51
|
Abstract
In the eukaryotic nucleus, processes of DNA metabolism such as transcription, DNA replication, and repair occur in the context of DNA packaged into nucleosomes and higher order chromatin structures. In order to overcome the barrier presented by chromatin structures to the protein machinery carrying out these processes, the cell relies on a class of enzymes called chromatin remodeling complexes which catalyze ATP-dependent restructuring and repositioning of nucleosomes. Chromatin remodelers are large multi-subunit complexes which all share a common SF2 helicase ATPase domain in their catalytic subunit, and are classified into four different families-SWI/SNF, ISWI, CHD, INO80-based on the arrangement of other domains in their catalytic subunit as well as their non-catalytic subunit composition. A large body of structural, biochemical, and biophysical evidence suggests chromatin remodelers operate as histone octamer-anchored directional DNA translocases in order to disrupt DNA-histone interactions and catalyze nucleosome sliding. Remodeling mechanisms are family-specific and depend on factors such as how the enzyme engages with nucleosomal and linker DNA, features of DNA loop intermediates, specificity for mono- or oligonucleosomal substrates, and ability to remove histones and exchange histone variants. Ultimately, the biological function of chromatin remodelers and their genomic targeting in vivo is regulated by each complex's subunit composition, association with chromatin modifiers and histone chaperones, and affinity for chromatin signals such as histone posttranslational modifications.
Collapse
|
52
|
Beyer DC, Ghoneim MK, Spies M. Structure and Mechanisms of SF2 DNA Helicases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:47-73. [PMID: 23161006 DOI: 10.1007/978-1-4614-5037-5_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Effective transcription, replication, and maintenance of the genome require a diverse set of molecular machines to perform the many chemical transactions that constitute these processes. Many of these machines use single-stranded nucleic acids as templates, and their actions are often regulated by the participation of nucleic acids in multimeric structures and macromolecular assemblies that restrict access to chemical information. Superfamily II (SF2) DNA helicases and translocases are a group of molecular machines that remodel nucleic acid lattices and enable essential cellular processes to use the information stored in the duplex DNA of the packaged genome. Characteristic accessory domains associated with the subgroups of the superfamily direct the activity of the common motor core and expand the repertoire of activities and substrates available to SF2 DNA helicases, translocases, and large multiprotein complexes containing SF2 motors. In recent years, single-molecule studies have contributed extensively to the characterization of this ubiquitous and essential class of enzymes.
Collapse
Affiliation(s)
- David C Beyer
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | |
Collapse
|
53
|
Abstract
The SWI/SNF chromatin remodeling complex changes the positions where nucleosomes are bound to DNA, exchanges out histone dimers, and disassembles nucleosomes. All of these activities depend on ATP hydrolysis by the catalytic subunit Snf2, containing a DNA-dependent ATPase domain. Here we examine the role of another domain in Snf2 called SnAC (Snf2 ATP coupling) that was shown previously to regulate the ATPase activity of SWI/SNF. We have found that SnAC has another function besides regulation of ATPase activity that is even more critical for nucleosome remodeling by SWI/SNF. We have found that deletion of the SnAC domain strongly uncouples ATP hydrolysis from nucleosome movement. Deletion of SnAC does not adversely affect the rate, processivity, or pulling force of SWI/SNF to translocate along free DNA in an ATP-dependent manner. The uncoupling of ATP hydrolysis from nucleosome movement is shown to be due to loss of SnAC binding to the histone surface of nucleosomes. While the SnAC domain targets both the ATPase domain and histones, the SnAC domain as a histone anchor plays a more critical role in remodeling because it is required to convert DNA translocation into nucleosome movement.
Collapse
|
54
|
Choy JS, Lee TH. Structural dynamics of nucleosomes at single-molecule resolution. Trends Biochem Sci 2012; 37:425-35. [PMID: 22831768 DOI: 10.1016/j.tibs.2012.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 06/22/2012] [Accepted: 06/29/2012] [Indexed: 11/29/2022]
Abstract
The detailed mechanisms of how DNA that is assembled around a histone core can be accessed by DNA-binding proteins for transcription, replication, or repair, remain elusive nearly 40 years after Kornberg's nucleosome model was proposed. Uncovering the structural dynamics of nucleosomes is a crucial step in elucidating the mechanisms regulating genome accessibility. This requires the deconvolution of multiple structural states within an ensemble. Recent advances in single-molecule methods enable unprecedented efficiency in examining subpopulation dynamics. In this review, we summarize studies of nucleosome structure and dynamics from single-molecule approaches and how they advance our understanding of the mechanisms that govern DNA transactions.
Collapse
Affiliation(s)
- John S Choy
- Department of Physics, Bio-X Program, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
55
|
Abstract
Superfamily 2 helicases are involved in all aspects of RNA metabolism, and many steps in DNA metabolism. This review focuses on the basic mechanistic, structural and biological properties of each of the families of helicases within superfamily 2. There are ten separate families of helicases within superfamily 2, each playing specific roles in nucleic acid metabolism. The mechanisms of action are diverse, as well as the effect on the nucleic acid. Some families translocate on single-stranded nucleic acid and unwind duplexes, some unwind double-stranded nucleic acids without translocation, and some translocate on double-stranded or single-stranded nucleic acids without unwinding.
Collapse
Affiliation(s)
- Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | |
Collapse
|
56
|
Garai A, Mani J, Chowdhury D. Footprint traversal by adenosine-triphosphate-dependent chromatin remodeler motor. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:041902. [PMID: 22680493 DOI: 10.1103/physreve.85.041902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Indexed: 06/01/2023]
Abstract
Adenosine-triphosphate (ATP)-dependent chromatin remodeling enzymes (CREs) are biomolecular motors in eukaryotic cells. These are driven by a chemical fuel, namely, ATP. CREs actively participate in many cellular processes that require accessibility of specific segments of DNA which are packaged as chromatin. The basic unit of chromatin is a nucleosome where 146 bp ∼ 50 nm of a double-stranded DNA (dsDNA) is wrapped around a spool formed by histone proteins. The helical path of histone-DNA contact on a nucleosome is also called "footprint." We investigate the mechanism of footprint traversal by a CRE that translocates along the dsDNA. Our two-state model of a CRE captures effectively two distinct chemical (or conformational) states in the mechanochemical cycle of each ATP-dependent CRE. We calculate the mean time of traversal. Our predictions on the ATP dependence of the mean traversal time can be tested by carrying out in vitro experiments on mononucleosomes.
Collapse
Affiliation(s)
- Ashok Garai
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | | | |
Collapse
|
57
|
ATP-independent cooperative binding of yeast Isw1a to bare and nucleosomal DNA. PLoS One 2012; 7:e31845. [PMID: 22359636 PMCID: PMC3281020 DOI: 10.1371/journal.pone.0031845] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 01/13/2012] [Indexed: 12/26/2022] Open
Abstract
Among chromatin remodeling factors, the ISWI family displays a nucleosome-enhanced ATPase activity coupled to DNA translocation. While these enzymes are known to bind to DNA, their activity has not been fully characterized. Here we use TEM imaging and single molecule manipulation to investigate the interaction between DNA and yeast Isw1a. We show that Isw1a displays a highly cooperative ATP-independent binding to and bridging between DNA segments. Under appropriate tension, rare single nucleation events can sometimes be observed and loop DNA with a regular step. These nucleation events are often followed by binding of successive complexes bridging between nearby DNA segments in a zipper-like fashion, as confirmed by TEM observations. On nucleosomal substrates, we show that the specific ATP-dependent remodeling activity occurs in the context of cooperative Isw1a complexes bridging extranucleosomal DNA. Our results are interpreted in the context of the recently published partial structure of Isw1a and support its acting as a “protein ruler” (with possibly more than one tick).
