51
|
Huber F, Bunina D, Gupta I, Khmelinskii A, Meurer M, Theer P, Steinmetz LM, Knop M. Protein Abundance Control by Non-coding Antisense Transcription. Cell Rep 2016; 15:2625-36. [PMID: 27292640 PMCID: PMC4920891 DOI: 10.1016/j.celrep.2016.05.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/08/2016] [Accepted: 05/10/2016] [Indexed: 11/17/2022] Open
Abstract
Stable unannotated transcripts (SUTs), some of which overlap protein-coding genes in antisense direction, are a class of non-coding RNAs. While case studies have reported important regulatory roles for several of such RNAs, their general impact on protein abundance regulation of the overlapping gene is not known. To test this, we employed seamless gene manipulation to repress antisense SUTs of 162 yeast genes by using a unidirectional transcriptional terminator and a GFP tag. We found that the mere presence of antisense SUTs was not sufficient to influence protein abundance, that observed effects of antisense SUTs correlated with sense transcript start site overlap, and that the effects were generally weak and led to reduced protein levels. Antisense regulated genes showed increased H3K4 di- and trimethylation and had slightly lower than expected noise levels. Our results suggest that the functionality of antisense RNAs has gene and condition-specific components.
Collapse
Affiliation(s)
- Florian Huber
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Daria Bunina
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Ishaan Gupta
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Anton Khmelinskii
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Matthias Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Patrick Theer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany; Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
52
|
Milligan L, Huynh-Thu VA, Delan-Forino C, Tuck A, Petfalski E, Lombraña R, Sanguinetti G, Kudla G, Tollervey D. Strand-specific, high-resolution mapping of modified RNA polymerase II. Mol Syst Biol 2016; 12:874. [PMID: 27288397 PMCID: PMC4915518 DOI: 10.15252/msb.20166869] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Reversible modification of the RNAPII C‐terminal domain links transcription with RNA processing and surveillance activities. To better understand this, we mapped the location of RNAPII carrying the five types of CTD phosphorylation on the RNA transcript, providing strand‐specific, nucleotide‐resolution information, and we used a machine learning‐based approach to define RNAPII states. This revealed enrichment of Ser5P, and depletion of Tyr1P, Ser2P, Thr4P, and Ser7P in the transcription start site (TSS) proximal ~150 nt of most genes, with depletion of all modifications close to the poly(A) site. The TSS region also showed elevated RNAPII relative to regions further 3′, with high recruitment of RNA surveillance and termination factors, and correlated with the previously mapped 3′ ends of short, unstable ncRNA transcripts. A hidden Markov model identified distinct modification states associated with initiating, early elongating and later elongating RNAPII. The initiation state was enriched near the TSS of protein‐coding genes and persisted throughout exon 1 of intron‐containing genes. Notably, unstable ncRNAs apparently failed to transition into the elongation states seen on protein‐coding genes.
Collapse
Affiliation(s)
- Laura Milligan
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Vân A Huynh-Thu
- School of Informatics, University of Edinburgh, Edinburgh, UK Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
| | | | - Alex Tuck
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI) Wellcome Trust Genome Campus, Cambridge, UK
| | - Elisabeth Petfalski
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Rodrigo Lombraña
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | | | - Grzegorz Kudla
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
53
|
Vera JM, Dowell RD. Survey of cryptic unstable transcripts in yeast. BMC Genomics 2016; 17:305. [PMID: 27113450 PMCID: PMC4845318 DOI: 10.1186/s12864-016-2622-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/16/2016] [Indexed: 12/14/2022] Open
Abstract
Background Cryptic unstable transcripts (CUTs) are a largely unexplored class of nuclear exosome degraded, non-coding RNAs in budding yeast. It is highly debated whether CUT transcription has a functional role in the cell or whether CUTs represent noise in the yeast transcriptome. We sought to ascertain the extent of conserved CUT expression across a variety of Saccharomyces yeast strains to further understand and characterize the nature of CUT expression. Results We sequenced the WT and rrp6Δ transcriptomes of three S.cerevisiae strains: S288c, Σ1278b, JAY291 and the S.paradoxus strain N17 and utilized a hidden Markov model to annotate CUTs in these four strains. Utilizing a four-way genomic alignment we identified a large population of CUTs with conserved syntenic expression across all four strains. By identifying configurations of gene-CUT pairs, where CUT expression originates from the gene 5’ or 3′ nucleosome free region, we observed distinct gene expression trends specific to these configurations which were most prevalent in the presence of conserved CUT expression. Divergent pairs correlate with higher expression of genes, and convergent pairs correlate with reduced gene expression. Conclusions Our RNA-seq based method has greatly expanded upon previous CUT annotations in S.cerevisiae underscoring the extensive and pervasive nature of unstable transcription. Furthermore we provide the first assessment of conserved CUT expression in yeast and globally demonstrate possible modes of CUT-based regulation of gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2622-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica M Vera
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Robin D Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
54
|
Rougemaille M, Libri D. Control of cryptic transcription in eukaryotes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 702:122-31. [PMID: 21713682 DOI: 10.1007/978-1-4419-7841-7_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Over the last few years, the development of large-scale technologies has radically modified our conception of genome-wide transcriptional control by unveiling an unexpected high complexity of the eukaryotic transcriptome. In organisms ranging from yeast to human, a considerable number of novel small RNA species have been discovered in regions that were previously thought to be incompatible with high levels of transcription. Intriguingly, these transcripts, which are rapidly targeted for degradation by the exosome, appear to be devoid of any coding potential and may be the consequence of unwanted transcription events. However, the notion that an important fraction of these RNAs represent by-products of regulatory transcription is progressively emerging. In this chapter, we discuss the recent advances made in our understanding of the shape of the eukaryotic transcriptome. We also focus on the molecular mechanisms that cells exploit to prevent cryptic transcripts from interfering with the expression of protein-coding genes. Finally, we summarize data obtained in different systems suggesting that such RNAs may play a critical role in the regulation of gene expression as well as the evolution of genomes.
