simran Arora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Debsankar Saha Roy
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
57
|
Lizotte F, Rousseau M, Denhez B, Lévesque D, Guay A, Liu H, Moreau J, Higgins S, Sabbagh R, Susztak K, Boisvert FM, Côté AM, Geraldes P. Deletion of protein tyrosine phosphatase SHP-1 restores SUMOylation of podocin and reverses the progression of diabetic kidney disease. Kidney Int 2023; 104:787-802. [PMID: 37507049 DOI: 10.1016/j.kint.2023.06.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/03/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Both clinical and experimental data suggest that podocyte injury is involved in the onset and progression of diabetic kidney disease (DKD). Although the mechanisms underlying the development of podocyte loss are not completely understood, critical structural proteins such as podocin play a major role in podocyte survival and function. We have reported that the protein tyrosine phosphatase SHP-1 expression increased in podocytes of diabetic mice and glomeruli of patients with diabetes. However, the in vivo contribution of SHP-1 in podocytes is unknown. Conditional podocyte-specific SHP-1-deficient mice (Podo-SHP-1-/-) were generated to evaluate the impact of SHP-1 deletion at four weeks of age (early) prior to the onset of diabetes and after 20 weeks (late) of diabetes (DM; Ins2+/C96Y) on kidney function (albuminuria and glomerular filtration rate) and kidney pathology. Ablation of the SHP-1 gene specifically in podocytes prevented and even reversed the elevated albumin/creatinine ratio, glomerular filtration rate progression, mesangial cell expansion, glomerular hypertrophy, glomerular basement membrane thickening and podocyte foot process effacement induced by diabetes. Moreover, podocyte-specific deletion of SHP-1 at an early and late stage prevented diabetes-induced expression of collagen IV, fibronectin, transforming growth factor-β, transforming protein RhoA, and serine/threonine kinase ROCK1, whereas it restored nephrin, podocin and cation channel TRPC6 expression. Mass spectrometry analysis revealed that SHP-1 reduced SUMO2 post-translational modification of podocin while podocyte-specific deletion of SHP-1 preserved slit diaphragm protein complexes in the diabetic context. Thus, our data uncovered a new role of SHP-1 in the regulation of cytoskeleton dynamics and slit diaphragm protein expression/stability, and its inhibition preserved podocyte function preventing DKD progression.
Collapse
Affiliation(s)
- Farah Lizotte
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marina Rousseau
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Benoit Denhez
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Andréanne Guay
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - HongBo Liu
- Renal, Electrolyte, and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julie Moreau
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sarah Higgins
- Division of Nephrology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Robert Sabbagh
- Department of Surgery, Université de Sherbrooke, Québec, Canada
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Anne Marie Côté
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada; Division of Nephrology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pedro Geraldes
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada; Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
58
|
Chen J, Wang Y, Wang R, Yuan R, Chu GC, Li YM. Chemical synthesis of on demand-activated SUMO-based probe by a photocaged glycine-assisted strategy. Bioorg Med Chem Lett 2023; 94:129460. [PMID: 37640164 DOI: 10.1016/j.bmcl.2023.129460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
The transiently-activated SUMO probes are conducive to understand the dynamic control of SENPs activity. Here, we developed a photocaged glycine-assisted strategy for the construction of on demand-activated SUMO-ABPs. The light-sensitive groups installed at G92 and G64 backbone of SUMO-2 can temporarily block probes activity and hamper aspartimide formation, respectively, which enabled the efficient synthesis of inert SUMO-2 propargylamide (PA). The probe could be activated to capture SENPs upon photo-irradiation not only in vitro but also in intact cells, providing opportunities to further perform intracellular time-resolved proteome-wide profiling of SUMO-related enzymes.
Collapse
Affiliation(s)
- Jingnan Chen
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, China
| | - Yu Wang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, China.
| | - Rongtian Wang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, China
| | - Rujing Yuan
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, China
| | - Guo-Chao Chu
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, China.
| | - Yi-Ming Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, China.
| |
Collapse
|
59
|
Godneeva B, Ninova M, Fejes Tóth K, Aravin AA. SUMOylation of Bonus, the Drosophila homolog of Transcription Intermediary Factor 1, safeguards germline identity by recruiting repressive chromatin complexes to silence tissue-specific genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.14.536936. [PMID: 37645991 PMCID: PMC10461926 DOI: 10.1101/2023.04.14.536936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The conserved family of Transcription Intermediary Factors (TIF1) proteins consists of key transcriptional regulators that control transcription of target genes by modulating chromatin state. Unlike mammals that have four TIF1 members, Drosophila only encodes one member of the family, Bonus. Bonus has been implicated in embryonic development and organogenesis and shown to regulate several signaling pathways, however, its targets and mechanism of action remained poorly understood. We found that knockdown of Bonus in early oogenesis results in severe defects in ovarian development and in ectopic expression of genes that are normally repressed in the germline, demonstrating its essential function in the ovary. Recruitment of Bonus to chromatin leads to silencing associated with accumulation of the repressive H3K9me3 mark. We show that Bonus associates with the histone methyltransferase SetDB1 and the chromatin remodeler NuRD and depletion of either component releases Bonus-induced repression. We further established that Bonus is SUMOylated at a single site at its N-terminus that is conserved among insects and this modification is indispensable for Bonus's repressive activity. SUMOylation influences Bonus's subnuclear localization, its association with chromatin and interaction with SetDB1. Finally, we showed that Bonus SUMOylation is mediated by the SUMO E3-ligase Su(var)2-10, revealing that although SUMOylation of TIF1 proteins is conserved between insects and mammals, both the mechanism and specific site of modification is different in the two taxa. Together, our work identified Bonus as a regulator of tissue-specific gene expression and revealed the importance of SUMOylation as a regulator of complex formation in the context of transcriptional repression.
Collapse
Affiliation(s)
- Baira Godneeva
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Maria Ninova
- University of California, Riverside, Riverside, CA 92521, USA
| | - Katalin Fejes Tóth
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA
| | - Alexei A. Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA
| |
Collapse
|
60
|
Zhao YQ, Jin HR, Kim D, Jung SH, Liu S, Wan J, Lo HY, Fu XQ, Wang Q, Hao C, Bellail AC. SUMO1 degrader induces ER stress and ROS accumulation through deSUMOylation of TCF4 and inhibition of its transcription of StarD7 in colon cancer. Mol Carcinog 2023; 62:1249-1262. [PMID: 37191369 PMCID: PMC10524896 DOI: 10.1002/mc.23560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/09/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
Small molecule degraders of small ubiquitin-related modifier 1 (SUMO1) induce SUMO1 degradation in colon cancer cells and inhibits the cancer cell growth; however, it is unclear how SUMO1 degradation leads to the anticancer activity of the degraders. Genome-wide CRISPR-Cas9 knockout screen has identified StAR-related lipid transfer domain containing 7 (StarD7) as a critical gene for the degrader's anticancer activity. Here, we show that both StarD7 mRNA and protein are overexpressed in human colon cancer and its knockout significantly reduces colon cancer cell growth and xenograft progression. The treatment with the SUMO1 degrader lead compound HB007 reduces StarD7 mRNA and protein levels and increases endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production in colon cancer cells and three-dimensional (3D) organoids. The study further provides a novel mechanism of the compound anticancer activity that SUMO1 degrader-induced decrease of StarD7 occur through degradation of SUMO1, deSUMOylation and degradation of T cell-specific transcription 4 (TCF4) and thereby inhibition of its transcription of StarD7 in colon cancer cells, 3D organoids and patient-derived xenografts (PDX).
Collapse
Affiliation(s)
- Yin Quan Zhao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
- School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hong Ri Jin
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Daeho Kim
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sung Han Jung
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ho-Yin Lo
- Synovel Laboratory LLC, Danbury, CT 06811, USA
| | - Xue Qi Fu
- School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Quan Wang
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Chunhai Hao
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anita C. Bellail
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- HB Therapeutics Inc. Indianapolis, IN 46202, USA
| |
Collapse
|
61
|
England SJ, Woodard AK, Mujcic A, Kowalchuk A, de Jager S, Hilinski WC, Juárez-Morales JL, Smith ME, Grieb G, Banerjee S, Lewis KE. Molecular Analyses of V0v Spinal Interneurons and Identification of Transcriptional Regulators Downstream of Evx1 and Evx2 in these Cells. RESEARCH SQUARE 2023:rs.3.rs-3290462. [PMID: 37693471 PMCID: PMC10491344 DOI: 10.21203/rs.3.rs-3290462/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background V0v spinal interneurons are highly conserved, glutamatergic, commissural neurons that function in locomotor circuits. We have previously shown that Evx1 and Evx2 are required to specify the neurotransmitter phenotype of these cells. However, we still know very little about the gene regulatory networks that act downstream of these transcription factors in V0v cells. Methods To identify candidate members of V0v gene regulatory networks, we FAC-sorted WT and evx1;evx2 double mutant zebrafish V0v spinal interneurons and expression-profiled them using microarrays and single cell RNA-seq. We also used in situ hybridization to compare expression of a subset of candidate genes in evx1;evx2 double mutants and wild-type siblings. Results Our data reveal two molecularly distinct subtypes of V0v spinal interneurons at 48 h and suggest that, by this stage of development, evx1;evx2 double mutant cells transfate into either inhibitory spinal interneurons, or motoneurons. Our results also identify 25 transcriptional regulator genes that require Evx1/2 for their expression in V0v interneurons, plus a further 11 transcriptional regulator genes that are repressed in V0v interneurons by Evx1/2. Two of the latter genes are hmx2 and hmx3a. Intriguingly, we show that Hmx2/3a, repress dI2 interneuronal expression of skor1a and nefma, two genes that require Evx1/2 for their expression in V0v interneurons. This suggests that Evx1/2 might regulate skor1a and nefma expression in V0v interneurons by repressing Hmx2/3a expression. Conclusions This study identifies two molecularly distinct subsets of V0v spinal interneurons, as well as multiple transcriptional regulators that are strong candidates for acting downstream of Evx1/2 to specify the essential functional characteristics of these cells. Our data further suggest that in the absence of both Evx1 and Evx2, V0v spinal interneurons initially change their neurotransmitter phenotypes from excitatory to inhibitory and then, later, start to express markers of distinct types of inhibitory spinal interneurons, or motoneurons. Taken together, our findings significantly increase our knowledge of V0v and spinal development and move us closer towards the essential goal of identifying the complete gene regulatory networks that specify this crucial cell type.