Collapse
|
58
|
Moyle-Heyrman G, Viswanathan R, Widom J, Auble DT. Two-step mechanism for modifier of transcription 1 (Mot1) enzyme-catalyzed displacement of TATA-binding protein (TBP) from DNA. J Biol Chem 2012; 287:9002-12. [PMID: 22298788 DOI: 10.1074/jbc.m111.333484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The TATA box binding protein (TBP) is a central component of the transcription preinitiation complex, and its occupancy at a promoter is correlated with transcription levels. The TBP-promoter DNA complex contains sharply bent DNA and its interaction lifetime is limited by the ATP-dependent TBP displacement activity of the Snf2/Swi2 ATPase Mot1. Several mechanisms for Mot1 action have been proposed, but how it catalyzes TBP removal from DNA is unknown. To better understand the Mot1 mechanism, native gel electrophoresis and FRET were used to determine how Mot1 affects the trajectory of DNA in the TBP-DNA complex. Strikingly, in the absence of ATP, Mot1 acts to unbend DNA, whereas TBP remains closely associated with the DNA in a stable Mot1-TBP-DNA ternary complex. Interestingly, and in contrast to full-length Mot1, the isolated Mot1 ATPase domain binds DNA, and its affinity for DNA is nucleotide-dependent, suggesting parallels between the Mot1 mechanism and DNA translocation-based mechanisms of chromatin remodeling enzymes. Based on these findings, a model is presented for Mot1 that links a DNA conformational change with ATP-induced DNA translocation.
Collapse
|
59
|
Monitoring conformational dynamics with single-molecule fluorescence energy transfer: applications in nucleosome remodeling. Methods Enzymol 2012; 513:59-86. [PMID: 22929765 PMCID: PMC5023429 DOI: 10.1016/b978-0-12-391938-0.00003-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Due to its ability to track distance changes within individual molecules or molecular complexes on the nanometer scale and in real time, single-molecule fluorescence resonance energy transfer (single-molecule FRET) is a powerful tool to tackle a wide range of important biological questions. Using our recently developed single-molecule FRET assay to monitor nucleosome translocation as an illustrative example, we describe here in detail how to set up, carry out, and analyze single-molecule FRET experiments that provide time-dependent information on biomolecular processes.
Collapse
|
60
|
Chambers AL, Downs JA. The RSC and INO80 chromatin-remodeling complexes in DNA double-strand break repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:229-61. [PMID: 22749148 DOI: 10.1016/b978-0-12-387665-2.00009-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In eukaryotes, DNA is packaged into chromatin and is therefore relatively inaccessible to DNA repair enzymes. In order to perform efficient DNA repair, ATP-dependent chromatin-remodeling enzymes are required to alter the chromatin structure near the site of damage to facilitate processing and allow access to repair enzymes. Two of the best-studied remodeling complexes involved in repair are RSC (Remodels the Structure of Chromatin) and INO80 from Saccharomyces cerevisiae, which are both conserved in higher eukaryotes. RSC is very rapidly recruited to breaks and mobilizes nucleosomes to promote phosphorylation of H2A S129 and resection. INO80 enrichment at a break occurs later and is dependent on phospho-S129 H2A. INO80 activity at the break site also facilitates resection. Consequently, both homologous recombination and nonhomologous end-joining are defective in rsc mutants, while subsets of these repair pathways are affected in ino80 mutants.
Collapse
Affiliation(s)
- Anna L Chambers
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom
| | | |
Collapse
|
61
|
Lionnet T, Allemand JF, Revyakin A, Strick TR, Saleh OA, Bensimon D, Croquette V. Single-molecule studies using magnetic traps. Cold Spring Harb Protoc 2012; 2012:34-49. [PMID: 22194259 DOI: 10.1101/pdb.top067488] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In recent years, techniques have been developed to study and manipulate single molecules of DNA and other biopolymers. In one such technique, the magnetic trap, a single DNA molecule is bound at one end to a glass surface and at the other to a magnetic microbead. Small magnets, whose position and rotation can be controlled, pull on and rotate the microbead. This provides a simple method to stretch and twist the molecule. The system allows one to apply and measure forces ranging from 10(-3) to >100 pN. In contrast to other techniques, the force measurement is absolute and does not require calibration of the sensor. In this article, we describe the principle of the magnetic trap, as well as its use in the measurement of the elastic properties of DNA and the study of DNA-protein interactions.
Collapse
|
62
|
Killian JL, Li M, Sheinin MY, Wang MD. Recent advances in single molecule studies of nucleosomes. Curr Opin Struct Biol 2011; 22:80-7. [PMID: 22172540 DOI: 10.1016/j.sbi.2011.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/07/2011] [Accepted: 11/09/2011] [Indexed: 01/14/2023]
Abstract
As the fundamental packing units of DNA in eukaryotes, nucleosomes play a central role in governing DNA accessibility in a variety of cellular processes. Our understanding of the mechanisms underlying this complex regulation has been aided by unique structural and dynamic perspectives offered by single molecule techniques. Recent years have witnessed remarkable advances achieved using these techniques, including the generation of a detailed histone-DNA energy landscape, elucidation of nucleosome disassembly processes, and real-time monitoring of molecular motors interacting with nucleosomes. These and other highlights of single molecule nucleosome studies will be discussed in this review.
Collapse
Affiliation(s)
- Jessica L Killian
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
63
|
Lavelle C, Praly E, Bensimon D, Le Cam E, Croquette V. Nucleosome-remodelling machines and other molecular motors observed at the single-molecule level. FEBS J 2011; 278:3596-607. [DOI: 10.1111/j.1742-4658.2011.08280.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
64
|
Viswanathan R, Auble DT. One small step for Mot1; one giant leap for other Swi2/Snf2 enzymes? BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:488-96. [PMID: 21658482 PMCID: PMC3171519 DOI: 10.1016/j.bbagrm.2011.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/14/2011] [Accepted: 05/20/2011] [Indexed: 12/13/2022]
Abstract
The TATA-binding protein (TBP) is a major target for transcriptional regulation. Mot1, a Swi2/Snf2-related ATPase, dissociates TBP from DNA in an ATP dependent process. The experimental advantages of this relatively simple reaction have been exploited to learn more about how Swi2/Snf2 ATPases function biochemically. However, many unanswered questions remain and fundamental aspects of the Mot1 mechanism are still under debate. Here, we review the available data and integrate the results with structural and biochemical studies of related enzymes to derive a model for Mot1's catalytic action consistent with the broad literature on enzymes in this family. We propose that the Mot1 ATPase domain is tethered to TBP by a flexible, spring-like linker of alpha helical hairpins. The linker juxtaposes the ATPase domain such that it can engage duplex DNA on one side of the TBP-DNA complex. This allows the ATPase to employ short-range, nonprocessive ATP-driven DNA tracking to pull or push TBP off its DNA site. DNA translocation is a conserved property of ATPases in the broader enzyme family. As such, the model explains how a structurally and functionally conserved ATPase domain has been put to use in a very different context than other enzymes in the Swi2/Snf2 family. This article is part of a Special Issue entitled:Snf2/Swi2 ATPase structure and function.
Collapse
Affiliation(s)
- Ramya Viswanathan
- Department of Biochemistry and Molecular Genetics, Box 800733 Jordan Hall, University of Virginia Health System, Charlottesville, VA 22908
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, Box 800733 Jordan Hall, University of Virginia Health System, Charlottesville, VA 22908
| |
Collapse
|
65
|
Hota SK, Bartholomew B. Diversity of operation in ATP-dependent chromatin remodelers. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:476-87. [PMID: 21616185 PMCID: PMC3171594 DOI: 10.1016/j.bbagrm.2011.05.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/28/2011] [Accepted: 05/09/2011] [Indexed: 12/20/2022]
Abstract
Chromatin is actively restructured by a group of proteins that belong to the family of ATP-dependent DNA translocases. These chromatin remodelers can assemble, relocate or remove nucleosomes, the fundamental building blocks of chromatin. The family of ATP-dependent chromatin remodelers has many properties in common, but there are also important differences that may account for their varying roles in the cell. Some of the important characteristics of these complexes have begun to be revealed such as their interactions with chromatin and their mechanism of operation. The different domains of chromatin remodelers are discussed in terms of their targets and functional roles in mobilizing nucleosomes. The techniques that have driven these findings are discussed and how these have helped develop the current models for how nucleosomes are remodeled. This article is part of a Special Issue entitled: Snf2/Swi2 ATPase structure and function.