Collapse
Affiliation(s)
- Mathieu Rougemaille
- LEA Laboratory of Nuclear RNA Metabolism, Centre de Génétique Moléculaire, CNRS-UPR2167, Gif-sur-Yvette, France,
| | | |
Collapse
|
55
|
Kim K, Heo DH, Kim I, Suh JY, Kim M. Exosome Cofactors Connect Transcription Termination to RNA Processing by Guiding Terminated Transcripts to the Appropriate Exonuclease within the Nuclear Exosome. J Biol Chem 2016; 291:13229-42. [PMID: 27076633 DOI: 10.1074/jbc.m116.715771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 12/11/2022] Open
Abstract
The yeast Nrd1 interacts with the C-terminal domain (CTD) of RNA polymerase II (RNApII) through its CTD-interacting domain (CID) and also associates with the nuclear exosome, thereby acting as both a transcription termination and RNA processing factor. Previously, we found that the Nrd1 CID is required to recruit the nuclear exosome to the Nrd1 complex, but it was not clear which exosome subunits were contacted. Here, we show that two nuclear exosome cofactors, Mpp6 and Trf4, directly and competitively interact with the Nrd1 CID and differentially regulate the association of Nrd1 with two catalytic subunits of the exosome. Importantly, Mpp6 promotes the processing of Nrd1-terminated transcripts preferentially by Dis3, whereas Trf4 leads to Rrp6-dependent processing. This suggests that Mpp6 and Trf4 may play a role in choosing a particular RNA processing route for Nrd1-terminated transcripts within the exosome by guiding the transcripts to the appropriate exonuclease.
Collapse
Affiliation(s)
- Kyumin Kim
- From the Department of Cellular and Molecular Pharmacology, University of California and California Institute for Quantitative Biosciences, San Francisco, California 94158
| | - Dong-Hyuk Heo
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Iktae Kim
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea, and
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea, and Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - Minkyu Kim
- From the Department of Cellular and Molecular Pharmacology, University of California and California Institute for Quantitative Biosciences, San Francisco, California 94158,
| |
Collapse
|
56
|
O’Rourke TW, Reines D. Determinants of Amyloid Formation for the Yeast Termination Factor Nab3. PLoS One 2016; 11:e0150865. [PMID: 26954508 PMCID: PMC4783047 DOI: 10.1371/journal.pone.0150865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/19/2016] [Indexed: 01/01/2023] Open
Abstract
Low complexity protein sequences are often intrinsically unstructured and many have the potential to polymerize into amyloid aggregates including filaments and hydrogels. RNA-binding proteins are unusually enriched in such sequences raising the question as to what function these domains serve in RNA metabolism. One such yeast protein, Nab3, is an 802 amino acid termination factor that contains an RNA recognition motif and a glutamine/proline rich domain adjacent to a region with structural similarity to a human hnRNP. A portion of the C-terminal glutamine/proline-rich domain assembles into filaments that organize into a hydrogel. Here we analyze the determinants of filament formation of the isolated low complexity domain as well as examine the polymerization properties of full-length Nab3. We found that the C-terminal region with structural homology to hnRNP-C is not required for assembly, nor is an adjacent stretch of 16 glutamines. However, reducing the overall glutamine composition of this 134-amino acid segment from 32% to 14% destroys its polymerization ability. Importantly, full-length wildtype Nab3 also formed filaments with a characteristic cross-β structure which was dependent upon the glutamine/proline-rich region. When full length Nab3 with reduced glutamine content in its low complexity domain was exchanged for wildtype Nab3, cells were not viable. This suggests that polymerization of Nab3 is normally required for its function. In an extension of this idea, we show that the low complexity domain of another yeast termination factor, Pcf11, polymerizes into amyloid fibers and a hydrogel. These findings suggest that, like many other RNA binding proteins, termination factors share a common biophysical trait that may be important for their function.
Collapse
Affiliation(s)
- Thomas W. O’Rourke
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Daniel Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
57
|
Abstract
Long non-coding RNAs (lncRNAs) are a diverse class of RNAs that engage in numerous biological processes across every branch of life. Although initially discovered as mRNA-like transcripts that do not encode proteins, recent studies have revealed features of lncRNAs that further distinguish them from mRNAs. In this Review, we describe special events in the lifetimes of lncRNAs - before, during and after transcription - and discuss how these events ultimately shape the unique characteristics and functional roles of lncRNAs.
Collapse
Affiliation(s)
- Jeffrey J Quinn
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Bioengineering, Stanford University School of Medicine and School of Engineering, Stanford, California 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
58
|
Holmes RK, Tuck AC, Zhu C, Dunn-Davies HR, Kudla G, Clauder-Munster S, Granneman S, Steinmetz LM, Guthrie C, Tollervey D. Loss of the Yeast SR Protein Npl3 Alters Gene Expression Due to Transcription Readthrough. PLoS Genet 2015; 11:e1005735. [PMID: 26694144 PMCID: PMC4687934 DOI: 10.1371/journal.pgen.1005735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/20/2015] [Indexed: 01/25/2023] Open
Abstract
Yeast Npl3 is a highly abundant, nuclear-cytoplasmic shuttling, RNA-binding protein, related to metazoan SR proteins. Reported functions of Npl3 include transcription elongation, splicing and RNA 3’ end processing. We used UV crosslinking and analysis of cDNA (CRAC) to map precise RNA binding sites, and strand-specific tiling arrays to look at the effects of loss of Npl3 on all transcripts across the genome. We found that Npl3 binds diverse RNA species, both coding and non-coding, at sites indicative of roles in both early pre-mRNA processing and 3’ end formation. Tiling arrays and RNAPII mapping data revealed 3’ extended RNAPII-transcribed RNAs in the absence of Npl3, suggesting that defects in pre-mRNA packaging events result in termination readthrough. Transcription readthrough was widespread and frequently resulted in down-regulation of neighboring genes. We conclude that the absence of Npl3 results in widespread 3' extension of transcripts with pervasive effects on gene expression. Npl3 is a yeast mRNA binding protein with many reported functions in RNA processing. We wanted to identify direct targets and therefore combined analyses of the transcriptome-wide effects of the loss of Npl3 on gene expression with UV crosslinking and bioinformatics to identify RNA-binding sites for Npl3. We found that Npl3 binds diverse sites on large numbers of transcripts, and that the loss of Npl3 results in transcriptional readthrough on many genes. One effect of this transcription readthrough is that the expression of numerous flanking genes is strongly down regulated. This underlines the importance of faithful termination for the correct regulation of gene expression. The effects of the loss of Npl3 are seen on both mRNAs and non-protein coding RNAs. These have distinct but overlapping termination mechanisms, with both classes requiring Npl3 for correct RNA packaging.