Collapse
|
62
|
Zhao Y, Zhou H, Zhao Y, Liang Z, Gong X, Yu J, Huang T, Yang C, Wu M, Xiao Y, Yang Y, Liu W, Wang X, Shu X, Bao J. BACE1 SUMOylation deregulates phosphorylation and ubiquitination in Alzheimer's disease pathology. J Neurochem 2023; 166:318-327. [PMID: 37286480 DOI: 10.1111/jnc.15870] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023]
Abstract
BACE1 is essential for the generation of amyloid-β (Aβ) that likely initiates the toxicity in Alzheimer's disease (AD). BACE1 activity is mainly regulated by post-translational modifications, but the relationship between these modifications is not fully characterized. Here, we studied the effects of BACE1 SUMOylation on its phosphorylation and ubiquitination. We demonstrate that SUMOylation of BACE1 inhibits its phosphorylation at S498 and its ubiquitination in vitro. Conversely, BACE1 phosphorylation at S498 suppresses its SUMOylation, which results in promoting BACE1 degradation in vitro. Furthermore, an increase in BACE1 SUMOylation is associated with the progression of AD pathology, while its phosphorylation and ubiquitination are decreased in an AD mouse model. Our findings suggest that BACE1 SUMOylation reciprocally influences its phosphorylation and competes against its ubiquitination, which might provide a new insight into the regulations of BACE1 activity and Aβ accumulation.
Collapse
Affiliation(s)
- Yanna Zhao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Hongyan Zhou
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Yan Zhao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Zhen Liang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xiaokang Gong
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Jing Yu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Tiantian Huang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Chaoqin Yang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Mengjuan Wu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Yifan Xiao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Youhua Yang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Physiology, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Xiaochuan Wang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiji Shu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Jian Bao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
63
|
Goffinont S, Coste F, Prieu-Serandon P, Mance L, Gaudon V, Garnier N, Castaing B, Suskiewicz MJ. Structural insights into the regulation of the human E2∼SUMO conjugate through analysis of its stable mimetic. J Biol Chem 2023; 299:104870. [PMID: 37247759 PMCID: PMC10404613 DOI: 10.1016/j.jbc.2023.104870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Protein SUMOylation is a ubiquitylation-like post-translational modification (PTM) that is synthesized through an enzymatic cascade involving an E1 (SAE1:SAE2), an E2 (UBC9), and various E3 enzymes. In the final step of this process, the small ubiquitin-like modifier (SUMO) is transferred from the UBC9∼SUMO thioester onto a lysine residue of a protein substrate. This reaction can be accelerated by an E3 ligase. As the UBC9∼SUMO thioester is chemically unstable, a stable mimetic is desirable for structural studies of UBC9∼SUMO alone and in complex with a substrate and/or an E3 ligase. Recently, a strategy for generating a mimetic of the yeast E2∼SUMO thioester by mutating alanine 129 of Ubc9 to a lysine has been reported. Here, we reproduce and further investigate this approach using the human SUMOylation system and characterize the resulting mimetic of human UBC9∼SUMO1. We show that substituting lysine for alanine 129, but not for other active-site UBC9 residues, results in a UBC9 variant that is efficiently auto-SUMOylated. The auto-modification is dependent on cysteine 93 of UBC9, suggesting that it proceeds via this residue, through the same pathway as that for SUMOylation of substrates. The process is also partially dependent on aspartate 127 of UBC9 and accelerated by high pH, highlighting the importance of the substrate lysine protonation state for efficient SUMOylation. Finally, we present the crystal structure of the UBC9-SUMO1 molecule, which reveals the mimetic in an open conformation and its polymerization via the noncovalent SUMO-binding site on UBC9. Similar interactions could regulate UBC9∼SUMO in some cellular contexts.
Collapse
Affiliation(s)
| | - Franck Coste
- Centre de Biophysique Moléculaire (CBM), CNRS UPR, Orléans, France
| | | | - Lucija Mance
- Centre de Biophysique Moléculaire (CBM), CNRS UPR, Orléans, France
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire (CBM), CNRS UPR, Orléans, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire (CBM), CNRS UPR, Orléans, France
| | | | | |
Collapse
|
64
|
Wu X, Li JH, Xu L, Li YX, Zhu XX, Wang XY, Wu X, Zhao W, Ni X, Yin XY. SUMO specific peptidase 3 halts pancreatic ductal adenocarcinoma metastasis via deSUMOylating DKC1. Cell Death Differ 2023:10.1038/s41418-023-01175-4. [PMID: 37188742 DOI: 10.1038/s41418-023-01175-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
In the past few decades, advances in the outcomes of patients suffering from pancreatic ductal adenocarcinoma (PDAC) have lagged behind these gained in the treatment of many other malignancies. Although the pivotal role of the SUMO pathway in PDAC has been illustrated, the underlying molecule drivers have yet to be fully elucidated. In the present study, we identified SENP3 as a potential suppressor of PDAC progression through an in vivo metastatic model. Further studies revealed that SENP3 inhibited PDAC invasion in a SUMO system dependent fashion. Mechanistically, SENP3 interacted with DKC1 and, as such, catalyzed the deSUMOylation of DKC1, which accepted SUMO3 modifiers at three lysine residues. SENP3-mediated deSUMOylation caused DKC1 instability and disruption of the interaction between snoRNP proteins, which contributed to the impaired migration ability of PDAC. Indeed, overexpression of DKC1 abated the anti-metastasis effect of SENP3, and DKC1 was elevated in PDAC specimens and associated with a poor prognosis in PDAC patients. Collectively, our findings shed light on the essential role of SENP3/DKC1 axis in the progression of PDAC.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jian-Hui Li
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Long Xu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ya-Xiong Li
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiao-Xu Zhu
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xi-Yu Wang
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xingmei Wu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Xuhao Ni
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
65
|
Liu Z, Bian N, Guo J, Zhao S, Khan A, Chu B, Ma Z, Niu C, Ma F, Ma M, Guan Q, Li X. Interfering small ubiquitin modifiers (SUMO) improves the thermotolerance of apple by facilitating the activity of MdDREB2A. STRESS BIOLOGY 2023; 3:10. [PMID: 37676624 PMCID: PMC10442018 DOI: 10.1007/s44154-023-00089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/14/2023] [Indexed: 09/08/2023]
Abstract
Heat stress, which is caused by global warming, threatens crops yield and quality across the world. As a kind of post-translation modification, SUMOylation involves in plants heat stress response with a rapid and wide pattern. Here, we identified small ubiquitin modifiers (SUMO), which affect drought tolerance in apple, also participated in thermotolerance. Six isoforms of SUMOs located on six chromosomes in apple genome, and all the SUMOs were up-regulated in response to heat stress condition. The MdSUMO2 RNAi transgenic apple plants exhibited higher survival rate, lower ion leakage, higher catalase (CAT) activity, and Malondialdehyde (MDA) content under heat stress. MdDREB2A, the substrate of MdSUMO2 in apple, was accumulated in MdSUMO2 RNAi transgenic plants than the wild type GL-3 at the protein level in response to heat stress treatment. Further, the inhibited SUMOylation level of MdDREB2A in MdSUMO2 RNAi plants might repress its ubiquitination, too. The accumulated MdDREB2A in MdSUMO2 RNAi plants further induced heat-responsive genes expression to strengthen plants thermotolerance, including MdHSFA3, MdHSP26.5, MdHSP18.2, MdHSP70, MdCYP18-1 and MdTLP1. In summary, these findings illustrate that interfering small ubiquitin modifiers (SUMO) in apple improves plants thermotolerance, partly by facilitating the stability and activity of MdDREB2A.
Collapse
Affiliation(s)
- Zeyuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ningning Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianyan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur, 22620, Pakistan
| | - Baohua Chu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ziqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming Ma
- Gansu Academy of Agricultural Sciences, Lanzhou, 730000, Gansu, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
66
|
Panigrahi R, Krishnan R, Singh JS, Padinhateeri R, Kumar A. SUMO1 hinders α-Synuclein fibrillation by inducing structural compaction. Protein Sci 2023; 32:e4632. [PMID: 36974517 PMCID: PMC10108436 DOI: 10.1002/pro.4632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Small Ubiquitin-like Modifier 1 (SUMO1) is an essential protein for many cellular functions, including regulation, signaling, etc., achieved by a process known as SUMOylation, which involves covalent attachment of SUMO1 to target proteins. SUMO1 also regulates the function of several proteins via non-covalent interactions involving the hydrophobic patch in the target protein identified as SUMO Binding or Interacting Motif (SBM/SIM). Here, we demonstrate a crucial functional potential of SUMO1 mediated by its non-covalent interactions with α-Synuclein, a protein responsible for many neurodegenerative diseases called α-Synucleinopathies. SUMO1 hinders the fibrillation of α-Synuclein, an intrinsically disordered protein (IDP) that undergoes a transition to β-structures during the fibrillation process. Using a plethora of biophysical techniques, we show that SUMO1 transiently binds to the N-terminus region of α-Synuclein non-covalently and causes structural compaction, which hinders the self-association process and thereby delays the fibrillation process. On the one hand, this study demonstrates an essential functional role of SUMO1 protein concerning neurodegeneration; it also illustrates the commonly stated mechanism that IDPs carry out multiple functions by structural adaptation to suit specific target proteins, on the other. Residue-level details about the SUMO1-α-Synuclein interaction obtained here also serve as a reliable approach for investigating the detailed mechanisms of IDP functions.
Collapse
Affiliation(s)
- Rajlaxmi Panigrahi
- Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) BombayMumbaiMaharashtraIndia
| | - Rakesh Krishnan
- Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) BombayMumbaiMaharashtraIndia
| | - Jai Shankar Singh
- Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) BombayMumbaiMaharashtraIndia
| | - Ranjith Padinhateeri
- Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) BombayMumbaiMaharashtraIndia
| | - Ashutosh Kumar
- Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) BombayMumbaiMaharashtraIndia
| |
Collapse
|
67
|
van den Berg SJW, Jansen LET. SUMO control of centromere homeostasis. Front Cell Dev Biol 2023; 11:1193192. [PMID: 37181753 PMCID: PMC10172491 DOI: 10.3389/fcell.2023.1193192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Centromeres are unique chromosomal loci that form the anchorage point for the mitotic spindle during mitosis and meiosis. Their position and function are specified by a unique chromatin domain featuring the histone H3 variant CENP-A. While typically formed on centromeric satellite arrays, CENP-A nucleosomes are maintained and assembled by a strong self-templated feedback mechanism that can propagate centromeres even at non-canonical sites. Central to the epigenetic chromatin-based transmission of centromeres is the stable inheritance of CENP-A nucleosomes. While long-lived at centromeres, CENP-A can turn over rapidly at non-centromeric sites and even erode from centromeres in non-dividing cells. Recently, SUMO modification of the centromere complex has come to the forefront as a mediator of centromere complex stability, including CENP-A chromatin. We review evidence from different models and discuss the emerging view that limited SUMOylation appears to play a constructive role in centromere complex formation, while polySUMOylation drives complex turnover. The deSUMOylase SENP6/Ulp2 and the proteins segregase p97/Cdc48 constitute the dominant opposing forces that balance CENP-A chromatin stability. This balance may be key to ensuring proper kinetochore strength at the centromere while preventing ectopic centromere formation.