Collapse
Affiliation(s)
| | - Blaine Bartholomew
- Department of Biochemistry & Molecular Biology, 1245 Lincoln Drive Rm 229C, Southern Illinois University School of Medicine, Carbondale, IL 62901-4413
| |
Collapse
|
66
|
SWI/SNF- and RSC-catalyzed nucleosome mobilization requires internal DNA loop translocation within nucleosomes. Mol Cell Biol 2011; 31:4165-75. [PMID: 21859889 DOI: 10.1128/mcb.05605-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multisubunit SWI/SNF and RSC complexes utilize energy derived from ATP hydrolysis to mobilize nucleosomes and render the DNA accessible for various nuclear processes. Here we test the idea that remodeling involves intermediates with mobile DNA bulges or loops within the nucleosome by cross-linking the H2A N- or C-terminal tails together to generate protein "loops" that constrict separation of the DNA from the histone surface. Analyses indicate that this intranucleosomal cross-linking causes little or no change in remodeling-dependent exposure of DNA sequences within the nucleosome to restriction enzymes. However, cross-linking inhibits nucleosome mobilization and blocks complete movement of nucleosomes to extreme end positions on the DNA fragments. These results are consistent with evidence that nucleosome remodeling involves intermediates with DNA loops on the nucleosome surface but indicate that such loops do not freely diffuse about the surface of the histone octamer. We propose a threading model for movement of DNA loops around the perimeter of the nucleosome core.
Collapse
|
67
|
Mitson M, Kelley LA, Sternberg MJE, Higgs DR, Gibbons RJ. Functional significance of mutations in the Snf2 domain of ATRX. Hum Mol Genet 2011; 20:2603-10. [PMID: 21505078 DOI: 10.1093/hmg/ddr163] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ATRX is a member of the Snf2 family of chromatin-remodelling proteins and is mutated in an X-linked mental retardation syndrome associated with alpha-thalassaemia (ATR-X syndrome). We have carried out an analysis of 21 disease-causing mutations within the Snf2 domain of ATRX by quantifying the expression of the ATRX protein and placing all missense mutations in their structural context by homology modelling. While demonstrating the importance of protein dosage to the development of ATR-X syndrome, we also identified three mutations which primarily affect function rather than protein structure. We show that all three of these mutant proteins are defective in translocating along DNA while one mutant, uniquely for a human disease-causing mutation, partially uncouples adenosine triphosphate (ATP) hydrolysis from DNA binding. Our results highlight important mechanistic aspects in the development of ATR-X syndrome and identify crucial functional residues within the Snf2 domain of ATRX. These findings are important for furthering our understanding of how ATP hydrolysis is harnessed as useful work in chromatin remodelling proteins and the wider family of nucleic acid translocating motors.
Collapse
Affiliation(s)
- Matthew Mitson
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | |
Collapse
|
68
|
Sirinakis G, Clapier CR, Gao Y, Viswanathan R, Cairns BR, Zhang Y. The RSC chromatin remodelling ATPase translocates DNA with high force and small step size. EMBO J 2011; 30:2364-72. [PMID: 21552204 DOI: 10.1038/emboj.2011.141] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 04/04/2011] [Indexed: 11/09/2022] Open
Abstract
ATP-dependent chromatin remodelling complexes use the energy of ATP hydrolysis to reposition and reconfigure nucleosomes. Despite their diverse functions, all remodellers share highly conserved ATPase domains, many shown to translocate DNA. Understanding remodelling requires biophysical knowledge of the DNA translocation process: how the ATPase moves DNA and generates force, and how translocation and force generation are coupled on nucleosomes. Here, we characterize the real-time activity of a minimal RSC translocase 'motor' on bare DNA, using high-resolution optical tweezers and a 'tethered' translocase system. We observe on dsDNA a processivity of ∼35 bp, a speed of ∼25 bp/s, and a step size of 2.0 (±0.4, s.e.m.) bp. Surprisingly, the motor is capable of moving against high force, up to 30 pN, making it one of the most force-resistant motors known. We also provide evidence for DNA 'buckling' at initiation. These observations reveal the ATPase as a powerful DNA translocating motor capable of disrupting DNA-histone interactions by mechanical force.
Collapse
Affiliation(s)
- George Sirinakis
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | |
Collapse
|
69
|
Mosconi F, Allemand JF, Croquette V. Soft magnetic tweezers: a proof of principle. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:034302. [PMID: 21456769 DOI: 10.1063/1.3531959] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present here the principle of soft magnetic tweezers which improve the traditional magnetic tweezers allowing the simultaneous application and measurement of an arbitrary torque to a deoxyribonucleic acid (DNA) molecule. They take advantage of a nonlinear coupling regime that appears when a fast rotating magnetic field is applied to a superparamagnetic bead immersed in a viscous fluid. In this work, we present the development of the technique and we compare it with other techniques capable of measuring the torque applied to the DNA molecule. In this proof of principle, we use standard electromagnets to achieve our experiments. Despite technical difficulties related to the present implementation of these electromagnets, the agreement of measurements with previous experiments is remarkable. Finally, we propose a simple way to modify the experimental design of electromagnets that should bring the performances of the device to a competitive level.
Collapse
Affiliation(s)
- Francesco Mosconi
- LPS-ENS, UMR 8550 CNRS, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
70
|
Diesinger PM, Kunkel S, Langowski J, Heermann DW. Histone depletion facilitates chromatin loops on the kilobasepair scale. Biophys J 2010; 99:2995-3001. [PMID: 21044597 PMCID: PMC2965941 DOI: 10.1016/j.bpj.2010.08.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 08/03/2010] [Accepted: 08/05/2010] [Indexed: 11/19/2022] Open
Abstract
The packing of eukaryotic DNA in the nucleus is decisive for its function; for instance, contact between remote genome sites constitutes a basic feature of gene regulation. Interactions among regulatory proteins, DNA binding, and transcription activation are facilitated by looping of the intervening chromatin. Such long-range interactions depend on the bending flexibility of chromatin, i.e., the ring-closure probability is a directly measurable indicator of polymer flexibility. The applicability of a wormlike chain model to naked DNA has been widely accepted. However, whether this model also suffices to describe the flexibility of eukaryotic interphase chromatin is still a matter of discussion. Here we compare both 5C data from a gene desert and data from fluorescence in situ hybridization with the results of a Monte Carlo simulation of chromatin fibers with and without histone depletion. We then estimate the ring-closure probabilities of simulated fibers with estimates from analytical calculations and show that the wormlike chain model grossly underestimates chromatin flexibility for sharp bends. Most importantly, we find that only fibers with random depletion of linker histones or nucleosomes can explain the probability of random chromatin contacts on small length scales that play an important role in gene regulation. It is possible that missing linker histones and nucleosomes are not just simple, unavoidable, randomly occurring defects, but instead play a regulatory role in gene expression.
Collapse
Affiliation(s)
- Philipp M Diesinger
- Institut für Theoretische Physik, Universität Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
71
|
Ufer C, Wang CC, Borchert A, Heydeck D, Kuhn H. Redox control in mammalian embryo development. Antioxid Redox Signal 2010; 13:833-75. [PMID: 20367257 DOI: 10.1089/ars.2009.3044] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development of an embryo constitutes a complex choreography of regulatory events that underlies precise temporal and spatial control. Throughout this process the embryo encounters ever changing environments, which challenge its metabolism. Oxygen is required for embryogenesis but it also poses a potential hazard via formation of reactive oxygen and reactive nitrogen species (ROS/RNS). These metabolites are capable of modifying macromolecules (lipids, proteins, nucleic acids) and altering their biological functions. On one hand, such modifications may have deleterious consequences and must be counteracted by antioxidant defense systems. On the other hand, ROS/RNS function as essential signal transducers regulating the cellular phenotype. In this context the combined maternal/embryonic redox homeostasis is of major importance and dysregulations in the equilibrium of pro- and antioxidative processes retard embryo development, leading to organ malformation and embryo lethality. Silencing the in vivo expression of pro- and antioxidative enzymes provided deeper insights into the role of the embryonic redox equilibrium. Moreover, novel mechanisms linking the cellular redox homeostasis to gene expression regulation have recently been discovered (oxygen sensing DNA demethylases and protein phosphatases, redox-sensitive microRNAs and transcription factors, moonlighting enzymes of the cellular redox homeostasis) and their contribution to embryo development is critically reviewed.
Collapse
Affiliation(s)
- Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin-Charité, Berlin, FR Germany
| | | | | | | | | |
Collapse
|
72
|
Abstract
Topological properties of DNA influence its mechanical and biochemical interactions. Genomic DNA is maintained in a state of topological homeostasis by topoisomerases and is subjected to mechanical stress arising from replication and segregation. Despite their fundamental roles, the effects of topology and force have been difficult to ascertain. Developments in single-molecule manipulation techniques have enabled precise control and measurement of the topology of individual DNA molecules under tension. This minireview provides an overview of these single-molecule techniques and illustrates their unique capabilities through a number of specific examples of single-molecule measurements of DNA topology and topoisomerase activity.