Collapse
Affiliation(s)
- Rebecca K. Holmes
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Alex C. Tuck
- FMI Basel, Basel, Switzerland
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Hywel R. Dunn-Davies
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Grzegorz Kudla
- The Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | | | - Sander Granneman
- SynthSys, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
59
|
Fox MJ, Mosley AL. Rrp6: Integrated roles in nuclear RNA metabolism and transcription termination. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:91-104. [PMID: 26612606 DOI: 10.1002/wrna.1317] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 11/08/2022]
Abstract
The yeast RNA exosome is a eukaryotic ribonuclease complex essential for RNA processing, surveillance, and turnover. It is comprised of a barrel-shaped core and cap as well as a 3'-5' ribonuclease known as Dis3 that contains both endo- and exonuclease domains. A second exonuclease, Rrp6, is added in the nucleus. Dis3 and Rrp6 have both shared and distinct roles in RNA metabolism, and this review will focus primarily on Rrp6 and the roles of the RNA exosome in the nucleus. The functions of the nuclear exosome are modulated by cofactors and interacting partners specific to each type of substrate. Generally, the cofactor TRAMP (Trf4/5-Air2/1-Mtr4 polyadenylation) complex helps unwind unstable RNAs, RNAs requiring processing such as rRNAs, tRNAs, or snRNAs or improperly processed RNAs and direct it toward the exosome. In yeast, Rrp6 interacts with Nrd1, the cap-binding complex, and RNA polymerase II to aid in nascent RNA processing, termination, and polyA tail length regulation. Recent studies have shown that proper termination and processing of short, noncoding RNAs by Rrp6 is particularly important for transcription regulation across the genome and has important implications for regulation of diverse processes at the cellular level. Loss of proper Rrp6 and exosome activity may contribute to various pathologies such as autoimmune disease, neurological disorders, and cancer. WIREs RNA 2016, 7:91-104. doi: 10.1002/wrna.1317 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Melanie J Fox
- Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Amber L Mosley
- Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
60
|
Rege M, Subramanian V, Zhu C, Hsieh THS, Weiner A, Friedman N, Clauder-Münster S, Steinmetz LM, Rando OJ, Boyer LA, Peterson CL. Chromatin Dynamics and the RNA Exosome Function in Concert to Regulate Transcriptional Homeostasis. Cell Rep 2015; 13:1610-22. [PMID: 26586442 PMCID: PMC4662874 DOI: 10.1016/j.celrep.2015.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/02/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
The histone variant H2A.Z is a hallmark of nucleosomes flanking promoters of protein-coding genes and is often found in nucleosomes that carry lysine 56-acetylated histone H3 (H3-K56Ac), a mark that promotes replication-independent nucleosome turnover. Here, we find that H3-K56Ac promotes RNA polymerase II occupancy at many protein-coding and noncoding loci, yet neither H3-K56Ac nor H2A.Z has a significant impact on steady-state mRNA levels in yeast. Instead, broad effects of H3-K56Ac or H2A.Z on RNA levels are revealed only in the absence of the nuclear RNA exosome. H2A.Z is also necessary for the expression of divergent, promoter-proximal non-coding RNAs (ncRNAs) in mouse embryonic stem cells. Finally, we show that H2A.Z functions with H3-K56Ac to facilitate formation of chromosome interaction domains (CIDs). Our study suggests that H2A.Z and H3-K56Ac work in concert with the RNA exosome to control mRNA and ncRNA expression, perhaps in part by regulating higher-order chromatin structures.
Collapse
Affiliation(s)
- Mayuri Rege
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Vidya Subramanian
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chenchen Zhu
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Tsung-Han S Hsieh
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Assaf Weiner
- School of Computer Science and Engineering, The Hebrew University, Jerusalem 91904, Israel; Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Nir Friedman
- School of Computer Science and Engineering, The Hebrew University, Jerusalem 91904, Israel; Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | | | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Laurie A Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
61
|
Tudek A, Candelli T, Libri D. Non-coding transcription by RNA polymerase II in yeast: Hasard or nécessité? Biochimie 2015; 117:28-36. [DOI: 10.1016/j.biochi.2015.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022]
|
62
|
Characterization of the mechanisms of transcription termination by the helicase Sen1. Methods Mol Biol 2015; 1259:313-31. [PMID: 25579594 DOI: 10.1007/978-1-4939-2214-7_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In vitro transcription systems have been widely used to study all the steps of transcription from initiation to termination and many transcription-coupled processes. Here we describe an in vitro transcription-termination assay that we have used for the analysis of the mechanism of termination by the yeast helicase Sen1. In this system, we use highly purified proteins to assemble ternary elongation complexes (RNA polymerase, DNA template, and nascent RNA) on biotinylated DNA that is subsequently immobilized on streptavidin beads. After allowing transcription by the addition of nucleotides, the termination events can be detected and quantified by comparing the amounts of polymerases and transcripts released from the DNA templates in reactions performed in the absence or in the presence of purified Sen1. By modifying different parameters of the assay, this technique allows the study of several aspects of the termination reaction.
Collapse
|
63
|
Castelnuovo M, Stutz F. Role of chromatin, environmental changes and single cell heterogeneity in non-coding transcription and gene regulation. Curr Opin Cell Biol 2015; 34:16-22. [PMID: 25935760 DOI: 10.1016/j.ceb.2015.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/20/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
The number and variety of factors underlying control of gene expression have been frequently underestimated. Non-coding RNAs generated through pervasive transcription have recently been implicated in shaping the transcriptional landscape in different organisms from bacteria to higher eukaryotes, adding a previously unexpected layer of complexity to the process of gene regulation. In this review, we highlight non-coding transcription-dependent regulatory mechanisms linked to chromatin organization and environmental changes, and particular emphasis is given to single-cell approaches, which have been crucial in dissecting cell-to-cell variability. These studies have revealed that non-coding transcription can underlie the extensive heterogeneity in patterns of gene expression within a cell population.
Collapse
Affiliation(s)
- Manuele Castelnuovo
- Department of Cell Biology, iGE3, 30 Quai E. Ansermet, 1211 Geneva, Switzerland.
| | - Françoise Stutz
- Department of Cell Biology, iGE3, 30 Quai E. Ansermet, 1211 Geneva, Switzerland.
| |
Collapse
|
64
|
Abstract
The immunoglobulin diversification processes of somatic hypermutation and class switch recombination critically rely on transcription-coupled targeting of activation-induced cytidine deaminase (AID) to Ig loci in activated B lymphocytes. AID catalyzes deamination of cytidine deoxynucleotides on exposed single-stranded DNA. In addition to driving immunoglobulin diversity, promiscuous targeting of AID mutagenic activity poses a deleterious threat to genomic stability. Recent genome-wide studies have uncovered pervasive AID activity throughout the B cell genome. It is increasingly apparent that AID activity is frequently targeted to genomic loci undergoing early transcription termination where RNA exosome promotes the resolution of stalled transcription complexes via cotranscriptional RNA degradation mechanisms. Here, we review aspects and consequences of eukaryotic transcription that lead to early termination, RNA exosome recruitment, and ultimately targeting of AID mutagenic activity.