Collapse
Affiliation(s)
- Sebastiaan J. W. van den Berg
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Instituto Gulbenkian de Ciencia, Oeiras, Portugal
| | - Lars E. T. Jansen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
68
|
Chen S, Fu X, Wang R, Li M, Yan X, Yue Z, Chen SW, Dong M, Xu A, Huang S. SUMO and PIAS repress NF-κB activation in a basal chordate. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108754. [PMID: 37088348 DOI: 10.1016/j.fsi.2023.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/09/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Small ubiquitin-like modifier (SUMO) regulates various biological processes, including the MyD88/TICAMs-IRAKs-TRAF6-NF-κB pathway, one of the core immune pathways. However, its functions are inconsistent between invertebrates and vertebrates and have rarely been investigated in lower chordates, including amphioxus and fishes. Here, we investigated the SUMOylation gene system in the amphioxus, a living basal chordate. We found that amphioxus has a SUMOylation system that has a complete set of genes and preserves several ancestral traits. We proceeded to study their molecular functions using the mammal cell lines. Both amphioxus SUMO1 and SUMO2 were shown to be able to attach to NF-κB Rel and to inhibit NF-κB activation by 50-75% in a dose-dependent fashion. The inhibition by SUMO2 could be further enhanced by the addition of the SUMO E2 ligase UBC9. In comparison, while human SUMO2 inhibited RelA, human SUMO1 slightly activated RelA. We also showed that, similar to human PIAS1-4, amphioxus PIAS could serve as a SUMO E3 ligase and promote its self-SUMOylation. This suggests that amphioxus PIAS is functionally compatible in human cells. Moreover, we showed that amphioxus PIAS is not only able to inhibit NF-κB activation induced by MyD88, TICAM-like, TRAF6 and IRAK4 but also able to suppress NF-κB Rel completely in the presence of SUMO1/2 in a dose-insensitive manner. This suggests that PIAS could effectively block Rel by promoting Rel SUMOylation. In comparison, in humans, only PIAS3, but not PIAS1/2/4, has been reported to promote NF-κB SUMOylation. Taken together, the findings from amphioxus, together with those from mammals and other species, not only offer insights into the functional volatility of the animal SUMO system, but also shed light on its evolutionary transitions from amphioxus to fish, and ultimately to humans.
Collapse
Affiliation(s)
- Shenghui Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xianan Fu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Ruihua Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510632, China
| | - Mingshi Li
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xinyu Yan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Zirui Yue
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shang-Wu Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Meiling Dong
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Anlong Xu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Beijing University of Chinese Medicine, Dong San Huang Road, Chao-yang District, Beijing, 100029, China
| | - Shengfeng Huang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
69
|
Liang T, Li G, Lu Y, Hu M, Ma X. The Involvement of Ubiquitination and SUMOylation in Retroviruses Infection and Latency. Viruses 2023; 15:v15040985. [PMID: 37112965 PMCID: PMC10144533 DOI: 10.3390/v15040985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Retroviruses, especially the pathogenic human immunodeficiency virus type 1 (HIV-1), have severely threatened human health for decades. Retroviruses can form stable latent reservoirs via retroviral DNA integration into the host genome, and then be temporarily transcriptional silencing in infected cells, which makes retroviral infection incurable. Although many cellular restriction factors interfere with various steps of the life cycle of retroviruses and the formation of viral latency, viruses can utilize viral proteins or hijack cellular factors to evade intracellular immunity. Many post-translational modifications play key roles in the cross-talking between the cellular and viral proteins, which has greatly determined the fate of retroviral infection. Here, we reviewed recent advances in the regulation of ubiquitination and SUMOylation in the infection and latency of retroviruses, focusing on both host defense- and virus counterattack-related ubiquitination and SUMOylation system. We also summarized the development of ubiquitination- and SUMOylation-targeted anti-retroviral drugs and discussed their therapeutic potential. Manipulating ubiquitination or SUMOylation pathways by targeted drugs could be a promising strategy to achieve a "sterilizing cure" or "functional cure" of retroviral infection.
Collapse
Affiliation(s)
- Taizhen Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Guojie Li
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Yunfei Lu
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Meilin Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Xiancai Ma
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
70
|
Xia J, Jiang S, Dong S, Liao Y, Zhou Y. The Role of Post-Translational Modifications in Regulation of NLRP3 Inflammasome Activation. Int J Mol Sci 2023; 24:ijms24076126. [PMID: 37047097 PMCID: PMC10093848 DOI: 10.3390/ijms24076126] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) induce NLRP3 inflammasome activation, and subsequent formation of active caspase-1 as well as the maturation of interleukin-1β (IL-1β) and gasdermin D (GSDMD), mediating the occurrence of pyroptosis and inflammation. Aberrant NLRP3 inflammasome activation causes a variety of diseases. Therefore, the NLRP3 inflammasome pathway is a target for prevention and treatment of relative diseases. Recent studies have suggested that NLRP3 inflammasome activity is closely associated with its post-translational modifications (PTMs). This review focuses on PTMs of the components of the NLRP3 inflammasome and the resultant effects on regulation of its activity to provide references for the exploration of the mechanisms by which the NLRP3 inflammasome is activated and controlled.
Collapse
Affiliation(s)
- Jing Xia
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Songhong Jiang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Shiqi Dong
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Yonghong Liao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Yang Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| |
Collapse
|
71
|
Pawnikar S, Bhattarai A, Ouyang SX, Vega R, Chen Y, Miao Y. Critical Non-Covalent Binding Intermediate for an Allosteric Covalent Inhibitor of SUMO E1. J Phys Chem Lett 2023; 14:2792-2799. [PMID: 36898086 PMCID: PMC10373441 DOI: 10.1021/acs.jpclett.3c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Post-translational modifications by small ubiquitin-like modifiers (SUMOs) are dysregulated in many types of cancers. The SUMO E1 enzyme has recently been suggested as a new immuno-oncology target. COH000 was recently identified as a highly specific allosteric covalent inhibitor of SUMO E1. However, a marked discrepancy was found between the X-ray structure of the covalent COH000-bound SUMO E1 complex and the available structure-activity relationship (SAR) data of inhibitor analogues due to unresolved noncovalent protein-ligand interactions. Here, we have investigated noncovalent interactions between COH000 and SUMO E1 during inhibitor dissociation through novel Ligand Gaussian accelerated molecular dynamics (LiGaMD) simulations. Our simulations have identified a critical low-energy non-covalent binding intermediate conformation of COH000 that agreed excellently with published and new SAR data of the COH000 analogues, which were otherwise inconsistent with the X-ray structure. Altogether, our biochemical experiments and LiGaMD simulations have uncovered a critical non-covalent binding intermediate during allosteric inhibition of the SUMO E1 complex.
Collapse
Affiliation(s)
- Shristi Pawnikar
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047
| | - Apurba Bhattarai
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047
| | - S. Xiaohu Ouyang
- SUMO Biosciences, Inc., 2265 E Foothill Boulevard, Pasadena, CA 91107, USA
| | - Ramir Vega
- Department of Molecular Medicine, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuan Chen
- Department of Surgery and Moores Cancer Center, UC San Diego Health, 3855 Health Sciences Dr, La Jolla, CA 92037
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047
| |
Collapse
|
72
|
Sun W, Lei X, Lu Q, Wu Q, Ma Q, Huang D, Zhang Y. LncRNA FRMD6-AS1 promotes hepatocellular carcinoma cell migration and stemness by regulating SENP1/HIF-1α axis. Pathol Res Pract 2023; 243:154377. [PMID: 36827886 DOI: 10.1016/j.prp.2023.154377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Long non-cording RNAs (lncRNAs) drive the malignant progression of hepatocellular carcinoma (HCC), a cancer with high mortality rates but the function of FERM Domain Containing 6 antisense RNA 1 (FRMD6-AS1) in HCC has not been fully addressed. Hypoxia-inducible factors (HIFs) are transcription factors relevant to HCC under hypoxia and are regulated by SUMO-specific protease 1 (SENP1) through its deSUMOylation of HIF-1α. The current study investigated the role of FRMD6-AS1 in the regulation of SENP1-mediated deSUMOylation of HIF-1α. METHODS HUH7 and MHCC97H cells were treated with CoCl2 to mimic hypoxia in vitro and lentiviral vector-mediated FRMD6-AS1 overexpressing HCC cells were established. Wound-healing, Transwell, sphere formation assay, Western blotting analysis and animal experiments were performed. Expression of FRMD6-AS1, SENP1 mRNA and HIF-1α mRNA was assessed by RT-qPCR and of HIF-1α and SENP1 protein by Western blot. DeSUMOylation of HIF-1α was detected by immunoprecipitation. RNA immunoprecipitation with SENP1 antibody or IgG was performed to assess endogenous interactions between SENP1 and FRMD6-AS1. RESULTS FRMD6-AS1 was upregulated in HCC tissues and cells and its upregulation indicated poor prognosis for HCC patients. FRMD6-AS1 promoted HCC cells migration and stemness in vitro and also promoted tumor growth in an in vivo mouse xenograft model. Mechanistic studies showed that FRMD6-AS1 regulated the level of HIF-1α protein but not the mRNA and this effect was achieved by binding to SENP1 protein and enhancing its protease activity. Rescue experiments demonstrated the oncogenic role of the FRMD6-AS1/SENP1/ HIF-1α axis in HCC cells. CONCLUSIONS High FRMD6-AS1 expression was associated with poor prognosis of HCC patients. FRMD6-AS1 may have an oncogenic role in HCC via regulation of the SENP1/HIF-1α axis and may be a prognostic biomarker for HCC. Blockade of FRMD6-AS1 may offer a novel therapeutic approach to restrict HCC progression.