Collapse
Affiliation(s)
- Keir C Neuman
- Laboratory of Molecular Biophysics, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
73
|
Finzi L, Dunlap DD. Single-molecule approaches to probe the structure, kinetics, and thermodynamics of nucleoprotein complexes that regulate transcription. J Biol Chem 2010; 285:18973-8. [PMID: 20382734 PMCID: PMC2885173 DOI: 10.1074/jbc.r109.062612] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single-molecule experimentation has contributed significantly to our understanding of the mechanics of nucleoprotein complexes that regulate epigenetic switches. In this minireview, we will discuss the application of the tethered-particle motion technique, magnetic tweezers, and atomic force microscopy to (i) directly visualize and thermodynamically characterize DNA loops induced by the lac, gal, and lambda repressors and (ii) understand the mechanistic role of DNA-supercoiling and DNA-bending cofactors in both prokaryotic and eukaryotic systems.
Collapse
|
74
|
Diesinger PM, Heermann DW. Monte Carlo Simulations indicate that Chromati: Nanostructure is accessible by Light Microscopy. PMC BIOPHYSICS 2010; 3:11. [PMID: 20537131 PMCID: PMC2911407 DOI: 10.1186/1757-5036-3-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 06/10/2010] [Indexed: 12/20/2022]
Abstract
A long controversy exists about the structure of chromatin. Theoretically, this structure could be resolved by scattering experiments if one determines the scattering function - or equivalently the pair distribution function - of the nucleosomes. Unfortunately, scattering experiments with live cells are very difficult and limited to only a couple of nucleosomes.Nevertheless, new techniques like the high-resolution light microscopy supply a new approach to this problem. In this work we determine the radial pair distribution function of chromatin described by our E2A model and find that the dominant peaks which characterize the chromatin structure are very robust in several ways: They can still be identified in the case of chromatin fibers with reasonable linker histone and nucleosome defect rates as well as in the 2D case after a projection like in most high-res light microscopy experiments. This might initiate new experimental approaches like optical microscopy to finally determine the nanostructure of chromatin.Furthermore, we examine the statistics of random chromatin collisions and compare it with 5C data of a gene desert. We find that only chromatin fibers with histone depletion show a significant amount of contacts on the kbp-scale which play a important role in gene regulation. Therefore, linker histone and nucleosome depletion might not only be chromatin defects but even be necessary to facilitate transcription.PACS codes: 82.35.Pq, 87.16.A-, 87.16.af.
Collapse
Affiliation(s)
- Philipp M Diesinger
- Institut für Theoretische Physik Universität Heidelberg Philosophenweg 19 D-69120 Heidelberg Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen der Universität Heidelberg Germany
| | - Dieter W Heermann
- Institut für Theoretische Physik Universität Heidelberg Philosophenweg 19 D-69120 Heidelberg Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen der Universität Heidelberg Germany
| |
Collapse
|
75
|
Travers A, Hiriart E, Churcher M, Caserta M, Di Mauro E. The DNA sequence-dependence of nucleosome positioning in vivo and in vitro. J Biomol Struct Dyn 2010; 27:713-24. [PMID: 20232928 PMCID: PMC2864905 DOI: 10.1080/073911010010524942] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The contribution of histone-DNA interactions to nucleosome positioning in vivo is currently a matter of debate. We argue here that certain nucleosome positions, often in promoter regions, in yeast may be, at least in part, specified by the DNA sequence. In contrast other positions may be poorly specified. Positioning thus has both statistical and DNA-determined components. We further argue that the relative affinity of the octamer for different DNA sequences can vary and therefore the interaction of histones with the DNA is a 'tunable' property.
Collapse
Affiliation(s)
- Andrew Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| | | | | | | | | |
Collapse
|
76
|
Dechassa ML, Sabri A, Pondugula S, Kassabov SR, Chatterjee N, Kladde MP, Bartholomew B. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes. Mol Cell 2010; 38:590-602. [PMID: 20513433 PMCID: PMC3161732 DOI: 10.1016/j.molcel.2010.02.040] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/26/2009] [Accepted: 02/22/2010] [Indexed: 01/12/2023]
Abstract
The ATP-dependent chromatin remodeling complex SWI/SNF regulates transcription and has been implicated in promoter nucleosome eviction. Efficient nucleosome disassembly by SWI/SNF alone in biochemical assays, however, has not been directly observed. Employing a model system of dinucleosomes rather than mononucleosomes, we demonstrate that remodeling leads to ordered and efficient disassembly of one of the two nucleosomes. An H2A/H2B dimer is first rapidly displaced, and then, in a slower reaction, an entire histone octamer is lost. Nucleosome disassembly by SWI/SNF did not require additional factors such as chaperones or acceptors of histones. Observations in single molecules as well as bulk measurement suggest that a key intermediate in this process is one in which a nucleosome is moved toward the adjacent nucleosome. SWI/SNF recruited by the transcriptional activator Gal4-VP16 preferentially mobilizes the proximal nucleosome and destabilizes the adjacent nucleosome.
Collapse
Affiliation(s)
- Mekonnen Lemma Dechassa
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901-4413, USA
| | - Abdellah Sabri
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901-4413, USA
| | - Santhi Pondugula
- Department of Biochemistry and Molecular Biology and UF Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, University of Florida College of Medicine, 1376 Mowry Road, Box 103633, Gainesville, Florida 32610-3633, USA
| | - Stefan R. Kassabov
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901-4413, USA
| | - Nilanjana Chatterjee
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901-4413, USA
| | - Michael P. Kladde
- Department of Biochemistry and Molecular Biology and UF Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, University of Florida College of Medicine, 1376 Mowry Road, Box 103633, Gainesville, Florida 32610-3633, USA
| | - Blaine Bartholomew
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901-4413, USA
| |
Collapse
|
77
|
Chromatin fiber dynamics under tension and torsion. Int J Mol Sci 2010; 11:1557-79. [PMID: 20480035 PMCID: PMC2871131 DOI: 10.3390/ijms11041557] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/20/2010] [Accepted: 03/19/2010] [Indexed: 01/22/2023] Open
Abstract
Genetic and epigenetic information in eukaryotic cells is carried on chromosomes, basically consisting of large compact supercoiled chromatin fibers. Micromanipulations have recently led to great advances in the knowledge of the complex mechanisms underlying the regulation of DNA transaction events by nucleosome and chromatin structural changes. Indeed, magnetic and optical tweezers have allowed opportunities to handle single nucleosomal particles or nucleosomal arrays and measure their response to forces and torques, mimicking the molecular constraints imposed in vivo by various molecular motors acting on the DNA. These challenging technical approaches provide us with deeper understanding of the way chromatin dynamically packages our genome and participates in the regulation of cellular metabolism.
Collapse
|
78
|
Abstract
Results from biochemical and structural studies of the RSC chromatin-remodeling complex prompt a proposal for the remodeling mechanism: RSC binding to the nucleosome releases the DNA from the histone surface and initiates DNA translocation (through one or a small number of DNA base pairs); ATP binding completes translocation, and ATP hydrolysis resets the system. Binding energy thus plays a central role in the remodeling process. RSC may disrupt histone-DNA contacts by affecting histone octamer conformation and through extensive interaction with the DNA. Bulging of the DNA from the octamer surface is possible, and twisting is unavoidable, but neither is the basis of remodeling.
Collapse
|
79
|
Remosomes: RSC generated non-mobilized particles with approximately 180 bp DNA loosely associated with the histone octamer. Proc Natl Acad Sci U S A 2010; 107:1936-41. [PMID: 20080697 DOI: 10.1073/pnas.0904497107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin remodelers are sophisticated nano-machines that are able to alter histone-DNA interactions and to mobilize nucleosomes. Neither the mechanism of their action nor the conformation of the remodeled nucleosomes are, however, yet well understood. We have studied the mechanism of Remodels Structure of Chromatin (RSC)-nucleosome mobilization by using high-resolution microscopy and biochemical techniques. Atomic force microscopy and electron cryomicroscopy (EC-M) analyses show that two types of products are generated during the RSC remodeling: (i) stable non-mobilized particles, termed remosomes that contain about 180 bp of DNA associated with the histone octamer and, (ii) mobilized particles located at the end of DNA. EC-M reveals that individual remosomes exhibit a distinct, variable, highly-irregular DNA trajectory. The use of the unique "one pot assays" for studying the accessibility of nucleosomal DNA towards restriction enzymes, DNase I footprinting and ExoIII mapping demonstrate that the histone-DNA interactions within the remosomes are strongly perturbed, particularly in the vicinity of the nucleosome dyad. The data suggest a two-step mechanism of RSC-nucleosome remodeling consisting of an initial formation of a remosome followed by mobilization. In agreement with this model, we show experimentally that the remosomes are intermediate products generated during the first step of the remodeling reaction that are further efficiently mobilized by RSC.