Collapse
Affiliation(s)
- Evangelos Pefanis
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| | - Uttiya Basu
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| |
Collapse
|
65
|
Malabat C, Feuerbach F, Ma L, Saveanu C, Jacquier A. Quality control of transcription start site selection by nonsense-mediated-mRNA decay. eLife 2015; 4:e06722. [PMID: 25905671 PMCID: PMC4434318 DOI: 10.7554/elife.06722] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/22/2015] [Indexed: 01/01/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a translation-dependent RNA quality-control pathway targeting transcripts such as messenger RNAs harboring premature stop-codons or short upstream open reading frame (uORFs). Our transcription start sites (TSSs) analysis of Saccharomyces cerevisiae cells deficient for RNA degradation pathways revealed that about half of the pervasive transcripts are degraded by NMD, which provides a fail-safe mechanism to remove spurious transcripts that escaped degradation in the nucleus. Moreover, we found that the low specificity of RNA polymerase II TSSs selection generates, for 47% of the expressed genes, NMD-sensitive transcript isoforms carrying uORFs or starting downstream of the ATG START codon. Despite the low abundance of this last category of isoforms, their presence seems to constrain genomic sequences, as suggested by the significant bias against in-frame ATGs specifically found at the beginning of the corresponding genes and reflected by a depletion of methionines in the N-terminus of the encoded proteins.
Collapse
Affiliation(s)
- Christophe Malabat
- Institut Pasteur, UMR3525, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, Paris, France
| | - Frank Feuerbach
- Institut Pasteur, UMR3525, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, Paris, France
| | - Laurence Ma
- Plate-Forme Génomique, Institut Pasteur, Paris, France
| | - Cosmin Saveanu
- Institut Pasteur, UMR3525, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, Paris, France
| | - Alain Jacquier
- Institut Pasteur, UMR3525, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
66
|
Grzechnik P, Gdula MR, Proudfoot NJ. Pcf11 orchestrates transcription termination pathways in yeast. Genes Dev 2015; 29:849-61. [PMID: 25877920 PMCID: PMC4403260 DOI: 10.1101/gad.251470.114] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/19/2015] [Indexed: 11/25/2022]
Abstract
In Saccharomyces cerevisiae, short noncoding RNA (ncRNA) generated by RNA polymerase II (Pol II) are terminated by the NRD complex consisting of Nrd1, Nab3, and Sen1. We now show that Pcf11, a component of the cleavage and polyadenylation complex (CPAC), is also generally required for NRD-dependent transcription termination through the action of its C-terminal domain (CTD)-interacting domain (CID). Pcf11 localizes downstream from Nrd1 on NRD terminators, and its recruitment depends on Nrd1. Furthermore, mutation of the Pcf11 CID results in Nrd1 retention on chromatin, delayed degradation of ncRNA, and restricted Pol II CTD Ser2 phosphorylation and Sen1-Pol II interaction. Finally, the pcf11-13 and sen1-1 mutant phenotypes are very similar, as both accumulate RNA:DNA hybrids and display Pol II pausing downstream from NRD terminators. We predict a mechanism by which the exchange of Nrd1 and Pcf11 on chromatin facilitates Pol II pausing and CTD Ser2-P phosphorylation. This in turn promotes Sen1 activity that is required for NRD-dependent transcription termination in vivo.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Michal Ryszard Gdula
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom;
| |
Collapse
|
67
|
St Laurent G, Wahlestedt C, Kapranov P. The Landscape of long noncoding RNA classification. Trends Genet 2015; 31:239-51. [PMID: 25869999 DOI: 10.1016/j.tig.2015.03.007] [Citation(s) in RCA: 876] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 12/12/2022]
Abstract
Advances in the depth and quality of transcriptome sequencing have revealed many new classes of long noncoding RNAs (lncRNAs). lncRNA classification has mushroomed to accommodate these new findings, even though the real dimensions and complexity of the noncoding transcriptome remain unknown. Although evidence of functionality of specific lncRNAs continues to accumulate, conflicting, confusing, and overlapping terminology has fostered ambiguity and lack of clarity in the field in general. The lack of fundamental conceptual unambiguous classification framework results in a number of challenges in the annotation and interpretation of noncoding transcriptome data. It also might undermine integration of the new genomic methods and datasets in an effort to unravel the function of lncRNA. Here, we review existing lncRNA classifications, nomenclature, and terminology. Then, we describe the conceptual guidelines that have emerged for their classification and functional annotation based on expanding and more comprehensive use of large systems biology-based datasets.
Collapse
Affiliation(s)
- Georges St Laurent
- St. Laurent Institute, 317 New Boston St., Suite 201, Woburn, MA 01801 USA; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136 USA.
| | - Philipp Kapranov
- Institute of Genomics, School of Biomedical Sciences, Huaqiao Univerisity, 668 Jimei Road, Xiamen, China 361021; St. Laurent Institute, 317 New Boston St., Suite 201, Woburn, MA 01801 USA.
| |
Collapse
|
68
|
Hrossova D, Sikorsky T, Potesil D, Bartosovic M, Pasulka J, Zdrahal Z, Stefl R, Vanacova S. RBM7 subunit of the NEXT complex binds U-rich sequences and targets 3'-end extended forms of snRNAs. Nucleic Acids Res 2015; 43:4236-48. [PMID: 25852104 PMCID: PMC4417160 DOI: 10.1093/nar/gkv240] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 01/09/2023] Open
Abstract
The Nuclear Exosome Targeting (NEXT) complex is a key cofactor of the mammalian nuclear exosome in the removal of Promoter Upstream Transcripts (PROMPTs) and potentially aberrant forms of other noncoding RNAs, such as snRNAs. NEXT is composed of three subunits SKIV2L2, ZCCHC8 and RBM7. We have recently identified the NEXT complex in our screen for oligo(U) RNA-binding factors. Here, we demonstrate that NEXT displays preference for U-rich pyrimidine sequences and this RNA binding is mediated by the RNA recognition motif (RRM) of the RBM7 subunit. We solved the structure of RBM7 RRM and identified two phenylalanine residues that are critical for interaction with RNA. Furthermore, we showed that these residues are required for the NEXT interaction with snRNAs in vivo. Finally, we show that depletion of components of the NEXT complex alone or together with exosome nucleases resulted in the accumulation of mature as well as extended forms of snRNAs. Thus, our data suggest a new scenario in which the NEXT complex is involved in the surveillance of snRNAs and/or biogenesis of snRNPs.
