51
|
Reineke EL, Kao HY. Targeting promyelocytic leukemia protein: a means to regulating PML nuclear bodies. Int J Biol Sci 2009; 5:366-76. [PMID: 19471587 PMCID: PMC2686094 DOI: 10.7150/ijbs.5.366] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/06/2009] [Indexed: 01/17/2023] Open
Abstract
The promyelocytic leukemia protein (PML) is involved in many cellular processes including cell cycle progression, DNA damage response, transcriptional regulation, viral infection, and apoptosis. These cellular activities often rely on the localization of PML to unique subnuclear structures known as PML nuclear bodies (NBs). More than 50 cellular proteins are known to traffic in and out of PML NBs, either transiently or constitutively. In order to understand the dynamics of these NBs, it is important to delineate the regulation of PML itself. PML is subject to extensive regulation at transcriptional, post-transcriptional, and post-translational levels. Many of these modes of regulation depend on the cellular context and the presence of extracellular signals. This review focuses on the current knowledge of regulation of PML under normal cellular conditions as well as the role for regulation of PML in viral infection and cancer.
Collapse
Affiliation(s)
- Erin L Reineke
- Department of Biochemistry, School of Medicine, Case Western Reserve University and the Comprehensive Cancer Center of CWRU, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
52
|
Battaglia S, Benzoubir N, Nobilet S, Charneau P, Samuel D, Zignego AL, Atfi A, Bréchot C, Bourgeade MF. Liver cancer-derived hepatitis C virus core proteins shift TGF-beta responses from tumor suppression to epithelial-mesenchymal transition. PLoS One 2009; 4:e4355. [PMID: 19190755 PMCID: PMC2629560 DOI: 10.1371/journal.pone.0004355] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 12/18/2008] [Indexed: 12/13/2022] Open
Abstract
Background Chronic hepatitis C virus (HCV) infection and associated liver cirrhosis represent a major risk factor for hepatocellular carcinoma (HCC) development. TGF-β is an important driver of liver fibrogenesis and cancer; however, its actual impact in human cancer progression is still poorly known. The aim of this study was to investigate the role of HCC-derived HCV core natural variants on cancer progression through their impact on TGF-β signaling. Principal Findings We provide evidence that HCC-derived core protein expression in primary human or mouse hepatocyte alleviates TGF-β responses in terms or growth inhibition or apoptosis. Instead, in these hepatocytes TGF-β was still able to induce an epithelial to mesenchymal transition (EMT), a process that contributes to the promotion of cell invasion and metastasis. Moreover, we demonstrate that different thresholds of Smad3 activation dictate the TGF-β responses in hepatic cells and that HCV core protein, by decreasing Smad3 activation, may switch TGF-β growth inhibitory effects to tumor promoting responses. Conclusion/Significance Our data illustrate the capacity of hepatocytes to develop EMT and plasticity under TGF-β, emphasize the role of HCV core protein in the dynamic of these effects and provide evidence for a paradigm whereby a viral protein implicated in oncogenesis is capable to shift TGF-β responses from cytostatic effects to EMT development.
Collapse
Affiliation(s)
- Serena Battaglia
- Inserm, Unité 785, Villejuif, France
- Univ Paris-Sud, UMR-S 785, Villejuif, France
| | - Nassima Benzoubir
- Inserm, Unité 785, Villejuif, France
- Univ Paris-Sud, UMR-S 785, Villejuif, France
| | - Soizic Nobilet
- Inserm, Unité 785, Villejuif, France
- Univ Paris-Sud, UMR-S 785, Villejuif, France
| | | | - Didier Samuel
- Inserm, Unité 785, Villejuif, France
- Univ Paris-Sud, UMR-S 785, Villejuif, France
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Anna Linda Zignego
- Department of Internal Medicine, University of Florence, Florence, Italia
| | | | | | - Marie-Françoise Bourgeade
- Inserm, Unité 785, Villejuif, France
- Univ Paris-Sud, UMR-S 785, Villejuif, France
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
- * E-mail:
| |
Collapse
|
53
|
Abstract
Transforming growth factor beta (TGF-beta) regulates a wide variety of biological activities by binding to cell surface serine/threonine kinase receptors. Canonical TGF-beta signaling is mediated by Smad proteins, which transduce the TGF-beta signal from the cell surface into the nucleus to regulate transcription. Upon TGF-beta binding and receptor activation, the TGF-beta receptor phosphorylates Smad2 and Smad3. SARA (Smad anchor for receptor activation) and cPML (cytoplasmic promyelocytic leukemia protein) recruit Smad2 and Smad3 for phosphorylation by the TGF-beta receptor. cPML is sequestered in the nucleus by the homeodomain protein TGIF (TG-interacting factor), a negative regulator of TGF-beta signaling. Recently, PCTA (PML competitor for TGIF association) has been shown to compete with cPML for binding to TGIF, resulting in the accumulation of cPML in the cytoplasm, where it mediates the interaction between Smad2/3 and SARA and coordinates the phosphorylation of Smad2 and Smad3 by the TGF-beta receptor. Accordingly, PCTA promotes TGF-beta-mediated transcriptional regulation and growth inhibition. Thus, PCTA defines a new regulator in TGF-beta signaling.