Collapse
|
80
|
Bowman GD. Mechanisms of ATP-dependent nucleosome sliding. Curr Opin Struct Biol 2010; 20:73-81. [PMID: 20060707 DOI: 10.1016/j.sbi.2009.12.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 10/20/2022]
Abstract
Chromatin remodelers are multifunctional protein machines that use a conserved ATPase motor to slide nucleosomes along DNA. Nucleosome sliding has been proposed to occur through two mechanisms: twist diffusion and loop/bulge propagation. A central idea for both of these models is that a DNA distortion propagates over the surface of the nucleosome. Recent data from biochemical and single-molecule experiments have expanded our understanding of histone-DNA and remodeler-nucleosome interactions, and called into question some of the basic assumptions on which these models were originally based. Advantages and challenges of several nucleosome sliding models are discussed.
Collapse
Affiliation(s)
- Gregory D Bowman
- T C Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218-2685, USA.
| |
Collapse
|
81
|
Dynamics of nucleosome remodelling by individual ACF complexes. Nature 2010; 462:1022-7. [PMID: 20033040 PMCID: PMC2835771 DOI: 10.1038/nature08627] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 11/02/2009] [Indexed: 11/30/2022]
Abstract
The ATP-utilizing chromatin assembly and remodelling factor (ACF) functions to generate regularly spaced nucleosomes, which are required for heritable gene silencing. The mechanism by which ACF mobilizes nucleosomes remains poorly understood. Here we report a single-molecule FRET study that monitors the remodelling of individual nucleosomes by ACF in real time, revealing previously unknown remodelling intermediates and dynamics. In the presence of ACF and ATP, the nucleosomes exhibit gradual translocation along DNA interrupted by well-defined kinetic pauses that occurred after approximately 7 or 3 – 4 base pairs of translocation. The binding of ACF, translocation of DNA, and exiting of translocation pauses are all ATP-dependent, revealing three distinct functional roles of ATP during remodelling. At equilibrium, a continuously bound ACF complex can move the nucleosome back-and-forth many times before dissociation, indicating that ACF is a highly processive and bidirectional nucleosome translocase.
Collapse
|
82
|
Fischer CJ, Yamada K, Fitzgerald DJ. Kinetic mechanism for single-stranded DNA binding and translocation by Saccharomyces cerevisiae Isw2. Biochemistry 2009; 48:2960-8. [PMID: 19203228 DOI: 10.1021/bi8021153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chromatin remodeling complex Isw2 from Saccharomyces cerevisiae (yIsw2) mobilizes nucleosomes through an ATP-dependent reaction that is coupled to the translocation of the helicase domain of the enzyme along intranucleosomal DNA. In this study, we demonstrate that yIsw2 is capable of translocating along single-stranded DNA in a reaction that is coupled to ATP hydrolysis. We propose that single-stranded DNA translocation by yIsw2 occurs through a series of repeating uniform steps with an overall macroscopic processivity (P) of 0.90 +/- 0.02, corresponding to an average translocation distance of 20 +/- 2 nucleotides before dissociation. This processivity corresponds well to the processivity of nucleosome sliding by yIsw2, thus arguing that single-stranded DNA translocation or tracking may be fundamental to the double-stranded DNA translocation required for effective nucleosome mobilization. Furthermore, we find evidence that a slow initiation process, following DNA binding, may be required to make yIsw2 competent for DNA translocation. We also provide evidence that this slow initiation process may correspond to the second step of a two-step DNA binding mechanism by yIsw2 and a quantitative description of the kinetics of this DNA binding mechanism.
Collapse
Affiliation(s)
- Christopher J Fischer
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, 1082 Malott Hall, Lawrence, Kansas 66045, USA.
| | | | | |
Collapse
|
83
|
The structure-function link of compensated chromatin in Drosophila. Curr Opin Genet Dev 2009; 19:550-6. [PMID: 19880310 DOI: 10.1016/j.gde.2009.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/04/2009] [Accepted: 10/07/2009] [Indexed: 01/26/2023]
Abstract
All the aspects of transcription are controlled by complexes that modify or remodel chromatin at the level of individual genes, gene clusters, or whole chromosomes. The MSL complex that is responsible for dosage compensation in Drosophila is an example of complexes that operate at the whole-chromosome level on the transcription of individual genes. Recent experiments using traditional genetic analysis, molecular cytology, chromatin immunoprecipitation, or microarray technology have characterized the function of the two known enzymatic components of the MSL core complex and have identified the sequence characteristics that allow spreading of the complex along the X chromosome and a specific histone modification of active X-linked genes to which it is attracted. Further progress in understanding the function of this complex will benefit from biophysical approaches.
Collapse
|
84
|
Diesinger PM, Heermann DW. Depletion effects massively change chromatin properties and influence genome folding. Biophys J 2009; 97:2146-53. [PMID: 19843447 PMCID: PMC2764066 DOI: 10.1016/j.bpj.2009.06.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/21/2009] [Accepted: 06/05/2009] [Indexed: 11/19/2022] Open
Abstract
We present a Monte Carlo model for genome folding at the 30-nm scale with focus on linker-histone and nucleosome depletion effects. We find that parameter distributions from experimental data do not lead to one specific chromatin fiber structure, but instead to a distribution of structures in the chromatin phase diagram. Depletion of linker histones and nucleosomes affects, massively, the flexibility and the extension of chromatin fibers. Increasing the amount of nucleosome skips (i.e., nucleosome depletion) can lead either to a collapse or to a swelling of chromatin fibers. These opposing effects are discussed and we show that depletion effects may even contribute to chromatin compaction. Furthermore, we find that predictions from experimental data for the average nucleosome skip rate lie exactly in the regime of maximum chromatin compaction. Finally, we determine the pair distribution function of chromatin. This function reflects the structure of the fiber, and its Fourier-transform can be measured experimentally. Our calculations show that even in the case of fibers with depletion effects, the main dominant peaks (characterizing the structure and the length scales) can still be identified.
Collapse
Affiliation(s)
- Philipp M Diesinger
- Institut für Theoretische Physik, Heidelberg University, Heidelberg, Germany.
| | | |
Collapse
|
85
|
Partensky PD, Narlikar GJ. Chromatin remodelers act globally, sequence positions nucleosomes locally. J Mol Biol 2009; 391:12-25. [PMID: 19450608 PMCID: PMC2813840 DOI: 10.1016/j.jmb.2009.04.085] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/19/2009] [Accepted: 04/30/2009] [Indexed: 12/31/2022]
Abstract
The precise placement of nucleosomes has large regulatory effects on gene expression. Recent work suggests that nucleosome placement is regulated in part by the affinity of the underlying DNA sequence for the histone octamer. Nucleosome locations are also regulated by several different ATP-dependent chromatin remodeling enzymes. This raises the question of whether DNA sequence influences the activity of chromatin remodeling enzymes. DNA sequence could most simply regulate nucleosome remodeling through its effect on nucleosome stability. In such a model, unstable nucleosomes would be remodeled faster than stable nucleosomes. It is also possible that certain DNA elements could regulate remodeling by inhibiting the interaction of nucleosomes with the remodeling enzyme. A third possibility is that DNA sequence could regulate the outcome of remodeling by influencing how reaction intermediates collapse into a particular set of stable nucleosomal positions. Here we dissect the contribution from these potential mechanisms to the activities of yeast RSC and human ACF, which are representative members of two major classes of remodeling complexes. We find that varying the histone-DNA affinity over 3 orders of magnitude has negligible effects on the rates of nucleosome remodeling and ATP hydrolysis by these two enzymes. This suggests that the rate-limiting step for nucleosome remodeling may not involve the disruption of histone-DNA contacts. We further find that a specific curved DNA element previously hypothesized to inhibit ACF activity does not inhibit substrate binding or remodeling by ACF. The element, however, does influence the distribution of nucleosome positions generated by ACF. Our data support a model in which remodeling enzymes move nucleosomes to new locations by a general sequence-independent mechanism. However, consequent to the rate-limiting remodeling step, the local DNA sequence promotes a collapse of remodeling intermediates into highly resolved positions that are dictated by thermodynamic differences between adjacent positions.