Collapse
Affiliation(s)
- Wen Sun
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Xiangxiang Lei
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Qiliang Lu
- Qingdao medical college, Qingdao university, Qingdao 266000, China
| | - Qingsong Wu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Qiancheng Ma
- College of Bioscience Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 8, Yikang Street, Lin'an District, Hangzhou 310014, China.
| | - Yaping Zhang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 8, Yikang Street, Lin'an District, Hangzhou 310014, China.
| |
Collapse
|
73
|
Huang J, Tan X, Liu Y, Jiang K, Luo J. Knockdown of UBE2I inhibits tumorigenesis and enhances chemosensitivity of cholangiocarcinoma via modulating p27kip1 nuclear export. Mol Carcinog 2023; 62:700-715. [PMID: 36825757 DOI: 10.1002/mc.23518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
The asymptomatic nature of cholangiocarcinoma (CCA), particularly during its early stages, in combination with its high aggressiveness and chemoresistance, significantly compromises the efficacy of current therapeutic options, contributing to a dismal prognosis. As a tumor suppressor that inhibits the cell cycle, abnormal cytoplasmic p27kip1 localization is related to chemotherapy resistance and often occurs in various cancers, including CCA. Nevertheless, the underlying mechanism is unclear. SUMOylation, which is involved in regulating subcellular localization and the cell cycle, is a posttranslational modification that regulates p27kip1 activity. Here, we confirmed that UBE2I, as the only key enzyme for SUMOylation, was highly expressed and p27kip1 was downregulated in CCA tissues, which were associated with poor outcomes in CCA. Moreover, UBE2I silencing inhibited CCA cell proliferation, delayed xenograft tumor growth in vivo, and sensitized CCA cells to the chemotherapeutics, which may be due to cell cycle arrest induced by p27kip1 nuclear accumulation. According to the immunoprecipitation result, we found that UBE2I could bind p27kip1, and the binding amount of p27kip1 and SUMO-1 decreased after UBE2I silencing. Moreover, nuclear retention of p27kip1 was induced by UBE2I knockdown and SUMOylation or CRM1 inhibition, further suggesting that UBE2I could cooperate with CRM1 in the nuclear export of p27kip1. These data indicate that UBE2I-mediated SUMOylation is a novel regulatory mechanism that underlies p27kip1 export and controls CCA tumorigenesis, providing a therapeutic option for CCA treatment.
Collapse
Affiliation(s)
- Jie Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiaolong Tan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Kainian Jiang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jian Luo
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
74
|
Emerging Mechanisms of Skeletal Muscle Homeostasis and Cachexia: The SUMO Perspective. Cells 2023; 12:cells12040644. [PMID: 36831310 PMCID: PMC9953977 DOI: 10.3390/cells12040644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Mobility is an intrinsic feature of the animal kingdom that stimulates evolutionary processes and determines the biological success of animals. Skeletal muscle is the primary driver of voluntary movements. Besides, skeletal muscles have an immense impact on regulating glucose, amino acid, and lipid homeostasis. Muscle atrophy/wasting conditions are accompanied by a drastic effect on muscle function and disrupt steady-state muscle physiology. Cachexia is a complex multifactorial muscle wasting syndrome characterized by extreme loss of skeletal muscle mass, resulting in a dramatic decrease in life quality and reported mortality in more than 30% of patients with advanced cancers. The lack of directed treatments to prevent or relieve muscle loss indicates our inadequate knowledge of molecular mechanisms involved in muscle cell organization and the molecular etiology of cancer-induced cachexia (CIC). This review highlights the latest knowledge of regulatory mechanisms involved in maintaining muscle function and their deregulation in wasting syndromes, particularly in cachexia. Recently, protein posttranslational modification by the small ubiquitin-like modifier (SUMO) has emerged as a key regulatory mechanism of protein function with implications for different aspects of cell physiology and diseases. We also review an atypical association of SUMO-mediated pathways in this context and deliberate on potential treatment strategies to alleviate muscle atrophy.
Collapse
|
75
|
Suzuki K, Shibato J, Rakwal R, Takaura M, Hotta R, Masuo Y. Biomarkers in the Rat Hippocampus and Peripheral Blood for an Early Stage of Mental Disorders Induced by Water Immersion Stress. Int J Mol Sci 2023; 24:ijms24043153. [PMID: 36834565 PMCID: PMC9960135 DOI: 10.3390/ijms24043153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
It is difficult to evaluate the pre-symptomatic state of mental disorders and prevent its onset. Since stress could be a trigger of mental disorders, it may be helpful to identify stress-responsive biomarkers (stress markers) for the evaluation of stress levels. We have so far performed omics analyses of the rat brain and peripheral blood after various kinds of stress and have found numerous factors that respond to stress. In this study, we investigated the effects of relatively moderate stress on these factors in the rat to identify stress marker candidates. Adult male Wistar rats underwent water immersion stress for 12 h, 24 h, or 48 h. Stress caused weight loss and elevated serum corticosterone levels, and alterations regarded as anxiety and/or fear-like behaviors. Reverse-transcription PCR and Western blot analyses revealed significant alterations in the expressions of hippocampal genes and proteins by the stress for no longer than 24 h, such as mitogen-activated protein kinase phosphatase 1 (MKP-1), CCAAT/enhancer-binding protein delta (CEBPD), small ubiquitin-like modifier proteins 1/sentrin-specific peptidase 5 (SENP5), matrix metalloproteinase-8 (MMP-8), kinase suppressor of Ras 1 (KSR1), and MKP-1, MMP-8, nerve growth factor receptor (NGFR). Similar alterations were observed in three genes (MKP-1, CEBPD, MMP-8) in the peripheral blood. The present results strongly suggest that these factors may serve as stress markers. The correlation of these factors in the blood and brain may enable the evaluation of stress-induced changes in the brain by blood analysis, which will contribute to preventing the onset of mental disorders.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Laboratory of Neuroscience, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Junko Shibato
- Department of Functional Morphology, Shonan University of Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan
| | - Randeep Rakwal
- Institute of Health and Sport Sciences and Tsukuba International Academy for Sport Studies (TIAS2.0), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Japan
| | - Masahiko Takaura
- Laboratory of Neuroscience, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Ryotaro Hotta
- Laboratory of Neuroscience, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Yoshinori Masuo
- Laboratory of Neuroscience, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
- Correspondence:
| |
Collapse
|
76
|
Liu X, Chen L, Zhang C, Dong W, Liu H, Xiao Z, Wang K, Zhang Y, Tang Y, Hong G, Lu Z, Zhao G. Ginkgolic acid promotes inflammation and macrophage apoptosis via SUMOylation and NF-κB pathways in sepsis. Front Med (Lausanne) 2023; 9:1108882. [PMID: 36743669 PMCID: PMC9892062 DOI: 10.3389/fmed.2022.1108882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Background Excessive inflammation and increased apoptosis of macrophages contribute to organ damage and poor prognosis of sepsis. Ginkgolic acid (GA) is a natural constituent extracted from the leaves of Ginkgo biloba, that can regulate inflammation and apoptosis. The present study aims to investigate the potential effect of GA in treating sepsis and its possible mechanisms. Materials and methods Here, a classic septic mice model and a lipopolysaccharide (LPS)-induced RAW 264.7 inflammation model were established. Cytokines in serum and culture supernatant were detected by ELISA, and the mRNA levels of them were examined by PCR. Hematoxylin and eosin (H&E) staining was performed to determine histopathological changes in liver, lung and kidney. Bacterial burden in the blood, peritoneal lavage fluids (PLFs) and organs were observed on Luria-Bertani agar medium. Flow cytometry and western blotting was used to detect apoptosis and the expression level of apoptosis related molecules, respectively. Moreover, the levels of SUMOylation were detected by western blotting. The activity of NF-κB p65 was assessed by immunofluorescence staining and western blotting. Results The result showed that GA promoted inflammatory responses, reduced bacterial clearance, aggravated organ damage, and increased mortality in septic mice. GA increased apoptosis in peritoneal macrophages (PMs) and RAW 264.7 cells. Meanwhile, GA inhibited SUMOylation and increased the nuclear translocation of NF-κB p65 as well as its phosphorylation level. Conclusion Collectively, GA promotes inflammation and macrophage apoptosis in sepsis, which may be mediated by inhibiting the SUMOylation process and increasing NF-κB p65 activity.
Collapse
Affiliation(s)
- Xinyong Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Longwang Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Chen Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Wei Dong
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Hongbing Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Zhong Xiao
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Kang Wang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Yaolu Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Yahui Tang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Guangliang Hong
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Zhongqiu Lu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China,*Correspondence: Zhongqiu Lu,
| | - Guangju Zhao
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China,Guangju Zhao,
| |
Collapse
|
77
|
Huppelschoten Y, Mukhopadhyay R, Buchardt J, Nielsen TE, Vertegaal ACO, Ovaa H, van der Heden van Noort GJ. In-Plate Chemical Synthesis of Isopeptide-Linked SUMOylated Peptide Fluorescence Polarization Reagents for High-Throughput Screening of SENP Preferences. Chembiochem 2023; 24:e202200601. [PMID: 36377600 PMCID: PMC10107784 DOI: 10.1002/cbic.202200601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Small ubiquitin-like modifiers (SUMOs) are conjugated to protein substrates in cells to regulate their function. The attachment of SUMO family members SUMO1-3 to substrate proteins is reversed by specific isopeptidases called SENPs (sentrin-specific protease). Whereas SENPs are SUMO-isoform or linkage type specific, comprehensive analysis is missing. Furthermore, the underlying mechanism of SENP linkage specificity remains unclear. We present a high-throughput synthesis of 83 isopeptide-linked SUMO-based fluorescence polarization reagents to study enzyme preferences. The assay reagents were synthesized via a native chemical ligation-desulfurization protocol between 11-mer peptides containing a γ-thiolysine and a SUMO3 thioester. Subsequently, five recombinantly expressed SENPs were screened using these assay reagents to reveal their deconjugation activity and substrate preferences. In general, we observed that SENP1 is the most active and nonselective SENP while SENP6 and SENP7 show the least activity. Furthermore, SENPs differentially process peptides derived from SUMO1-3, who form a minimalistic representation of diSUMO chains. To validate our findings, five distinct isopeptide-linked diSUMO chains were chemically synthesized and proteolysis was monitored using a gel-based read-out.