Collapse
Affiliation(s)
- Fang Liu
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, 679 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
54
|
Krieghoff-Henning E, Hofmann TG. Role of nuclear bodies in apoptosis signalling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2185-94. [PMID: 18680765 DOI: 10.1016/j.bbamcr.2008.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 06/20/2008] [Accepted: 07/04/2008] [Indexed: 01/10/2023]
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are dynamic macromolecular multiprotein complexes that recruit and release a plethora of proteins. A considerable number of PML NB components play vital roles in apoptosis, senescence regulation and tumour suppression. The molecular basis by which PML NBs control these cellular responses is still just beginning to be understood. In addition to PML itself, numerous further tumour suppressors including transcriptional regulator p53, acetyl transferase CBP (CREB binding protein) and protein kinase HIPK2 (homeodomain interacting protein kinase 2) are recruited to PML NBs in response to genotoxic stress or oncogenic transformation and drive the senescence and apoptosis response by regulating p53 activity. Moreover, in response to death-receptor activation, PML NBs may act as nuclear depots that release apoptotic factors, such as the FLASH (FLICE-associated huge) protein, to amplify the death signal. PML NBs are also associated with other nuclear domains including Cajal bodies and nucleoli and share apoptotic regulators with these domains, implying crosstalk between NBs in apoptosis regulation. In conclusion, PML NBs appear to regulate cell death decisions through different, pathway-specific molecular mechanisms.
Collapse
Affiliation(s)
- Eva Krieghoff-Henning
- Cellular Senescence Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | |
Collapse
|
55
|
Abstract
Transforming growth factor beta (TGF-beta) signaling regulates a plethora of cellular responses, including specification of developmental fate during embryogenesis, cell proliferation, differentiation, and apoptosis. Components of this pathway are often mutated in cancers and other human disorders. TGF-beta signaling involves activation of transcriptional regulators of the Smad family. The tumor suppressor p53 is an essential partner of Smads, affecting TGF-beta signaling at various points in the pathway. Inactivation of p53 may contribute to the aberrant behavior of cancer cells that escape the cytostatic action of TGF-beta despite the apparent integrity of the TGF-beta receptor or Smads. Thus, the discovery that p53 and TGF-beta cooperate in cell-fate decisions and cellular homeostatic mechanisms has important pathophysiological implications.
Collapse
Affiliation(s)
- Azeddine Atfi
- INSERM U893, Hôpital St-Antoine, 184 Rue du Faubourg St-Antoine, 75571 Paris, France.
| | | |
Collapse
|
56
|
Salomoni P, Ferguson BJ, Wyllie AH, Rich T. New insights into the role of PML in tumour suppression. Cell Res 2008; 18:622-40. [PMID: 18504460 DOI: 10.1038/cr.2008.58] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The PML gene is involved in the t(15;17) translocation of acute promyelocytic leukaemia (APL), which generates the oncogenic fusion protein PML (promyelocytic leukaemia protein)-retinoic acid receptor alpha. The PML protein localises to a subnuclear structure called the PML nuclear domain (PML-ND), of which PML is the essential structural component. In APL, PML-NDs are disrupted, thus implicating these structures in the pathogenesis of this leukaemia. Unexpectedly, recent studies indicate that PML and the PML-ND play a tumour suppressive role in several different types of human neoplasms in addition to APL. Because of PML's extreme versatility and involvement in multiple cellular pathways, understanding the mechanisms underlying its function, and therefore role in tumour suppression, has been a challenging task. In this review, we attempt to critically appraise the more recent advances in this field and propose new avenues of investigation.