Collapse
Affiliation(s)
- Peretz D Partensky
- Biophysics Graduate Group, University of California, San Francisco, California 94158
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| |
Collapse
|
86
|
Abstract
The packaging of chromosomal DNA by nucleosomes condenses and organizes the genome, but occludes many regulatory DNA elements. However, this constraint also allows nucleosomes and other chromatin components to actively participate in the regulation of transcription, chromosome segregation, DNA replication, and DNA repair. To enable dynamic access to packaged DNA and to tailor nucleosome composition in chromosomal regions, cells have evolved a set of specialized chromatin remodeling complexes (remodelers). Remodelers use the energy of ATP hydrolysis to move, destabilize, eject, or restructure nucleosomes. Here, we address many aspects of remodeler biology: their targeting, mechanism, regulation, shared and unique properties, and specialization for particular biological processes. We also address roles for remodelers in development, cancer, and human syndromes.
Collapse
Affiliation(s)
- Cedric R Clapier
- Howard Hughes Medical Institute, Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
87
|
van Vugt JJFA, de Jager M, Murawska M, Brehm A, van Noort J, Logie C. Multiple aspects of ATP-dependent nucleosome translocation by RSC and Mi-2 are directed by the underlying DNA sequence. PLoS One 2009; 4:e6345. [PMID: 19626125 PMCID: PMC2710519 DOI: 10.1371/journal.pone.0006345] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/25/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chromosome structure, DNA metabolic processes and cell type identity can all be affected by changing the positions of nucleosomes along chromosomal DNA, a reaction that is catalysed by SNF2-type ATP-driven chromatin remodelers. Recently it was suggested that in vivo, more than 50% of the nucleosome positions can be predicted simply by DNA sequence, especially within promoter regions. This seemingly contrasts with remodeler induced nucleosome mobility. The ability of remodeling enzymes to mobilise nucleosomes over short DNA distances is well documented. However, the nucleosome translocation processivity along DNA remains elusive. Furthermore, it is unknown what determines the initial direction of movement and how new nucleosome positions are adopted. METHODOLOGY/PRINCIPAL FINDINGS We have used AFM imaging and high resolution PAGE of mononucleosomes on 600 and 2500 bp DNA molecules to analyze ATP-dependent nucleosome repositioning by native and recombinant SNF2-type enzymes. We report that the underlying DNA sequence can control the initial direction of translocation, translocation distance, as well as the new positions adopted by nucleosomes upon enzymatic mobilization. Within a strong nucleosomal positioning sequence both recombinant Drosophila Mi-2 (CHD-type) and native RSC from yeast (SWI/SNF-type) repositioned the nucleosome at 10 bp intervals, which are intrinsic to the positioning sequence. Furthermore, RSC-catalyzed nucleosome translocation was noticeably more efficient when beyond the influence of this sequence. Interestingly, under limiting ATP conditions RSC preferred to position the nucleosome with 20 bp intervals within the positioning sequence, suggesting that native RSC preferentially translocates nucleosomes with 15 to 25 bp DNA steps. CONCLUSIONS/SIGNIFICANCE Nucleosome repositioning thus appears to be influenced by both remodeler intrinsic and DNA sequence specific properties that interplay to define ATPase-catalyzed repositioning. Here we propose a successive three-step framework consisting of initiation, translocation and release steps to describe SNF2-type enzyme mediated nucleosome translocation along DNA. This conceptual framework helps resolve the apparent paradox between the high abundance of ATP-dependent remodelers per nucleus and the relative success of sequence-based predictions of nucleosome positioning in vivo.
Collapse
Affiliation(s)
- Joke J. F. A. van Vugt
- Department of Molecular Biology, NCMLS, Radboud University, Nijmegen, The Netherlands
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Martijn de Jager
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Magdalena Murawska
- Institut für Molekularbiologie und Tumorforschung, University of Marburg, Marburg, Germany
| | - Alexander Brehm
- Institut für Molekularbiologie und Tumorforschung, University of Marburg, Marburg, Germany
| | - John van Noort
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Colin Logie
- Department of Molecular Biology, NCMLS, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
88
|
Gangaraju VK, Prasad P, Srour A, Kagalwala MN, Bartholomew B. Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2. Mol Cell 2009; 35:58-69. [PMID: 19595716 PMCID: PMC2721901 DOI: 10.1016/j.molcel.2009.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 01/30/2009] [Accepted: 05/06/2009] [Indexed: 11/27/2022]
Abstract
Distinct stages in ATP-dependent chromatin remodeling are found as ISW2, an ISWI-type complex, forms a stable and processive complex with nucleosomes upon hydrolysis of ATP. There are two conformational changes of the ISW2-nucleosome complex associated with binding and hydrolysis of ATP. The initial binding of ISW2 to extranucleosomal DNA, to the entry site, and near the dyad axis of the nucleosome is enhanced by ATP binding, whereas subsequent ATP hydrolysis is required for template commitment and causes ISW2 to expand its interactions with nucleosomal DNA to an entire gyre of the nucleosome and a short approximately 3-4 bp site on the other gyre. The histone-fold-like subunit Dpb4 associates with nucleosomal DNA approximately 15 bp from the ATPase domain as part of this change and may help to disrupt histone-DNA interactions. These additional contacts are independent of the ATPase domain tracking along nucleosomal DNA and are maintained as ISW2 moves nucleosomes on DNA.
Collapse
Affiliation(s)
| | | | - Ali Srour
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL. 62901-4413 U.S.A
| | | | - Blaine Bartholomew
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL. 62901-4413 U.S.A
| |
Collapse
|
89
|
Bouazoune K, Miranda TB, Jones PA, Kingston RE. Analysis of individual remodeled nucleosomes reveals decreased histone-DNA contacts created by hSWI/SNF. Nucleic Acids Res 2009; 37:5279-94. [PMID: 19567737 PMCID: PMC2760786 DOI: 10.1093/nar/gkp524] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Chromatin remodeling enzymes use the energy of ATP hydrolysis to alter histone–DNA contacts and regulate DNA-based processes in eukaryotes. Whether different subfamilies of remodeling complexes generate distinct products remains uncertain. We have developed a protocol to analyze nucleosome remodeling on individual products formed in vitro. We used a DNA methyltransferase to examine DNA accessibility throughout nucleosomes that had been remodeled by the ISWI and SWI/SNF families of enzymes. We confirmed that ISWI-family enzymes mainly created patterns of accessibility consistent with canonical nucleosomes. In contrast, SWI/SNF-family enzymes generated widespread DNA accessibility. The protection patterns created by these enzymes were usually located at the extreme ends of the DNA and showed no evidence for stable loop formation on individual molecules. Instead, SWI/SNF family proteins created extensive accessibility by generating heterogeneous products that had fewer histone–DNA contacts than a canonical nucleosome, consistent with models in which a canonical histone octamer has been ‘pushed’ off of the end of the DNA.
Collapse
Affiliation(s)
- Karim Bouazoune
- Department of Molecular Biology & Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
90
|
Lavelle C. Forces and torques in the nucleus: chromatin under mechanical constraints. Biochem Cell Biol 2009; 87:307-22. [PMID: 19234543 DOI: 10.1139/o08-123] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genomic DNA in eukaryotic cells is organized in discrete chromosome territories, each consisting of a single huge hierarchically supercoiled nucleosomal fiber. Through dynamic changes in structure, resulting from chemical modifications and mechanical constraints imposed by numerous factors in vivo, chromatin plays a critical role in the regulation of DNA metabolism processes, including replication and transcription. Indeed, DNA-translocating enzymes, such as polymerases, produce physical constraints that chromatin has to overcome. Recent techniques, in particular single-molecule micromanipulation, have allowed precise quantization of forces and torques at work in the nucleus and have greatly improved our understanding of chromatin behavior under physiological mechanical constraints. These new biophysical approaches should enable us to build realistic mechanistic models and progressively specify the ad hoc and hazy "because of chromatin structure" argument often used to interpret experimental studies of biological function in the context of chromatin.