Collapse
Affiliation(s)
- Yara Huppelschoten
- Dept. Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 2, 2333 ZC, Leiden, The Netherlands.,Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, DK-2760, Måløv, Denmark
| | - Rishov Mukhopadhyay
- Dept. Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 2, 2333 ZC, Leiden, The Netherlands
| | - Jens Buchardt
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, DK-2760, Måløv, Denmark.,Current address: CMC API Development, Novo Nordisk A/S, Novo Nordisk Park, 2880, Bagsvaerd, Denmark
| | - Thomas E Nielsen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, DK-2760, Måløv, Denmark
| | - Alfred C O Vertegaal
- Dept. Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 2, 2333 ZC, Leiden, The Netherlands
| | - Huib Ovaa
- Dept. Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 2, 2333 ZC, Leiden, The Netherlands
| | | |
Collapse
|
78
|
Zhu Y, Zhang J, Yu L, Xu S, Chen L, Wu K, Kong L, Lin W, Xue J, Wang Q, Lin Y, Chen X. SENP3 promotes tumor progression and is a novel prognostic biomarker in triple-negative breast cancer. Front Oncol 2023; 12:972969. [PMID: 36698419 PMCID: PMC9868814 DOI: 10.3389/fonc.2022.972969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background The clinical outcome of triple-negative breast cancer (TNBC) is poor. Finding more targets for the treatment of TNBC is an urgent need. SENPs are SUMO-specific proteins that play an important role in SUMO modification. Among several tumor types, SENPs have been identified as relevant biomarkers for progression and prognosis. The role of SENPs in TNBC is not yet clear. Methods The expression and prognosis of SENPs in TNBC were analyzed by TCGA and GEO data. SENP3 coexpression regulatory networks were determined by weighted gene coexpression network analysis (WGCNA). Least absolute shrinkage and selection operator (LASSO) and Cox univariate analyses were used to develop a risk signature based on genes associated with SENP3. A time-dependent receiver operating characteristic (ROC) analysis was employed to evaluate a risk signature's predictive accuracy and sensitivity. Moreover, a nomogram was constructed to facilitate clinical application. Results The prognostic and expression effects of SENP family genes were validated using the TCGA and GEO databases. SENP3 was found to be the only gene in the SENP family that was highly expressed and associated with an unfavorable prognosis in TNBC patients. Cell functional experiments showed that knockdown of SENP3 leads to growth, invasion, and migration inhibition of TNBC cells in vitro. By using WGCNA, 273 SENP3-related genes were identified. Finally, 11 SENP3-related genes were obtained from Cox univariate analysis and LASSO regression. Based on this, a prognostic risk prediction model was established. The risk signature of SENP3-related genes was verified as an independent prognostic marker for TNBC patients. Conclusion Among SENP family genes, we found that SENP3 was overexpressed in TNBC and associated with a worse prognosis. SENP3 knockdown can inhibit tumor proliferation, invasion, and migration. In TNBC patients, a risk signature based on the expression of 11 SENP3-related genes may improve prognosis prediction. The established risk markers may be promising prognostic biomarkers that can guide the individualized treatment of TNBC patients.
Collapse
Affiliation(s)
- Youzhi Zhu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jiasheng Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liangfei Yu
- Department of Breast Surgery, the First Hospital of Fuzhou, Fuzhou, China
| | - Sunwang Xu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Kunlin Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lingjun Kong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jiajie Xue
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingshui Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China,*Correspondence: Xiangjin Chen, ; Yao Lin, ; Qingshui Wang,
| | - Yao Lin
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China,*Correspondence: Xiangjin Chen, ; Yao Lin, ; Qingshui Wang,
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China,*Correspondence: Xiangjin Chen, ; Yao Lin, ; Qingshui Wang,
| |
Collapse
|
79
|
Ilic D, Magnussen HM, Tirard M. Stress - Regulation of SUMO conjugation and of other Ubiquitin-Like Modifiers. Semin Cell Dev Biol 2022; 132:38-50. [PMID: 34996712 DOI: 10.1016/j.semcdb.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Stress is unavoidable and essential to cellular and organismal evolution and failure to adapt or restore homeostasis can lead to severe diseases or even death. At the cellular level, stress drives a plethora of molecular changes, of which variations in the profile of protein post-translational modifications plays a key role in mediating the adaptative response of the genome and proteome to stress. In this context, post-translational modification of proteins by ubiquitin-like modifiers, (Ubl), notably SUMO, is an essential stress response mechanism. In this review, aiming to draw universal concepts of the Ubls stress response, we will decipher how stress alters the expression level, activity, specificity and/or localization of the proteins involved in the conjugation pathways of the various type-I Ubls, and how this result in the modification of particular Ubl targets that will translate an adaptive physiological stress response and allow cells to restore homeostasis.
Collapse
Affiliation(s)
- Dragana Ilic
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg; Faculty of Biology, University of Freiburg, D-79104 Freiburg; Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen
| | - Helge M Magnussen
- MRC Protein Phosphorylation and Ubiquitination Unit, Sir James Black Center, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen.
| |
Collapse
|
80
|
Liu J, Jin J, Liang T, Feng XH. To Ub or not to Ub: a regulatory question in TGF-β signaling. Trends Biochem Sci 2022; 47:1059-1072. [PMID: 35810076 DOI: 10.1016/j.tibs.2022.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022]
Abstract
The transforming growth factor β (TGF-β) superfamily controls a wide spectrum of biological processes in metazoans, including cell proliferation, apoptosis, differentiation, cell-fate determination, and embryonic development. Deregulation of TGF-β-Smad signaling contributes to developmental anomalies and a variety of disorders and diseases such as tumorigenesis, fibrotic disorders, and immune diseases. In cancer, TGF-β has dual effects through its antiproliferative and prometastatic actions. At the cellular level, TGF-β functions mainly through the canonical Smad-dependent pathway in a cell type-specific and context-dependent manner. Accumulating evidence has demonstrated that ubiquitination plays a vital role in regulating TGF-β-Smad signaling. We summarize current progress on ubiquitination (Ub) and the ubiquitin ligases that regulate TGF-β-Smad signaling.
Collapse
Affiliation(s)
- Jinquan Liu
- Ministry of Education (MOE) Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianping Jin
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin-Hua Feng
- Ministry of Education (MOE) Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
81
|
García-Gutiérrez P, García-Domínguez M. SUMO control of nervous system development. Semin Cell Dev Biol 2022; 132:203-212. [PMID: 34848148 DOI: 10.1016/j.semcdb.2021.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
In the last decades, the post-translational modification system by covalent attachment of the SUMO polypeptide to proteins has emerged as an essential mechanism controlling virtually all the physiological processes in the eukaryotic cell. This includes vertebrate development. In the nervous system, SUMO plays crucial roles in synapse establishment and it has also been linked to a variety of neurodegenerative diseases. However, to date, the involvement of the modification of specific targets in key aspects of nervous system development, like patterning and differentiation, has remained largely elusive. A number of recent works confirm the participation of target-specific SUMO modification in critical aspects of nervous system development. Here, we review pioneering and new findings demonstrating the essential role SUMO plays in neurogenesis and other facets of neurodevelopment, which will help to precisely understand the variety of mechanisms SUMO utilizes to control most fundamental processes in the cell.
Collapse
Affiliation(s)
- Pablo García-Gutiérrez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain.
| |
Collapse
|
82
|
Wu Q, Jiang Y, You C. The SUMO components in rheumatoid arthritis. Rheumatology (Oxford) 2022; 61:4619-4630. [PMID: 35595244 DOI: 10.1093/rheumatology/keac297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 01/10/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO) proteins can reversibly attach covalently or non-covalently to lysine residues of various substrates. The processes are named SUMOylation and de-SUMOylation, which maintain a dynamic balance in the physiological state, and are regulated by SUMO components. However, the dysregulation of components disturbs the balance and alters the functions of target proteins, which causes the occurrence of diseases. To date, certain SUMO components, including SUMO-1, SUMO-2/3, SAE1/Uba2, Ubc9, PIASs (protein inhibitors of activated signal transducer and activator of transcription) and SENPs (SUMO-specific proteases), have been found to participate in the pathogenesis of RA and their potential value as therapeutic targets also have been highlighted. In addition, single nucleotide polymorphisms (SNPs) in the SUMO components have been reported to be associated with disease susceptibility. Until now, only the SNP site of SUMO-4 has been reported in RA. Here we provided a systematic overview of the general characteristics of SUMO components and highlighted a summary of their impact on RA.
Collapse
Affiliation(s)
- Qian Wu
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Yao Jiang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
83
|
Yan L, Zhang T, Wang K, Chen Z, Yang Y, Shan B, Sun Q, Zhang M, Zhang Y, Zhong Y, Liu N, Gu J, Xu D. SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation. Nat Commun 2022; 13:7153. [PMID: 36414671 PMCID: PMC9681887 DOI: 10.1038/s41467-022-34993-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Activation of RIPK1-driven cell death and inflammation play important roles in the progression of nonalcoholic steatohepatitis (NASH). However, the mechanism underlying RIPK1 activation in NASH remains unclear. Here we identified SENP1, a SUMO-specific protease, as a key endogenous inhibitor of RIPK1. SENP1 is progressively reduced in proportion to NASH severity in patients. Hepatocyte-specific SENP1-knockout mice develop spontaneous NASH-related phenotypes in a RIPK1 kinase-dependent manner. We demonstrate that SENP1 deficiency sensitizes cells to RIPK1 kinase-dependent apoptosis by promoting RIPK1 activation following TNFα stimulation. Mechanistically, SENP1 deSUMOylates RIPK1 in TNF-R1 signaling complex (TNF-RSC), keeping RIPK1 in check. Loss of SENP1 leads to SUMOylation of RIPK1, which re-orchestrates TNF-RSC and modulates the ubiquitination patterns and activity of RIPK1. Notably, genetic inhibition of RIPK1 effectively reverses disease progression in hepatocyte-specific SENP1-knockout male mice with high-fat-diet-induced nonalcoholic fatty liver. We propose that deSUMOylation of RIPK1 by SENP1 provides a pathophysiologically relevant cell death-restricting checkpoint that modulates RIPK1 activation in the pathogenesis of nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Lingjie Yan
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tao Zhang
- grid.38142.3c000000041936754XDepartment of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Kai Wang
- grid.13402.340000 0004 1759 700XDepartment of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People’s Hospital Affiliated Zhejiang University School of Medicine, Hangzhou, 310006 China ,grid.13402.340000 0004 1759 700XInstitute of Organ Transplantation, Zhejiang University, Hangzhou, 310003 China
| | - Zezhao Chen
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuanxin Yang
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bing Shan
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Qi Sun
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Mengmeng Zhang
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Yichi Zhang
- grid.412987.10000 0004 0630 1330Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Yedan Zhong
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Nan Liu
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,Shanghai Key Laboratory of Aging Studies, Shanghai, 201210 China
| | - Jinyang Gu
- grid.412987.10000 0004 0630 1330Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China ,grid.33199.310000 0004 0368 7223Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Daichao Xu
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,Shanghai Key Laboratory of Aging Studies, Shanghai, 201210 China
| |
Collapse
|
84
|
Amrute-Nayak M, Gand LV, Khan B, Holler T, Kefalakes E, Kosanke M, Kraft T, Nayak A. SENP7 deSUMOylase-governed transcriptional program coordinates sarcomere assembly and is targeted in muscle atrophy. Cell Rep 2022; 41:111702. [DOI: 10.1016/j.celrep.2022.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/16/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
|
85
|
Lee MH, Sung K, Beebe D, Huang W, Shapiro D, Miyamoto S, Abel EJ. The SUMO protease SENP1 promotes aggressive behaviors of high HIF2α expressing renal cell carcinoma cells. Oncogenesis 2022; 11:65. [PMID: 36284084 PMCID: PMC9596416 DOI: 10.1038/s41389-022-00440-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 02/07/2023] Open
Abstract
While an important role for the SUMO protease SENP1 is recognized in multiple solid cancers, its role in renal cell carcinoma (RCC) pathogenesis, particularly the most dominant subtype, clear cell RCC (ccRCC), is poorly understood. Here we show that a combination of high HIF2α and SENP1 expression in ccRCC samples predicts poor patient survival. Using ccRCC cell models that express high HIF2α but low SENP1, we show that overexpression of SENP1 reduces sumoylation and ubiquitination of HIF2α, increases HIF2α transcriptional activity, and enhances expression of genes associated with cancer cell invasion, stemness and epithelial-mesenchymal transition. Accordingly, ccRCC cells with high HIF2α and SENP1 showed increased invasion and sphere formation in vitro, and local invasion and metastasis in vivo. Finally, SENP1 overexpression caused high HIF2α ccRCC cells to acquire resistance to a clinical mTOR inhibitor, everolimus. These results reveal a combination of high SENP1 and HIF2α expression gives particularly poor prognosis for ccRCC patients and suggest that SENP1 may be an attractive new target for treating metastatic RCC (mRCC).