Collapse
Affiliation(s)
- P Salomoni
- MRC Toxicology Unit, Lancaster Road Box 138, Leicester, LE 9HN, UK.
| | | | | | | |
Collapse
|
57
|
Faresse N, Colland F, Ferrand N, Prunier C, Bourgeade MF, Atfi A. Identification of PCTA, a TGIF antagonist that promotes PML function in TGF-beta signalling. EMBO J 2008; 27:1804-15. [PMID: 18511908 DOI: 10.1038/emboj.2008.109] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 05/07/2008] [Indexed: 11/09/2022] Open
Abstract
The TGIF homoeodomain protein functions as an important negative regulator in the TGF-beta signalling pathway. The inhibitory function of TGIF is executed in part through its ability to sequester the tumour suppressor cytoplasmic promyelocytic leukaemia (cPML) in the nucleus, thereby preventing the phosphorylation of Smad2 by the activated TGF-beta type I receptor. Here, we report on the identification of PCTA (PML competitor for TGIF association), a TGIF antagonist that promotes TGF-beta-induced transcriptional and cytostatic responses. We provide evidence that PCTA functions in TGF-beta signalling by relieving the suppression of Smad2 phosphorylation by TGIF. Furthermore, we demonstrate that PCTA selectively competes with cPML for TGIF association, resulting in the accumulation of cPML in the cytoplasm, where it associates with SARA and coordinates the access of Smad2 for phosphorylation by the activated TGF-beta type I receptor. Thus, our findings on the mode of action of PCTA provide new and important insights into the molecular mechanism underlying the antagonistic interplay between TGIF and cPML in the TGF-beta signalling network.
Collapse
Affiliation(s)
- Nourdine Faresse
- Laboratory of Cell Signaling and Carcinogenesis, INSERM U673, Paris, France
| | | | | | | | | | | |
Collapse
|
58
|
McNally BA, Trgovcich J, Maul GG, Liu Y, Zheng P. A role for cytoplasmic PML in cellular resistance to viral infection. PLoS One 2008; 3:e2277. [PMID: 18509536 PMCID: PMC2386554 DOI: 10.1371/journal.pone.0002277] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/05/2008] [Indexed: 11/23/2022] Open
Abstract
PML gene was discovered as a fusion partner with retinoic acid receptor (RAR) α in the t(15:17) chromosomal translocation associated with acute promyelocytic leukemia (APL). Nuclear PML protein has been implicated in cell growth, tumor suppression, apoptosis, transcriptional regulation, chromatin remodeling, DNA repair, and anti-viral defense. The localization pattern of promyelocytic leukemia (PML) protein is drastically altered during viral infection. This alteration is traditionally viewed as a viral strategy to promote viral replication. Although multiple PML splice variants exist, we demonstrate that the ratio of a subset of cytoplasmic PML isoforms lacking exons 5 & 6 is enriched in cells exposed to herpes simplex virus-1 (HSV-1). In particular, we demonstrate that a PML isoform lacking exons 5 & 6, called PML Ib, mediates the intrinsic cellular defense against HSV-1 via the cytoplasmic sequestration of the infected cell protein (ICP) 0 of HSV-1. The results herein highlight the importance of cytoplasmic PML and call for an alternative, although not necessarily exclusive, interpretation regarding the redistribution of PML that is seen in virally infected cells.
Collapse
Affiliation(s)
- Beth A. McNally
- Division of Cancer Immunology, Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- Department of Surgery, Comprehensive Cancer Center, Program of Molecular Mechanism of Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joanne Trgovcich
- Division of Cancer Immunology, Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Gerd G. Maul
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Yang Liu
- Division of Cancer Immunology, Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- Department of Surgery, Comprehensive Cancer Center, Program of Molecular Mechanism of Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pan Zheng
- Division of Cancer Immunology, Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- Department of Surgery, Comprehensive Cancer Center, Program of Molecular Mechanism of Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
59
|
Yang S, Nugent MA, Panchenko MP. EGF antagonizes TGF-beta-induced tropoelastin expression in lung fibroblasts via stabilization of Smad corepressor TGIF. Am J Physiol Lung Cell Mol Physiol 2008; 295:L143-51. [PMID: 18441095 DOI: 10.1152/ajplung.00289.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported that neutrophil elastase (NE) downregulates transforming growth factor-beta (TGF-beta)-maintained tropoelastin mRNA levels in lung fibroblasts through transactivation of the epidermal growth factor (EGF) receptor (EGFR)/Mek/Erk pathway, which is dependent on the NE-initiated release of soluble EGFR ligands. In the present study, we investigated the mechanism by which EGF downregulates tropoelastin expression. We found that EGF downregulates tropoelastin expression through inhibition of TGF-beta signaling. We show that EGF does not prevent the TGF-beta-induced nuclear accumulation of Smad2/3; rather, EGF stabilizes the short-lived Smad transcriptional corepressor TG-interacting factor (TGIF) via EGFR/Mek/Erk-mediated phosphorylation of TGIF. Elevation of TGIF levels, either by TGIF overexpression or prevention of TGIF degradation, is sufficient to inhibit TGF-beta-induced tropoelastin expression. Moreover, TGIF is essential for EGF-mediated downregulation of tropoelastin expression, inasmuch as small interfering RNA knockdown of TGIF blocked EGF-induced downregulation of tropoelastin. Finally, we demonstrated that NE treatment, which releases EGF-like growth factors, causes stabilization of TGIF through the EGFR/Mek/Erk pathway. These results suggest that EGFR/Mek/Erk signaling specifically antagonizes the proelastogenic action of TGF-beta in lung fibroblasts by stabilizing the Smad transcriptional corepressor TGIF.