Collapse
|
91
|
Abstract
Topoisomerase IV (Topo IV), an essential ATP-dependent bacterial type II topoisomerase, transports one segment of DNA through a transient double-strand break in a second segment of DNA. In vivo, Topo IV unlinks catenated chromosomes before cell division and relaxes positive supercoils generated during DNA replication. In vitro, Topo IV relaxes positive supercoils at least 20-fold faster than negative supercoils. The mechanisms underlying this chiral discrimination by Topo IV and other type II topoisomerases remain speculative. We used magnetic tweezers to measure the relaxation rates of single and multiple DNA crossings by Topo IV. These measurements allowed us to determine unambiguously the relative importance of DNA crossing geometry and enzymatic processivity in chiral discrimination by Topo IV. Our results indicate that Topo IV binds and passes DNA strands juxtaposed in a nearly perpendicular orientation and that relaxation of negative supercoiled DNA is perfectly distributive. Together, these results suggest that chiral discrimination arises primarily from dramatic differences in the processivity of relaxing positive and negative supercoiled DNA: Topo IV is highly processive on positively supercoiled DNA, whereas it is perfectly distributive on negatively supercoiled DNA. These results provide fresh insight into topoisomerase mechanisms and lead to a model that reconciles contradictory aspects of previous findings while providing a framework to interpret future results.
Collapse
|
92
|
Yu S, Smirnova JB, Friedberg EC, Stillman B, Akiyama M, Owen-Hughes T, Waters R, Reed SH. ABF1-binding sites promote efficient global genome nucleotide excision repair. J Biol Chem 2009; 284:966-73. [PMID: 18996839 PMCID: PMC3443742 DOI: 10.1074/jbc.m806830200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/05/2008] [Indexed: 11/06/2022] Open
Abstract
Global genome nucleotide excision repair (GG-NER) removes DNA damage from nontranscribing DNA. In Saccharomyces cerevisiae, the RAD7 and RAD16 genes are specifically required for GG-NER. We have reported that autonomously replicating sequence-binding factor 1 (ABF1) protein forms a stable complex with Rad7 and Rad16 proteins. ABF1 functions in transcription, replication, gene silencing, and NER in yeast. Here we show that binding of ABF1 to its DNA recognition sequence found at multiple genomic locations promotes efficient GG-NER in yeast. Mutation of the I silencer ABF1-binding site at the HMLalpha locus caused loss of ABF1 binding, which resulted in a domain of reduced GG-NER efficiency on one side of the ABF1-binding site. During GG-NER, nucleosome positioning at this site was not altered, and this correlated with an inability of the GG-NER complex to reposition nucleosomes in vitro.We discuss how the GG-NER complex might facilitate GG-NER while preventing unregulated gene transcription during this process.
Collapse
Affiliation(s)
- Shirong Yu
- From the Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Julia B. Smirnova
- From the Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Errol C. Friedberg
- the Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724
| | - Masahiro Akiyama
- the Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-01, Japan, and
| | - Tom Owen-Hughes
- the Wellcome Trust Centre for Gene Regulation, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Raymond Waters
- From the Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Simon H. Reed
- From the Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
93
|
Schwob E, de Renty C, Coulon V, Gostan T, Boyer C, Camet-Gabut L, Amato C. Use of DNA combing for studying DNA replication in vivo in yeast and mammalian cells. Methods Mol Biol 2009; 521:673-87. [PMID: 19563133 DOI: 10.1007/978-1-60327-815-7_36] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Plasticity is an inherent feature of chromosomal DNA replication in eukaryotes. Potential origins of DNA replication are made in excess, but are used (fired) in a partly stochastic, partly programmed manner throughout the S phase of the cell cycle. Since most origins have a firing efficiency below 50%, population-based analysis methods yield a cumulative picture of origin activity (obtained by accretion) that does not accurately describe how chromosomes are replicated in single cells. DNA combing is a method that allows the alignment on silanized glass coverslips, at high density and with uniform stretching, of single DNA molecules in the Mb range. If this DNA is isolated from cells that have been labelled with halogenated nucleotides (BrdU, CldU, IdU), it is possible to determine the density and position of replication origins as well as the rate and symmetry of fork progression, quantitatively and on single DNA molecules. This chapter will successively describe (a) the preparation ofsilanized coverslips, (b) the incorporation of halogenated nucleotides in newly synthesized DNA in yeast and mammalian cell lines, (c) the preparation and combing of genomic DNA, and finally (d) the acquisition and analysis of single-molecule images to extract salient features of replication dynamics.
Collapse
Affiliation(s)
- Etienne Schwob
- Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
94
|
Chaban Y, Ezeokonkwo C, Chung WH, Zhang F, Kornberg RD, Maier-Davis B, Lorch Y, Asturias FJ. Structure of a RSC-nucleosome complex and insights into chromatin remodeling. Nat Struct Mol Biol 2008; 15:1272-7. [PMID: 19029894 PMCID: PMC2659406 DOI: 10.1038/nsmb.1524] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/31/2008] [Indexed: 12/21/2022]
Abstract
ATP-dependent chromatin-remodeling complexes, such as RSC, can reposition, evict or restructure nucleosomes. A structure of a RSC-nucleosome complex with a nucleosome determined by cryo-EM shows the nucleosome bound in a central RSC cavity. Extensive interaction of RSC with histones and DNA seems to destabilize the nucleosome and lead to an overall ATP-independent rearrangement of its structure. Nucleosomal DNA appears disordered and largely free to bulge out into solution as required for remodeling, but the structure of the RSC-nucleosome complex indicates that RSC is unlikely to displace the octamer from the nucleosome to which it is bound. Consideration of the RSC-nucleosome structure and published biochemical information suggests that ATP-dependent DNA translocation by RSC may result in the eviction of histone octamers from adjacent nucleosomes.
Collapse
Affiliation(s)
- Yuriy Chaban
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Lia G, Indrieri M, Owen-Hughes T, Finzi L, Podesta A, Milani P, Dunlap D. ATP-dependent looping of DNA by ISWI. JOURNAL OF BIOPHOTONICS 2008; 1:280-6. [PMID: 19343651 PMCID: PMC3428829 DOI: 10.1002/jbio.200810027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Snf2 related chromatin remodelling enzymes possess an ATPase subunit similar to that of the SF-II helicases which hydrolyzes ATP to track along DNA. Translocation and any resulting torque in the DNA could drive chromatin remodeling. To determine whether the ISWI protein can translocate and generate torque, tethered particle motion experiments and atomic force microscopy have been performed using recombinant ISWI expressed in E. coli. In the absence of ATP, ISWI bound to and wrapped DNA thereby shortening the overall contour length measured in atomic force micrographs. Although naked DNA only weakly stimulates ATP hydrolysis by ISWI, both atomic force microscopy and tethered particle motion data indicate that the protein generated loops in the presence of ATP. The duration of the looped state of the DNA measured using tethered particle motion was ATP-dependent. Finally, ISWI relaxed positively supercoiled plasmids visualized by atomic force microscopy. While other chromatin remodeling ATPases catalyze either DNA wrapping or looping, both are catalyzed by ISWI.
Collapse
Affiliation(s)
- Giuseppe Lia
- Harvard University, Chemistry & Chemical Biology Dept., Cambridge, MA, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Lia G, Semsey S, Lewis DEA, Adhya S, Bensimon D, Dunlap D, Finzi L. The antiparallel loops in gal DNA. Nucleic Acids Res 2008; 36:4204-10. [PMID: 18573800 PMCID: PMC2475638 DOI: 10.1093/nar/gkn389] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 06/02/2008] [Accepted: 06/04/2008] [Indexed: 11/14/2022] Open
Abstract
Interactions between proteins bound to distant sites along a DNA molecule require bending and twisting deformations in the intervening DNA. In certain systems, the sterically allowed protein-DNA and protein-protein interactions are hypothesized to produce loops with distinct geometries that may also be thermodynamically and biologically distinct. For example, theoretical models of Gal repressor/HU-mediated DNA-looping suggest that the antiparallel DNA loops, A1 and A2, are thermodynamically quite different. They are also biologically different, since in experiments using DNA molecules engineered to form only one of the two loops, the A2 loop failed to repress in vitro transcription. Surprisingly, single molecule measurements show that both loop trajectories form and that they appear to be quite similar energetically and kinetically.