Collapse
Affiliation(s)
- Moon Hee Lee
- grid.14003.360000 0001 2167 3675Department of Urology, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Kyung Sung
- grid.290496.00000 0001 1945 2072Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, the U.S. FDA, White Oak, MD 20993 USA ,grid.14003.360000 0001 2167 3675Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - David Beebe
- grid.14003.360000 0001 2167 3675Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705 USA ,grid.412639.b0000 0001 2191 1477University of Wisconsin Carbone Cancer Center, Madison, WI 53705 USA
| | - Wei Huang
- grid.412639.b0000 0001 2191 1477University of Wisconsin Carbone Cancer Center, Madison, WI 53705 USA ,grid.14003.360000 0001 2167 3675Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Dan Shapiro
- grid.14003.360000 0001 2167 3675Department of Urology, University of Wisconsin-Madison, Madison, WI 53705 USA ,grid.412639.b0000 0001 2191 1477University of Wisconsin Carbone Cancer Center, Madison, WI 53705 USA
| | - Shigeki Miyamoto
- grid.412639.b0000 0001 2191 1477University of Wisconsin Carbone Cancer Center, Madison, WI 53705 USA ,grid.14003.360000 0001 2167 3675Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - E. Jason Abel
- grid.14003.360000 0001 2167 3675Department of Urology, University of Wisconsin-Madison, Madison, WI 53705 USA ,grid.412639.b0000 0001 2191 1477University of Wisconsin Carbone Cancer Center, Madison, WI 53705 USA
| |
Collapse
|
86
|
Vriend J, Thanasupawat T, Sinha N, Klonisch T. Ubiquitin Proteasome Gene Signatures in Ependymoma Molecular Subtypes. Int J Mol Sci 2022; 23:ijms232012330. [PMID: 36293188 PMCID: PMC9604155 DOI: 10.3390/ijms232012330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is critically important for cellular homeostasis and affects virtually all key functions in normal and neoplastic cells. Currently, a comprehensive review of the role of the UPS in ependymoma (EPN) brain tumors is lacking but may provide valuable new information on cellular networks specific to different EPN subtypes and reveal future therapeutic targets. We have reviewed publicly available EPN gene transcription datasets encoding components of the UPS pathway. Reactome analysis of these data revealed genes and pathways that were able to distinguish different EPN subtypes with high significance. We identified differential transcription of several genes encoding ubiquitin E2 conjugases associated with EPN subtypes. The expression of the E2 conjugase genes UBE2C, UBE2S, and UBE2I was elevated in the ST_EPN_RELA subtype. The UBE2C and UBE2S enzymes are associated with the ubiquitin ligase anaphase promoting complex (APC/c), which regulates the degradation of substrates associated with cell cycle progression, whereas UBE2I is a Sumo-conjugating enzyme. Additionally, elevated in ST_EPN_RELA were genes for the E3 ligase and histone deacetylase HDAC4 and the F-box cullin ring ligase adaptor FBX031. Cluster analysis demonstrated several genes encoding E3 ligases and their substrate adaptors as EPN subtype specific genetic markers. The most significant Reactome Pathways associated with differentially expressed genes for E3 ligases and their adaptors included antigen presentation, neddylation, sumoylation, and the APC/c complex. Our analysis provides several UPS associated factors that may be attractive markers and future therapeutic targets for the subtype-specific treatment of EPN patients.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: ; Tel.: +1-204-789-3732
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Namita Sinha
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- CancerCare Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
87
|
Xu Y, Yang Y, Chandrashekar A, Gada KD, Masotti M, Baggetta AM, Connolly JG, Kawano T, Plant LD. Hypoxia inhibits the cardiac I K1 current through SUMO targeting Kir2.1 activation by PIP 2. iScience 2022; 25:104969. [PMID: 36060074 PMCID: PMC9437851 DOI: 10.1016/j.isci.2022.104969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/07/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide. Most deaths are sudden and occur secondary to the occlusion of coronary arteries resulting in a rapid decrease in cellular oxygen levels. Acute hypoxia is proarrhythmic, leading to disordered electrical signals, conduction block, and uncoordinated beating of the myocardium. Although acute hypoxia is recognized to perturb the electrophysiology of heart muscle, the mechanistic basis for the effect has remained elusive, hampering the development of targeted therapeutic interventions. Here, we show that acute hypoxia activates the redox-sensitive SUMO pathway in cardiomyocytes, causing rapid inhibition of the inward-rectifying K+ channel, Kir2.1. We find that SUMOylation decreases the activation of Kir2.1 channels by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). These data provide a mechanistic basis for the proarrhythmic effects of acute hypoxia and offer a framework for understanding the central role of PIP2 in mediating the sequelae of hypoxia and SUMOylation in cardiovascular disease.
Collapse
Affiliation(s)
- Yu Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Yuchen Yang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Aishwarya Chandrashekar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Kirin D. Gada
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Meghan Masotti
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Austin M. Baggetta
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Jenna G. Connolly
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Takeharu Kawano
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Leigh D. Plant
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| |
Collapse
|
88
|
Multiple-Site SUMOylation of FMDV 3C Protease and Its Negative Role in Viral Replication. J Virol 2022; 96:e0061222. [PMID: 36005757 PMCID: PMC9472655 DOI: 10.1128/jvi.00612-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein SUMOylation represents an important cellular process that regulates the activities of numerous host proteins as well as of many invasive viral proteins. Foot-and-mouth disease virus (FMDV) is the first animal virus discovered. However, whether SUMOylation takes place during FMDV infection and what role it plays in FMDV pathogenesis have not been investigated. In the present study, we demonstrated that SUMOylation suppressed FMDV replication by small interfering RNA (siRNA) transfection coupled with pharmaceutical inhibition of SUMOylation, which was further confirmed by increased virus replication for SUMOylation-deficient FMDV with mutations in 3C protease, a target of SUMOylation. Moreover, we provided evidence that four lysine residues, Lys-51, -54, -110, and -159, worked together to confer the SUMOylation to the FMDV 3C protease, which may make SUMOylation of FMDV 3C more stable and improve the host's chance of suppressing the replication of FMDV. This is the first report that four lysine residues can be alternatively modified by SUMOylation. Finally, we showed that SUMOylation attenuated the cleavage ability, the inhibitory effect of the interferon signaling pathway, and the protein stability of FMDV 3C, which appeared to correlate with a decrease in FMDV replication. Taken together, the results of our experiments describe a novel cellular regulatory event that significantly restricts FMDV replication through the SUMOylation of 3C protease. IMPORTANCE FMD is a highly contagious and economically important disease in cloven-hoofed animals. SUMOylation, the covalent linkage of a small ubiquitin-like protein to a variety of substrate proteins, has emerged as an important posttranslational modification that plays multiple roles in diverse biological processes. In this study, four lysine residues of FMDV 3C were found to be alternatively modified by SUMOylation. In addition, we demonstrated that SUMOylation attenuated FMDV 3C function through multiple mechanisms, including cleavage ability, the inhibitory effect of the interferon signaling pathway, and protein stability, which, in turn, resulted in a decrease of FMDV replication. Our findings indicate that SUMOylation of FMDV 3C serves as a host cell defense against FMDV replication. Further understanding of the cellular and molecular mechanisms driving this process should offer novel insights to design an effective strategy to control the dissemination of FMDV in animals.
Collapse
|
89
|
Joo H, Lim CW, Lee SC. Pepper SUMO E3 ligase CaDSIZ1 enhances drought tolerance by stabilizing the transcription factor CaDRHB1. THE NEW PHYTOLOGIST 2022; 235:2313-2330. [PMID: 35672943 DOI: 10.1111/nph.18300] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Small ubiquitin-like modifier (SUMO) conjugation (SUMOylation) is a reversible post-translational modification associated with protein stability and activity, and modulates hormone signaling and stress responses in plants. Previously, we reported that the pepper dehydration-responsive homeobox domain transcription factor CaDRHB1 acts as a positive modulator of drought response. Here, we show that CaDRHB1 protein stability is enhanced by SUMO E3 ligase Capsicum annuum DRHB1-interacting SAP and Miz domain (SIZ1) (CaDSIZ1)-mediated SUMOylation in response to drought, thereby positively modulating abscisic acid (ABA) signaling and drought responses. Substituting lysine (K) 138 of CaDRHB1 with arginine reduced CaDSIZ1-mediated SUMOylation, indicating that K138 is the principal site for SUMO conjugation. Virus-induced silencing of CaDSIZ1 promoted CaDRHB1 degradation, suggesting that CaDSIZ1 is involved in drought-induced SUMOylation of CaDRHB1. CaDSIZ1 interacted with and facilitated SUMO conjugation of CaDRHB1. CaDRHB1, mainly localized in the nucleus, but also in the cytoplasm in the SUMOylation mimic state, suggesting that SUMOylation of CaDRHB1 promotes its nuclear export, leading to cytoplasmic accumulation. Moreover, CaDSIZ1-silenced pepper plants were less sensitive to ABA and considerably sensitive to drought stress, whereas CaDSIZ1-overexpressing plants displayed ABA-hypersensitive and drought-tolerant phenotypes. Collectively, our data indicate that CaDSIZ1-mediated SUMOylation of CaDRHB1 functions in ABA-mediated drought tolerance.