Collapse
Affiliation(s)
- Dominika Hrossova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Tomas Sikorsky
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - David Potesil
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Marek Bartosovic
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Josef Pasulka
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Zbynek Zdrahal
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Stepanka Vanacova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| |
Collapse
|
69
|
Dhir A, Dhir S, Proudfoot NJ, Jopling CL. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nat Struct Mol Biol 2015; 22:319-27. [PMID: 25730776 PMCID: PMC4492989 DOI: 10.1038/nsmb.2982] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/05/2015] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) play a major part in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with cotranscriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. Although most miRNAs are located within introns of protein-coding transcripts, a substantial minority of miRNAs originate from long noncoding (lnc) RNAs, for which transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lncRNA transcripts containing miRNAs (lnc-pri-miRNAs) do not use the canonical cleavage-and-polyadenylation pathway but instead use Microprocessor cleavage to terminate transcription. Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a new RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells.
Collapse
Affiliation(s)
- Ashish Dhir
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Somdutta Dhir
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
70
|
Abstract
The RNA polymerase II transcription cycle is often divided into three major stages: initiation, elongation, and termination. Research over the last decade has blurred these divisions and emphasized the tightly regulated transitions that occur as RNA polymerase II synthesizes a transcript from start to finish. Transcription termination, the process that marks the end of transcription elongation, is regulated by proteins that interact with the polymerase, nascent transcript, and/or chromatin template. The failure to terminate transcription can cause accumulation of aberrant transcripts and interfere with transcription at downstream genes. Here, we review the mechanism, regulation, and physiological impact of a termination pathway that targets small noncoding transcripts produced by RNA polymerase II. We emphasize the Nrd1-Nab3-Sen1 pathway in yeast, in which the process has been extensively studied. The importance of understanding small RNA termination pathways is underscored by the need to control noncoding transcription in eukaryotic genomes.
Collapse
Affiliation(s)
- Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260;
| | | |
Collapse
|
71
|
Nab3 facilitates the function of the TRAMP complex in RNA processing via recruitment of Rrp6 independent of Nrd1. PLoS Genet 2015; 11:e1005044. [PMID: 25775092 PMCID: PMC4361618 DOI: 10.1371/journal.pgen.1005044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 01/30/2015] [Indexed: 11/26/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play critical roles in gene regulation. In eukaryotic cells, ncRNAs are processed and/or degraded by the nuclear exosome, a ribonuclease complex containing catalytic subunits Dis3 and Rrp6. The TRAMP (Trf4/5-Air1/2-Mtr4 polyadenylation) complex is a critical exosome cofactor in budding yeast that stimulates the exosome to process/degrade ncRNAs and human TRAMP components have recently been identified. Importantly, mutations in exosome and exosome cofactor genes cause neurodegenerative disease. How the TRAMP complex interacts with other exosome cofactors to orchestrate regulation of the exosome is an open question. To identify novel interactions of the TRAMP exosome cofactor, we performed a high copy suppressor screen of a thermosensitive air1/2 TRAMP mutant. Here, we report that the Nab3 RNA-binding protein of the Nrd1-Nab3-Sen1 (NNS) complex is a potent suppressor of TRAMP mutants. Unlike Nab3, Nrd1 and Sen1 do not suppress TRAMP mutants and Nrd1 binding is not required for Nab3-mediated suppression of TRAMP suggesting an independent role for Nab3. Critically, Nab3 decreases ncRNA levels in TRAMP mutants, Nab3-mediated suppression of air1/2 cells requires the nuclear exosome component, Rrp6, and Nab3 directly binds Rrp6. We extend this analysis to identify a human RNA binding protein, RALY, which shares identity with Nab3 and can suppress TRAMP mutants. These results suggest that Nab3 facilitates TRAMP function by recruiting Rrp6 to ncRNAs for processing/degradation independent of Nrd1. The data raise the intriguing possibility that Nab3 and Nrd1 can function independently to recruit Rrp6 to ncRNA targets, providing combinatorial flexibility in RNA processing. Eukaryotic genomes from yeast to man express numerous non-coding RNAs (ncRNAs) that regulate the expression of messenger RNAs (mRNAs) encoding the proteins vital for cell and body function. As faulty ncRNAs impair mRNA expression and contribute to cancers and neurodegenerative disease, it is imperative to understand how ncRNAs are processed and/or degraded. In budding yeast, a conserved RNA shredding machine known as the exosome nibbles at or destroys ncRNAs. The exosome is assisted by a conserved TRAMP exosome cofactor that recruits the exosome to ncRNAs for processing/ degradation. To better understand TRAMP function, we performed a genetic screen to identify genes that improve the growth of TRAMP mutant yeast cells that grow poorly at high temperature. We find that overexpression of the Nab3 RNA binding protein, which belongs to another exosome cofactor, the Nrd1-Nab3-Sen1 (NNS) complex, improves the growth of TRAMP mutant cells. Importantly, Nab3 requires the exosome to improve the growth and ncRNA processing of TRAMP mutant cells. We therefore suggest that Nab3 facilitates TRAMP function by recruiting the exosome to ncRNAs for processing/degradation. We also show that the human RNA binding protein, RALY, like Nab3, can improve the growth of TRAMP mutant cells.