Collapse
Affiliation(s)
- Shenghong Yang
- Department of Biochemistry, Boston University School of Medicine, 715 Albany St, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
60
|
Kim W, Seok Kang Y, Soo Kim J, Shin NY, Hanks SK, Song WK. The integrin-coupled signaling adaptor p130Cas suppresses Smad3 function in transforming growth factor-beta signaling. Mol Biol Cell 2008; 19:2135-46. [PMID: 18321991 DOI: 10.1091/mbc.e07-10-0991] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Reciprocal cooperative signaling by integrins and growth factor receptors at G1 phase during cell cycle progression is well documented. By contrast, little is known about the cross-talk between integrin and transforming growth factor (TGF)-beta signaling. Here, we show that integrin signaling counteracts the inhibitory effects of TGF-beta on cell growth and that this effect is mediated by p130Cas (Crk-associated substrate, 130 kDa). Adhesion to fibronectin or laminin reduces TGF-beta-induced Smad3 phosphorylation and thus inhibits TGF-beta-mediated growth arrest; loss of p130Cas abrogates these effects. Loss and gain of function studies demonstrated that, once tyrosine-phosphorylated via integrin signaling, p130Cas binds to Smad3 and reduces phosphorylation of Smad3. That in turn leads to inhibition of p15 and p21 expression and facilitation of cell cycle progression. Thus, p130Cas-mediated control of TGF-beta/Smad signaling may provide an additional clue to the mechanism underlying resistance to TGF-beta-induced growth inhibition.
Collapse
Affiliation(s)
- Wook Kim
- Cell Dynamics Research Center and Bioimaging Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | | | | | |
Collapse
|
61
|
Horie T, Ono K, Kinoshita M, Nishi H, Nagao K, Kawamura T, Abe Y, Wada H, Shimatsu A, Kita T, Hasegawa K. TG-interacting factor is required for the differentiation of preadipocytes. J Lipid Res 2008; 49:1224-34. [PMID: 18310014 DOI: 10.1194/jlr.m700578-jlr200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accumulation of visceral adipose tissue is closely associated with insulin resistance and metabolic syndrome. Therefore, it is important to identify genes that are required for adipocyte differentiation. To identify genes that are required for the differentiation of 3T3-L1 preadipocytes into mature adipocytes, we used retrovirus insertion-mediated random mutagenesis to generate 3T3-L1 cell lines that lose their ability to differentiate into mature adipocytes. One of the genes identified was TG-interacting factor (TGIF), a DNA binding homeodomain protein that has been demonstrated to suppress Smad-mediated activation of transforming growth factor beta (TGF-beta)-regulated transcription. In the TGIF-disrupted clone of 3T3-L1 preadipocytes, the rate of differentiation into mature adipocytes was clearly reduced compared with that in the wild-type clone. Suppression of TGIF by lentivirus-mediated RNAi also inhibited the differentiation of 3T3-L1 cells. Insulin specifically increased the abundance of TGIF protein, primarily by enhancing its stability. In addition, insulin caused the rapid accumulation of TGIF in the nuclei. Forced expression of exogenous TGIF repressed both endogenous and overexpressed Smad2/3-mediated promoter activity in 3T3-L1. These findings suggest that insulin specifically antagonizes TGF-beta signaling in preadipocytes by stabilizing the putative Smad transcriptional corepressor TGIF and regulates adipocyte differentiation.
Collapse
Affiliation(s)
- Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|