Collapse
Affiliation(s)
- Hyunhee Joo
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Korea
| |
Collapse
|
90
|
Multilevel regulation of N6-methyladenosine RNA modifications: Implications in tumorigenesis and therapeutic opportunities. Genes Dis 2022. [PMID: 37492716 PMCID: PMC10363589 DOI: 10.1016/j.gendis.2022.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N6-methyladenosine (m6A) RNA modification is widely perceived as the most abundant and common modification in transcripts. This modification is dynamically regulated by specific m6A "writers", "erasers" and "readers" and is reportedly involved in the occurrence and development of many diseases. Since m6A RNA modification was discovered in the 1970s, with the progress of relevant research technologies, an increasing number of functions of m6A have been reported, and a preliminary understanding of m6A has been obtained. In this review, we summarize the mechanisms through which m6A RNA modification is regulated from the perspectives of expression, posttranslational modification and protein interaction. In addition, we also summarize how external and internal environmental factors affect m6A RNA modification and its functions in tumors. The mechanisms through which m6A methylases, m6A demethylases and m6A-binding proteins are regulated are complicated and have not been fully elucidated. Therefore, we hope to promote further research in this field by summarizing these mechanisms and look forward to the future application of m6A in tumors.
Collapse
|
91
|
Liu H, Craig SEL, Molchanov V, Floramo JS, Zhao Y, Yang T. SUMOylation in Skeletal Development, Homeostasis, and Disease. Cells 2022; 11:cells11172710. [PMID: 36078118 PMCID: PMC9454984 DOI: 10.3390/cells11172710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
The modification of proteins by small ubiquitin-related modifier (SUMO) molecules, SUMOylation, is a key post-translational modification involved in a variety of biological processes, such as chromosome organization, DNA replication and repair, transcription, nuclear transport, and cell signaling transduction. In recent years, emerging evidence has shown that SUMOylation regulates the development and homeostasis of the skeletal system, with its dysregulation causing skeletal diseases, suggesting that SUMOylation pathways may serve as a promising therapeutic target. In this review, we summarize the current understanding of the molecular mechanisms by which SUMOylation pathways regulate skeletal cells in physiological and disease contexts.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Yang
- Laboratory of Skeletal Biology, Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
- Correspondence: ; Tel.: +1-616-234-5820
| |
Collapse
|
92
|
Zhu Y, Liu Y, Chen Y, Li L. ResSUMO: A Deep Learning Architecture Based on Residual Structure for Prediction of Lysine SUMOylation Sites. Cells 2022; 11:2646. [PMID: 36078053 PMCID: PMC9454673 DOI: 10.3390/cells11172646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 12/26/2022] Open
Abstract
Lysine SUMOylation plays an essential role in various biological functions. Several approaches integrating various algorithms have been developed for predicting SUMOylation sites based on a limited dataset. Recently, the number of identified SUMOylation sites has significantly increased due to investigation at the proteomics scale. We collected modification data and found the reported approaches had poor performance using our collected data. Therefore, it is essential to explore the characteristics of this modification and construct prediction models with improved performance based on an enlarged dataset. In this study, we constructed and compared 16 classifiers by integrating four different algorithms and four encoding features selected from 11 sequence-based or physicochemical features. We found that the convolution neural network (CNN) model integrated with residue structure, dubbed ResSUMO, performed favorably when compared with the traditional machine learning and CNN models in both cross-validation and independent tests. The area under the receiver operating characteristic (ROC) curve for ResSUMO was around 0.80, superior to that of the reported predictors. We also found that increasing the depth of neural networks in the CNN models did not improve prediction performance due to the degradation problem, but the residual structure could be included to optimize the neural networks and improve performance. This indicates that residual neural networks have the potential to be broadly applied in the prediction of other types of modification sites with great effectiveness and robustness. Furthermore, the online ResSUMO service is freely accessible.
Collapse
Affiliation(s)
- Yafei Zhu
- College of Computer Science and Technology, Qingdao University, Qingdao 266071, China
| | - Yuhai Liu
- Dawning International Information Industry, Co., Ltd., Qingdao 266101, China
| | - Yu Chen
- College of Computer Science and Technology, Qingdao University, Qingdao 266071, China
| | - Lei Li
- College of Computer Science and Technology, Qingdao University, Qingdao 266071, China
- Faculty of Biomedical and Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266001, China
| |
Collapse
|
93
|
Jiang H, Zhou LJ, Gao HN, Wang XF, Li ZW, Li YY. The transcription factor MdMYB2 influences cold tolerance and anthocyanin accumulation by activating SUMO E3 ligase MdSIZ1 in apple. PLANT PHYSIOLOGY 2022; 189:2044-2060. [PMID: 35522008 PMCID: PMC9342976 DOI: 10.1093/plphys/kiac211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 05/08/2023]
Abstract
Conjugation of the small ubiquitin-like modifier (SUMO) peptide to target proteins is an important post-translational modification. SAP AND MIZ1 DOMAIN-CONTAINING LIGASE1 (MdSIZ1) is an apple (Malus domestica Borkh). SUMO E3 ligase that mediates sumoylation of its targets during plant growth and development under adverse environmental conditions. However, it is unclear how MdSIZ1 senses the various environmental signals and whether sumoylation is regulated at the transcriptional level. In this study, we analyzed the MdSIZ1 promoter and found that it contained an MYB binding site (MBS) motif that was essential for the response of MdSIZ1 to low temperature (LT) and drought. Subsequently, we used yeast one-hybridization screening to demonstrate that a MYB transcription factor, MdMYB2, directly bound to the MBS motif in the MdSIZ1 promoter. Phenotypic characterization of MdMYB2 and MdSIZ1 suggested that the expression of both MdMYB2 and MdSIZ1 substantially improved cold tolerance in plants. MdMYB2 was induced by LT and further activated the expression of MdSIZ1, thereby promoting the sumoylation of MdMYB1, a key regulator of anthocyanin biosynthesis in apple. MdMYB2 promoted anthocyanin accumulation in apple fruits, apple calli, and Arabidopsis (Arabidopsis thaliana) in an MdSIZ1-dependent manner. In addition, the interaction of MdMYB2 and the MdSIZ1 promoter substantially improved plant tolerance to cold stress. Taken together, our findings reveal an important role for transcriptional regulation of sumoylation and provide insights into plant anthocyanin biosynthesis regulation mechanisms and stress response.
Collapse
Affiliation(s)
| | | | - Huai-Na Gao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Zhi-Wen Li
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | | |
Collapse
|
94
|
Nishida T. SUMO-specific protease SENP3 enhances MDM2-mediated ubiquitination of PARIS/ZNF746 in HeLa cells. Biochem Biophys Res Commun 2022; 615:150-156. [PMID: 35623300 DOI: 10.1016/j.bbrc.2022.05.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022]
Abstract
The transcriptional repressor PARIS, a substrate of the ubiquitin E3 ligase parkin, represses the expression of the transcriptional co-activator, PGC-1α gene, and is involved in several pathological processes, including neurodegenerative disease and cancers. We have previously shown that SUMOylation of PARIS play an important role in its transcriptional repression activity. In addition, RNF4-mediated ubiquitination of SUMO2/3-conjugated PARIS is required for the control of PARIS-mediated transcriptional repression in HeLa cells that lack parkin expression. However, little is known about how PARIS ubiquitination and degradation are regulated in parkin-deficient cells. Here, we report that the deSUMOylase SENP3 interacted with PARIS and enhanced the ubiquitination of PARIS independently of its SUMOylation in HeLa cells. SENP3-enhanced PARIS ubiquitination mainly contributed to its proteasomal degradation, and required the oncogenic E3 ubiquitin ligase MDM2. MDM2 knockdown by small interfering RNA or expression of a dominant-negative MDM2 mutant inhibited the ubiquitination of PARIS. We further found that MDM2 activation via the PI3K/AKT pathway was involved in PARIS ubiquitination. Taken together, these results suggest that PARIS ubiquitination through SENP3-mediated MDM2 activation may control its functions in parkin-deficient cells.
Collapse
Affiliation(s)
- Tamotsu Nishida
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, 1577 Kurima-machiya, Tsu, 514-8507, Japan
| |
Collapse
|
95
|
Lara-Ureña N, Jafari V, García-Domínguez M. Cancer-Associated Dysregulation of Sumo Regulators: Proteases and Ligases. Int J Mol Sci 2022; 23:8012. [PMID: 35887358 PMCID: PMC9316396 DOI: 10.3390/ijms23148012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
SUMOylation is a post-translational modification that has emerged in recent decades as a mechanism involved in controlling diverse physiological processes and that is essential in vertebrates. The SUMO pathway is regulated by several enzymes, proteases and ligases being the main actors involved in the control of sumoylation of specific targets. Dysregulation of the expression, localization and function of these enzymes produces physiological changes that can lead to the appearance of different types of cancer, depending on the enzymes and target proteins involved. Among the most studied proteases and ligases, those of the SENP and PIAS families stand out, respectively. While the proteases involved in this pathway have specific SUMO activity, the ligases may have additional functions unrelated to sumoylation, which makes it more difficult to study their SUMO-associated role in cancer process. In this review we update the knowledge and advances in relation to the impact of dysregulation of SUMO proteases and ligases in cancer initiation and progression.