Collapse
|
72
|
The exosome component Rrp6 is required for RNA polymerase II termination at specific targets of the Nrd1-Nab3 pathway. PLoS Genet 2015; 11:e1004999. [PMID: 25680078 PMCID: PMC4378619 DOI: 10.1371/journal.pgen.1004999] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 01/13/2015] [Indexed: 12/11/2022] Open
Abstract
The exosome and its nuclear specific subunit Rrp6 form a 3’-5’ exonuclease complex that regulates diverse aspects of RNA biology including 3’ end processing and degradation of a variety of noncoding RNAs (ncRNAs) and unstable transcripts. Known targets of the nuclear exosome include short (<1000 bp) RNAPII transcripts such as small noncoding RNAs (snRNAs), cryptic unstable transcripts (CUTs), and some stable unannotated transcripts (SUTs) that are terminated by an Nrd1, Nab3, and Sen1 (NNS) dependent mechanism. NNS-dependent termination is coupled to RNA 3’ end processing and/or degradation by the Rrp6/exosome in yeast. Recent work suggests Nrd1 is necessary for transcriptome surveillance, regulating promoter directionality and suppressing antisense transcription independently of, or prior to, Rrp6 activity. It remains unclear whether Rrp6 is directly involved in termination; however, Rrp6 has been implicated in the 3’ end processing and degradation of ncRNA transcripts including CUTs. To determine the role of Rrp6 in NNS termination globally, we performed RNA sequencing (RNA-Seq) on total RNA and perform ChIP-exo analysis of RNA Polymerase II (RNAPII) localization. Deletion of RRP6 promotes hyper-elongation of multiple NNS-dependent transcripts resulting from both improperly processed 3’ RNA ends and faulty transcript termination at specific target genes. The defects in RNAPII termination cause transcriptome-wide changes in mRNA expression through transcription interference and/or antisense repression, similar to previously reported effects of depleting Nrd1 from the nucleus. Elongated transcripts were identified within all classes of known NNS targets with the largest changes in transcription termination occurring at CUTs. Interestingly, the extended transcripts that we have detected in our studies show remarkable similarity to Nrd1-unterminated transcripts at many locations, suggesting that Rrp6 acts with the NNS complex globally to promote transcription termination in addition to 3’ end RNA processing and/or degradation at specific targets. RNAPII is responsible for transcription of protein-coding genes and short, regulatory RNAs. In Saccharomyces cerevisiae, termination of RNAPII-transcribed RNAs ≤1000 bases requires the NNS complex (comprised of Nrd1, Nab3, and Sen1), processing by the exosome, and the nuclear specific catalytic subunit, Rrp6. It has been shown that Rrp6 interacts directly with Nrd1, but whether or not Rrp6 is required for NNS-dependent termination is unclear. Loss of Rrp6 function may result in extension (or inhibition of termination) of NNS-dependent transcripts, or Rrp6 may only function after the fact to carry out RNA 3’ end processing. Here, we performed in-depth differential expression analyses and compare RNA-sequencing data of transcript length and abundance in cells lacking RRP6 to ChIP-exo analysis of RNAPII localization. We find many transcripts that were defined as unterminated upon loss of Nrd1 activity are of similar length in rrp6Δ, and expression levels of downstream genes are significantly decreased. This suggests a similar transcription interference mechanism occurs in cells lacking either Nrd1 or Rrp6. Indeed we find increased RNAPII located downstream of its termination site at many know Nrd1-regulated transcripts. Overall, our findings clearly demonstrate that Rrp6 activity is required for efficient NNS termination in vivo.
Collapse
|
73
|
Colin J, Candelli T, Porrua O, Boulay J, Zhu C, Lacroute F, Steinmetz LM, Libri D. Roadblock termination by reb1p restricts cryptic and readthrough transcription. Mol Cell 2015; 56:667-80. [PMID: 25479637 DOI: 10.1016/j.molcel.2014.10.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 06/09/2014] [Accepted: 10/29/2014] [Indexed: 02/09/2023]
Abstract
Widely transcribed compact genomes must cope with the major challenge of frequent overlapping or concurrent transcription events. Efficient and timely transcription termination is crucial to control pervasive transcription and prevent transcriptional interference. In yeast, transcription termination of RNA polymerase II (RNAPII) occurs via two possible pathways that both require recognition of termination signals on nascent RNA by specific factors. We describe here an additional mechanism of transcription termination for RNAPII and demonstrate its biological significance. We show that the transcriptional activator Reb1p bound to DNA is a roadblock for RNAPII, which pauses and is ubiquitinated, thus triggering termination. Reb1p-dependent termination generates a class of cryptic transcripts that are degraded in the nucleus by the exosome. We also observed transcriptional interference between neighboring genes in the absence of Reb1p. This work demonstrates the importance of roadblock termination for controlling pervasive transcription and preventing transcription through gene regulatory regions.
Collapse
Affiliation(s)
- Jessie Colin
- Centre de Génétique Moléculaire, CNRS UPR3404, 91190 Gif sur Yvette, France
| | - Tito Candelli
- Centre de Génétique Moléculaire, CNRS UPR3404, 91190 Gif sur Yvette, France
| | - Odil Porrua
- Centre de Génétique Moléculaire, CNRS UPR3404, 91190 Gif sur Yvette, France
| | - Jocelyne Boulay
- Centre de Génétique Moléculaire, CNRS UPR3404, 91190 Gif sur Yvette, France
| | - Chenchen Zhu
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - François Lacroute
- Centre de Génétique Moléculaire, CNRS UPR3404, 91190 Gif sur Yvette, France
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Domenico Libri
- Centre de Génétique Moléculaire, CNRS UPR3404, 91190 Gif sur Yvette, France.
| |
Collapse
|
74
|
Porrua O, Libri D. Transcription termination and the control of the transcriptome: why, where and how to stop. Nat Rev Mol Cell Biol 2015; 16:190-202. [DOI: 10.1038/nrm3943] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
75
|
Duttke SHC, Lacadie SA, Ibrahim MM, Glass CK, Corcoran DL, Benner C, Heinz S, Kadonaga JT, Ohler U. Human promoters are intrinsically directional. Mol Cell 2015; 57:674-684. [PMID: 25639469 DOI: 10.1016/j.molcel.2014.12.029] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/19/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
Abstract
Divergent transcription, in which reverse-oriented transcripts occur upstream of eukaryotic promoters in regions devoid of annotated genes, has been suggested to be a general property of active promoters. Here we show that the human basal RNA polymerase II transcriptional machinery and core promoter are inherently unidirectional and that reverse-oriented transcripts originate from their own cognate reverse-directed core promoters. In vitro transcription analysis and mapping of nascent transcripts in HeLa cells revealed that sequences at reverse start sites are similar to those of their forward counterparts. The use of DNase I accessibility to define proximal promoter borders revealed that about half of promoters are unidirectional and that unidirectional promoters are depleted at their upstream edges of reverse core promoter sequences and their associated chromatin features. Divergent transcription is thus not an inherent property of the transcription process but rather the consequence of the presence of both forward- and reverse-directed core promoters.