Collapse
Affiliation(s)
- Giuseppe Lia
- Department of Chemistry, Harvard University, Cambridge, MA, USA, Department of Genetics, Eötvös Lóránd University, H-1117 Budapest, Hungary, Laboratory of Molecular Biology, NIH, Bethesda, MD, USA, Laboratoire de Physique Statistique, Ecole Normal Superieure, Paris, France, Department of Cell Biology and Department of Physics, Emory University, Atlanta, GA, USA
| | - Szabolcs Semsey
- Department of Chemistry, Harvard University, Cambridge, MA, USA, Department of Genetics, Eötvös Lóránd University, H-1117 Budapest, Hungary, Laboratory of Molecular Biology, NIH, Bethesda, MD, USA, Laboratoire de Physique Statistique, Ecole Normal Superieure, Paris, France, Department of Cell Biology and Department of Physics, Emory University, Atlanta, GA, USA
| | - Dale E. A. Lewis
- Department of Chemistry, Harvard University, Cambridge, MA, USA, Department of Genetics, Eötvös Lóránd University, H-1117 Budapest, Hungary, Laboratory of Molecular Biology, NIH, Bethesda, MD, USA, Laboratoire de Physique Statistique, Ecole Normal Superieure, Paris, France, Department of Cell Biology and Department of Physics, Emory University, Atlanta, GA, USA
| | - Sankar Adhya
- Department of Chemistry, Harvard University, Cambridge, MA, USA, Department of Genetics, Eötvös Lóránd University, H-1117 Budapest, Hungary, Laboratory of Molecular Biology, NIH, Bethesda, MD, USA, Laboratoire de Physique Statistique, Ecole Normal Superieure, Paris, France, Department of Cell Biology and Department of Physics, Emory University, Atlanta, GA, USA
| | - David Bensimon
- Department of Chemistry, Harvard University, Cambridge, MA, USA, Department of Genetics, Eötvös Lóránd University, H-1117 Budapest, Hungary, Laboratory of Molecular Biology, NIH, Bethesda, MD, USA, Laboratoire de Physique Statistique, Ecole Normal Superieure, Paris, France, Department of Cell Biology and Department of Physics, Emory University, Atlanta, GA, USA
| | - David Dunlap
- Department of Chemistry, Harvard University, Cambridge, MA, USA, Department of Genetics, Eötvös Lóránd University, H-1117 Budapest, Hungary, Laboratory of Molecular Biology, NIH, Bethesda, MD, USA, Laboratoire de Physique Statistique, Ecole Normal Superieure, Paris, France, Department of Cell Biology and Department of Physics, Emory University, Atlanta, GA, USA
| | - Laura Finzi
- Department of Chemistry, Harvard University, Cambridge, MA, USA, Department of Genetics, Eötvös Lóránd University, H-1117 Budapest, Hungary, Laboratory of Molecular Biology, NIH, Bethesda, MD, USA, Laboratoire de Physique Statistique, Ecole Normal Superieure, Paris, France, Department of Cell Biology and Department of Physics, Emory University, Atlanta, GA, USA
| |
Collapse
|
97
|
Diesinger PM, Heermann DW. The influence of the cylindrical shape of the nucleosomes and H1 defects on properties of chromatin. Biophys J 2008; 94:4165-72. [PMID: 18234821 PMCID: PMC2480696 DOI: 10.1529/biophysj.107.113902] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 10/22/2007] [Indexed: 11/18/2022] Open
Abstract
We present a model improving the two-angle model for interphase chromatin (E2A model). This model takes into account the cylindrical shape of the histone octamers, the H1 histones in front of the nucleosomes, and the distance d between the in and outgoing DNA strands orthogonal to the axis of the corresponding nucleosome cylinder. Factoring these chromatin features in, one gets essential changes in the chromatin phase diagram: Not only the shape of the excluded-volume borderline changes but also the orthogonal distance d has a dramatic influence on the forbidden area. Furthermore, we examined the influence of H1 defects on the properties of the chromatin fiber. Thus, we present two possible strategies for chromatin compaction: The use of very dense states in the phase diagram in the gaps in the excluded-volume, borderline, or missing H1 histones can lead to very compact fibers. The chromatin fiber might use both of these mechanisms to compact itself at least locally. Line densities computed within the model coincident with the experimental values.
Collapse
Affiliation(s)
- Philipp M Diesinger
- Department of Physics, Institut für Theoretische Physik, and Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
98
|
Visnapuu ML, Duzdevich D, Greene EC. The importance of surfaces in single-molecule bioscience. MOLECULAR BIOSYSTEMS 2008; 4:394-403. [PMID: 18414737 PMCID: PMC3033744 DOI: 10.1039/b800444g] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The last ten years have witnessed an explosion of new techniques that can be used to probe the dynamic behavior of individual biological molecules, leading to discoveries that would not have been possible with more traditional biochemical methods. A common feature among these single-molecule approaches is the need for the biological molecules to be anchored to a solid support surface. This must be done under conditions that minimize nonspecific adsorption without compromising the biological integrity of the sample. In this review we highlight why surface attachments are a critical aspect of many single-molecule studies and we discuss current methods for anchoring biomolecules. Finally, we provide a detailed description of a new method developed by our laboratory for anchoring and organizing hundreds of individual DNA molecules on a surface, allowing "high-throughput" studies of protein-DNA interactions at the single-molecule level.
Collapse
Affiliation(s)
- Mari-Liis Visnapuu
- Departments of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - Daniel Duzdevich
- Departments of Biological Sciences, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - Eric C. Greene
- Departments of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
99
|
Seidel R, Bloom JGP, Dekker C, Szczelkun MD. Motor step size and ATP coupling efficiency of the dsDNA translocase EcoR124I. EMBO J 2008; 27:1388-98. [PMID: 18388857 PMCID: PMC2291450 DOI: 10.1038/emboj.2008.69] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 03/03/2008] [Indexed: 11/30/2022] Open
Abstract
The Type I restriction-modification enzyme EcoR124I is an archetypical helicase-based dsDNA translocase that moves unidirectionally along the 3′–5′ strand of intact duplex DNA. Using a combination of ensemble and single-molecule measurements, we provide estimates of two physicochemical constants that are fundamental to a full description of motor protein activity—the ATP coupling efficiency (the number of ATP consumed per base pair) and the step size (the number of base pairs transported per motor step). Our data indicate that EcoR124I makes small steps along the DNA of 1 bp in length with 1 ATP consumed per step, but with some uncoupling of the ATPase and translocase cycles occurring so that the average number of ATP consumed per base pair slightly exceeds unity. Our observations form a framework for understanding energy coupling in a great many other motors that translocate along dsDNA rather than ssDNA.
Collapse
Affiliation(s)
- Ralf Seidel
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | | | | | | |
Collapse
|
100
|
Racki LR, Narlikar GJ. ATP-dependent chromatin remodeling enzymes: two heads are not better, just different. Curr Opin Genet Dev 2008; 18:137-44. [PMID: 18339542 PMCID: PMC2494867 DOI: 10.1016/j.gde.2008.01.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/09/2008] [Accepted: 01/11/2008] [Indexed: 11/26/2022]
Abstract
ATP-dependent chromatin remodeling complexes enable rapid rearrangements in chromatin structure in response to developmental cues. The ATPase subunits of remodeling complexes share homology with the helicase motifs of DExx box helicases. Recent single-molecule experiments indicate that, like helicases, many of these complexes use ATP to translocate on DNA. Despite sharing this fundamental property, two key classes of remodeling complexes, the ISWI class and the SWI/SNF class, generate distinct remodeled products. SWI/SNF complexes generate nucleosomes with altered positions, nucleosomes with DNA loops and nucleosomes that are capable of exchanging histone dimers or octamers. In contrast, ISWI complexes generate nucleosomes with altered positions but in standard structures. Here, we draw analogies to monomeric and dimeric helicases and propose that ISWI and SWI/SNF complexes catalyze different outcomes in part because some ISWI complexes function as dimers while SWI/SNF complexes function as monomers.
Collapse
Affiliation(s)
- Lisa R Racki
- Department of Biochemistry and Biophysics, N412F, 600 16th Street, University of California, San Francisco, San Francisco, CA 94158, United States
| | | |
Collapse
|