Collapse
Affiliation(s)
| | | | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain; (N.L.-U.); (V.J.)
| |
Collapse
|
96
|
Hegde S, Sreejan A, Gadgil CJ, Ratnaparkhi GS. SUMOylation of Dorsal attenuates Toll/NF-κB signaling. Genetics 2022; 221:iyac081. [PMID: 35567478 PMCID: PMC9252280 DOI: 10.1093/genetics/iyac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
In Drosophila, Toll/NF-κB signaling plays key roles in both animal development and in host defense. The activation, intensity, and kinetics of Toll signaling are regulated by posttranslational modifications such as phosphorylation, SUMOylation, or ubiquitination that target multiple proteins in the Toll/NF-κB cascade. Here, we have generated a CRISPR-Cas9 edited Dorsal (DL) variant that is SUMO conjugation resistant. Intriguingly, embryos laid by dlSCR mothers overcome dl haploinsufficiency and complete the developmental program. This ability appears to be a result of higher transcriptional activation by DLSCR. In contrast, SUMOylation dampens DL transcriptional activation, ultimately conferring robustness to the dorso-ventral program. In the larval immune response, dlSCR animals show an increase in crystal cell numbers, stronger activation of humoral defense genes, and high cactus levels. A mathematical model that evaluates the contribution of the small fraction of SUMOylated DL (1-5%) suggests that it acts to block transcriptional activation, which is driven primarily by DL that is not SUMO conjugated. Our findings define SUMO conjugation as an important regulator of the Toll signaling cascade, in both development and host defense. Our results broadly suggest that SUMO attenuates DL at the level of transcriptional activation. Furthermore, we hypothesize that SUMO conjugation of DL may be part of a Ubc9-dependent mechanism that restrains Toll/NF-κB signaling.
Collapse
Affiliation(s)
- Sushmitha Hegde
- Biology, Indian Institute of Science Education & Research, Pune 411008, India
| | - Ashley Sreejan
- Chemical Engineering and Process Development Division, CSIR—National Chemical Laboratory, Pune 411008, India
| | - Chetan J Gadgil
- Chemical Engineering and Process Development Division, CSIR—National Chemical Laboratory, Pune 411008, India
- CSIR—Institute of Genomics and Integrative Biology, New Delhi 110020, India
| | | |
Collapse
|
97
|
de Renty C, Pond KW, Yagle MK, Ellis NA. BLM Sumoylation Is Required for Replication Stability and Normal Fork Velocity During DNA Replication. Front Mol Biosci 2022; 9:875102. [PMID: 35847987 PMCID: PMC9284272 DOI: 10.3389/fmolb.2022.875102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
BLM is sumoylated in response to replication stress. We have studied the role of BLM sumoylation in physiologically normal and replication-stressed conditions by expressing in BLM-deficient cells a BLM with SUMO acceptor-site mutations, which we refer to as SUMO-mutant BLM cells. SUMO-mutant BLM cells exhibited multiple defects in both stressed and unstressed DNA replication conditions, including, in hydroxyurea-treated cells, reduced fork restart and increased fork collapse and, in untreated cells, slower fork velocity and increased fork instability as assayed by track-length asymmetry. We further showed by fluorescence recovery after photobleaching that SUMO-mutant BLM protein was less dynamic than normal BLM and comprised a higher immobile fraction at collapsed replication forks. BLM sumoylation has previously been linked to the recruitment of RAD51 to stressed forks in hydroxyurea-treated cells. An important unresolved question is whether the failure to efficiently recruit RAD51 is the explanation for replication stress in untreated SUMO-mutant BLM cells.
Collapse
Affiliation(s)
- Christelle de Renty
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Kelvin W. Pond
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Mary K. Yagle
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Nathan A. Ellis
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
98
|
Dai Z, Etebari K, Asgari S. N 6-methyladenosine modification of the Aedes aegypti transcriptome and its alteration upon dengue virus infection in Aag2 cell line. Commun Biol 2022; 5:607. [PMID: 35725909 PMCID: PMC9209429 DOI: 10.1038/s42003-022-03566-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
The N6-methyladenosine (m6A) modification of RNA has been reported to affect viral infections. Studies have confirmed the role of m6A in replication of several vector-borne flaviviruses, including dengue virus (DENV), in mammalian cells. Here, we explored the role of m6A in DENV replication in the mosquito Aedes aegypti Aag2 cell line. We first determined the presence of m6A on the RNAs from mosquito cells and using methylated RNA immunoprecipitation and sequencing (MeRIP-Seq) identified m6A modification of the mosquito transcriptome and those that changed upon DENV infection. Depletion of m6A methyltransferases and the m6A binding protein YTHDF3 RNAs decreased the replication of DENV. In particular, we found that the Ae. aegypti ubiquitin carrier protein 9 (Ubc9) is m6A modified and its expression increases after DENV infection. Silencing of the gene and ectopic expression of Ubc9 led to reduced and increased DENV replication, respectively. The abundance of Ubc9 mRNA and its stability were reduced with the inhibition of m6A modification, implying that m6A modification of Ubc9 might enhance expression of the gene. We also show that the genome of DENV is m6A modified at five sites in mosquito cells. Altogether, this work reveals the involvement of m6A modification in Ae. aegypti-DENV interaction. Analysis of m6A RNA modifications in the mosquito transcriptome and their changes upon dengue virus infection provides insight into the role of epigenetics in regulating viral replication in mosquitoes.
Collapse
Affiliation(s)
- Zhenkai Dai
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
99
|
Fergin A, Boesch G, Greter NR, Berger S, Hajnal A. Tissue-specific inhibition of protein sumoylation uncovers diverse SUMO functions during C. elegans vulval development. PLoS Genet 2022; 18:e1009978. [PMID: 35666766 PMCID: PMC9203017 DOI: 10.1371/journal.pgen.1009978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/16/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
The sumoylation (SUMO) pathway is involved in a variety of processes during C. elegans development, such as gonadal and vulval fate specification, cell cycle progression and maintenance of chromosome structure. The ubiquitous expression and pleiotropic effects have made it difficult to dissect the tissue-specific functions of the SUMO pathway and identify its target proteins. To overcome these challenges, we have established tools to block protein sumoylation and degrade sumoylated target proteins in a tissue-specific and temporally controlled manner. We employed the auxin-inducible protein degradation system (AID) to down-regulate the SUMO E3 ligase GEI-17 or the SUMO ortholog SMO-1, either in the vulval precursor cells (VPCs) or in the gonadal anchor cell (AC). Our results indicate that the SUMO pathway acts in multiple tissues to control different aspects of vulval development, such as AC positioning, basement membrane (BM) breaching, VPC fate specification and morphogenesis. Inhibition of protein sumoylation in the VPCs resulted in abnormal toroid formation and ectopic cell fusions during vulval morphogenesis. In particular, sumoylation of the ETS transcription factor LIN-1 at K169 is necessary for the proper contraction of the ventral vulA toroids. Thus, the SUMO pathway plays several distinct roles throughout vulval development. Many proteins are chemically modified after they have been synthesized. In particular, conjugation with the Small Ubiquitin-like Modifier (SUMO) regulates the functions and activities of a large number of proteins in animal and plant cells. Here, we have used the Nematode Caenorhabditis elegans to study the various effects of SUMO protein modification on organ development. By applying a tissue-specific protein degradation system, we could selectively block the SUMO pathway in different tissues of the animals. We focused on the development of the egg-laying organ as a model, and found that the SUMO pathway acts in multiple tissues to regulate distinct cellular functions. Finally, we show that SUMO modification of one transcription factor, called LIN-1, is necessary for the proper morphogenesis of the organ. Our results indicate that the manifold effects of the SUMO pathway can be attributed to the combined action of a distinct number of SUMO modified proteins acting in different cell types.
Collapse
Affiliation(s)
- Aleksandra Fergin
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, Zürich, Switzerland
| | - Gabriel Boesch
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, Zürich, Switzerland
| | - Nadja R. Greter
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, Zürich, Switzerland
| | - Simon Berger
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, Zürich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
100
|
Singhal J, Madan E, Chaurasiya A, Srivastava P, Singh N, Kaushik S, Kahlon AK, Maurya MK, Marothia M, Joshi P, Ranganathan A, Singh S. Host SUMOylation Pathway Negatively Regulates Protective Immune Responses and Promotes Leishmania donovani Survival. Front Cell Infect Microbiol 2022; 12:878136. [PMID: 35734580 PMCID: PMC9207379 DOI: 10.3389/fcimb.2022.878136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
SUMOylation is one of the post-translational modifications that have recently been described as a key regulator of various cellular, nuclear, metabolic, and immunological processes. The process of SUMOylation involves the modification of one or more lysine residues of target proteins by conjugation of a ubiquitin-like, small polypeptide known as SUMO for their degradation, stability, transcriptional regulation, cellular localization, and transport. Herein, for the first time, we report the involvement of the host SUMOylation pathway in the process of infection of Leishmania donovani, a causative agent of visceral leishmaniasis. Our data revealed that infection of L. donovani to the host macrophages leads to upregulation of SUMOylation pathway genes and downregulation of a deSUMOylating gene, SENP1. Further, to confirm the effect of the host SUMOylation on the growth of Leishmania, the genes associated with the SUMOylation pathway were silenced and parasite load was analyzed. The knockdown of the SUMOylation pathway led to a reduction in parasitic load, suggesting the role of the host SUMOylation pathway in the disease progression and parasite survival. Owing to the effect of the SUMOylation pathway in autophagy, we further investigated the status of host autophagy to gain mechanistic insights into how SUMOylation mediates the regulation of growth of L. donovani. Knockdown of genes of host SUMOylation pathway led to the reduction of the expression levels of host autophagy markers while promoting autophagosome–lysosome fusion, suggesting SUMOylation-mediated autophagy in terms of autophagy initiation and autophagy maturation during parasite survival. The levels of reactive oxygen species (ROS) generation, nitric oxide (NO) production, and pro-inflammatory cytokines were also elevated upon the knockdown of genes of the host SUMOylation pathway during L. donovani infection. This indicates the involvement of the SUMOylation pathway in the modulation of protective immune responses and thus favoring parasite survival. Taken together, the results of this study indicate the hijacking of the host SUMOylation pathway by L. donovani toward the suppression of host immune responses and facilitation of host autophagy to potentially facilitate its survival. Targeting of SUMOylation pathway can provide a starting point for the design and development of novel therapeutic interventions to combat leishmaniasis.
Collapse
Affiliation(s)
- Jhalak Singhal
- *Correspondence: Jhalak Singhal, ; Anand Ranganathan, ; Shailja Singh,
| | | | | | | | | | | | | | | | | | | | - Anand Ranganathan
- *Correspondence: Jhalak Singhal, ; Anand Ranganathan, ; Shailja Singh,
| | - Shailja Singh
- *Correspondence: Jhalak Singhal, ; Anand Ranganathan, ; Shailja Singh,
| |
Collapse
|