Collapse
Affiliation(s)
- Sascha H C Duttke
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Scott A Lacadie
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Mahmoud M Ibrahim
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; Department of Biology, Humboldt University, 10115 Berlin, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - David L Corcoran
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | | | - Sven Heinz
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - James T Kadonaga
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; Department of Biology, Humboldt University, 10115 Berlin, Germany.
| |
Collapse
|
76
|
Lubas M, Andersen PR, Schein A, Dziembowski A, Kudla G, Jensen TH. The human nuclear exosome targeting complex is loaded onto newly synthesized RNA to direct early ribonucleolysis. Cell Rep 2015; 10:178-92. [PMID: 25578728 DOI: 10.1016/j.celrep.2014.12.026] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/29/2014] [Accepted: 12/11/2014] [Indexed: 12/30/2022] Open
Abstract
The RNA exosome complex constitutes the major nuclear eukaryotic 3'-5' exonuclease. Outside of nucleoli, the human nucleoplasmic exosome is directed to some of its substrates by the nuclear exosome targeting (NEXT) complex. How NEXT targets RNA has remained elusive. Using an in vivo crosslinking approach, we report global RNA binding sites of RBM7, a key component of NEXT. RBM7 associates broadly with RNA polymerase II-derived RNA, including pre-mRNA and short-lived exosome substrates such as promoter upstream transcripts (PROMPTs), enhancer RNAs (eRNAs), and 3'-extended products from snRNA and replication-dependent histone genes. Within pre-mRNA, RBM7 accumulates at the 3' ends of introns, and pulse-labeling experiments demonstrate that RBM7/NEXT defines an early exosome-targeting pathway for 3'-extended snoRNAs derived from such introns. We propose that RBM7 is generally loaded onto newly synthesized RNA to accommodate exosome action in case of available unprotected RNA 3' ends.
Collapse
Affiliation(s)
- Michal Lubas
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Peter Refsing Andersen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Aleks Schein
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
77
|
Koster MJE, Timmers HTM. Regulation of anti-sense transcription by Mot1p and NC2 via removal of TATA-binding protein (TBP) from the 3'-end of genes. Nucleic Acids Res 2014; 43:143-52. [PMID: 25432956 PMCID: PMC4288163 DOI: 10.1093/nar/gku1263] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The activity and dynamic nature of TATA-binding protein (TBP) crucial to RNA polymerase II-mediated transcription is under control of the Mot1p and NC2 complexes. Here we show that both TBP regulatory factors play ‘hidden’ roles in ensuring transcription fidelity by restricting anti-sense non-coding RNA (ncRNA) synthesis. Production of anti-sense ncRNA transcripts is suppressed by Mot1p- and NC2-mediated release of TBP from binding sites at the 3′-end of genes. In this, Mot1p and NC2 collaborate with the Nrd1p–Nab3p–Sen1p (NNS) complex that terminates the synthesis of anti-sense ncRNAs. In several cases anti-sense ncRNA expression interferes with expression of the cognate sense transcript. Our data reveal a novel regulatory mechanism to suppress anti-sense ncRNA expression and pre-initiation complex (PIC) formation at spurious sites.
Collapse
Affiliation(s)
- Maria J E Koster
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - H Th Marc Timmers
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
78
|
Hanes SD. Prolyl isomerases in gene transcription. Biochim Biophys Acta Gen Subj 2014; 1850:2017-34. [PMID: 25450176 DOI: 10.1016/j.bbagen.2014.10.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peptidyl-prolyl isomerases (PPIases) are enzymes that assist in the folding of newly-synthesized proteins and regulate the stability, localization, and activity of mature proteins. They do so by catalyzing reversible (cis-trans) rotation about the peptide bond that precedes proline, inducing conformational changes in target proteins. SCOPE OF REVIEW This review will discuss how PPIases regulate gene transcription by controlling the activity of (1) DNA-binding transcription regulatory proteins, (2) RNA polymerase II, and (3) chromatin and histone modifying enzymes. MAJOR CONCLUSIONS Members of each family of PPIase (cyclophilins, FKBPs, and parvulins) regulate gene transcription at multiple levels. In all but a few cases, the exact mechanisms remain elusive. Structure studies, development of specific inhibitors, and new methodologies for studying cis/trans isomerization in vivo represent some of the challenges in this new frontier that merges two important fields. GENERAL SIGNIFICANCE Prolyl isomerases have been found to play key regulatory roles in all phases of the transcription process. Moreover, PPIases control upstream signaling pathways that regulate gene-specific transcription during development, hormone response and environmental stress. Although transcription is often rate-limiting in the production of enzymes and structural proteins, post-transcriptional modifications are also critical, and PPIases play key roles here as well (see other reviews in this issue). This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Steven D Hanes
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E Adams St., Syracuse, NY 13210 USA.
| |
Collapse
|
79
|
Marquardt S, Hazelbaker DZ, Buratowski S. Distinct RNA degradation pathways and 3' extensions of yeast non-coding RNA species. Transcription 2014; 2:145-154. [PMID: 21826286 DOI: 10.4161/trns.2.3.16298] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 01/02/2023] Open
Abstract
Non-coding transcripts originating from bidirectional promoters have been reported in a wide range of organisms. In yeast, these divergent transcripts can be subdivided into two classes. Some are designated Cryptic Unstable Transcripts (CUTs) because they are terminated by the Nrd1-Nab3-Sen1 pathway and then rapidly degraded by the nuclear exosome. This is the same processing pathway used by yeast snoRNAs. Whereas CUTs are only easily observed in cells lacking the Rrp6 or Rrp47 subunits of the nuclear exosome, Stable Uncharacterized Transcripts (SUTs) are present even in wild-type cells. Here we show that SUTs are partially susceptible to the nuclear exosome, but are primarily degraded by cytoplasmic 5' to 3' degradation and nonsense-mediated decay (NMD). Therefore, SUTs may be processed similarly to mRNAs. Surprisingly, both CUTs and SUTs were found to produce 3' extended species that were also subject to cytoplasmic degradation. The functions, if any, of these extended CUTs and SUTs are unknown, but their discovery suggests that yeasts generate transcripts reminiscent of long non-coding RNAs found in higher eukaryotes.
Collapse
Affiliation(s)
- Sebastian Marquardt
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston, MA USA
| | | | | |
Collapse
|
80
|
Schaughency P, Merran J, Corden JL. Genome-wide mapping of yeast RNA polymerase II termination. PLoS Genet 2014; 10:e1004632. [PMID: 25299594 PMCID: PMC4191890 DOI: 10.1371/journal.pgen.1004632] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/21/2014] [Indexed: 12/22/2022] Open
Abstract
Yeast RNA polymerase II (Pol II) terminates transcription of coding transcripts through the polyadenylation (pA) pathway and non-coding transcripts through the non-polyadenylation (non-pA) pathway. We have used PAR-CLIP to map the position of Pol II genome-wide in living yeast cells after depletion of components of either the pA or non-pA termination complexes. We show here that Ysh1, responsible for cleavage at the pA site, is required for efficient removal of Pol II from the template. Depletion of Ysh1 from the nucleus does not, however, lead to readthrough transcription. In contrast, depletion of the termination factor Nrd1 leads to widespread runaway elongation of non-pA transcripts. Depletion of Sen1 also leads to readthrough at non-pA terminators, but in contrast to Nrd1, this readthrough is less processive, or more susceptible to pausing. The data presented here provide delineation of in vivo Pol II termination regions and highlight differences in the sequences that signal termination of different classes of non-pA transcripts. Transcription termination is an important regulatory event for both non-coding and coding transcripts. Using high-throughput sequencing, we have mapped RNA Polymerase II's position in the genome after depletion of termination factors from the nucleus. We found that depletion of Ysh1 and Sen1 cause build up of polymerase directly downstream of coding and non-coding genes, respectively. Depletion of Nrd1 causes an increase in polymerase that is distributed up to 1,000 bases downstream of non-coding genes. The depletion of Nrd1 helped us to identify more than 250 unique termination regions for non-coding RNAs. Within this set of newly identified non-coding termination regions, we are further able to classify them based on sequence motif similarities, suggesting a functional role for different terminator motifs. The role of these factors in transcriptional termination of coding and/or non-coding transcripts can be inferred from the effect of polymerase's position downstream of given termination sites. This method of depletion and sequencing can be used to further elucidate other factors whose importance to transcription has yet to be determined.
Collapse
Affiliation(s)
- Paul Schaughency
- Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
| | - Jonathan Merran
- Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
| | - Jeffry L. Corden
- Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
81
|
The nuclear exosome is active and important during budding yeast meiosis. PLoS One 2014; 9:e107648. [PMID: 25210768 PMCID: PMC4161446 DOI: 10.1371/journal.pone.0107648] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022] Open
Abstract
Nuclear RNA degradation pathways are highly conserved across eukaryotes and play important roles in RNA quality control. Key substrates for exosomal degradation include aberrant functional RNAs and cryptic unstable transcripts (CUTs). It has recently been reported that the nuclear exosome is inactivated during meiosis in budding yeast through degradation of the subunit Rrp6, leading to the stabilisation of a subset of meiotic unannotated transcripts (MUTs) of unknown function. We have analysed the activity of the nuclear exosome during meiosis by deletion of TRF4, which encodes a key component of the exosome targeting complex TRAMP. We find that TRAMP mutants produce high levels of CUTs during meiosis that are undetectable in wild-type cells, showing that the nuclear exosome remains functional for CUT degradation, and we further report that the meiotic exosome complex contains Rrp6. Indeed Rrp6 over-expression is insufficient to suppress MUT transcripts, showing that the reduced amount of Rrp6 in meiotic cells does not directly cause MUT accumulation. Lack of TRAMP activity stabilises ∼ 1600 CUTs in meiotic cells, which occupy 40% of the binding capacity of the nuclear cap binding complex (CBC). CBC mutants display defects in the formation of meiotic double strand breaks (DSBs), and we see similar defects in TRAMP mutants, suggesting that a key function of the nuclear exosome is to prevent saturation of the CBC complex by CUTs. Together, our results show that the nuclear exosome remains active in meiosis and has an important role in facilitating meiotic recombination.
Collapse
|
82
|
Abstract
Eukaryotic mRNAs are extensively processed to generate functional transcripts, which are 5′ capped, spliced and 3′ polyadenylated. Accumulation of unprocessed (aberrant) mRNAs can be deleterious for the cell, hence processing fidelity is closely monitored by QC (quality control) mechanisms that identify erroneous transcripts and initiate their selective removal. Nucleases including Xrn2/Rat1 and the nuclear exosome have been shown to play an important role in the turnover of aberrant mRNAs. Recently, with the growing appreciation that mRNA processing occurs concomitantly with polII (RNA polymerase II) transcription, it has become evident that QC acts at the transcriptional level in addition to degrading aberrant RNAs. In the present review, we discuss mechanisms that allow cells to co-transcriptionally initiate the removal of RNAs as well as down-regulate transcription of transcripts where processing repeatedly fails.
Collapse
|
83
|
Saccharomyces cerevisiae Sen1 as a model for the study of mutations in human Senataxin that elicit cerebellar ataxia. Genetics 2014; 198:577-90. [PMID: 25116135 DOI: 10.1534/genetics.114.167585] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The nuclear RNA and DNA helicase Sen1 is essential in the yeast Saccharomyces cerevisiae and is required for efficient termination of RNA polymerase II transcription of many short noncoding RNA genes. However, the mechanism of Sen1 function is not understood. We created a plasmid-based genetic system to study yeast Sen1 in vivo. Using this system, we show that (1) the minimal essential region of Sen1 corresponds to the helicase domain and one of two flanking nuclear localization sequences; (2) a previously isolated terminator readthrough mutation in the Sen1 helicase domain, E1597K, is rescued by a second mutation designed to restore a salt bridge within the first RecA domain; and (3) the human ortholog of yeast Sen1, Senataxin, cannot functionally replace Sen1 in yeast. Guided by sequence homology between the conserved helicase domains of Sen1 and Senataxin, we tested the effects of 13 missense mutations that cosegregate with the inherited disorder ataxia with oculomotor apraxia type 2 on Sen1 function. Ten of the disease mutations resulted in transcription readthrough of at least one of three Sen1-dependent termination elements tested. Our genetic system will facilitate the further investigation of structure-function relationships in yeast Sen1 and its orthologs.
Collapse
|
84
|
Molecular basis for coordinating transcription termination with noncoding RNA degradation. Mol Cell 2014; 55:467-81. [PMID: 25066235 PMCID: PMC4186968 DOI: 10.1016/j.molcel.2014.05.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/10/2014] [Accepted: 05/29/2014] [Indexed: 12/27/2022]
Abstract
The Nrd1-Nab3-Sen1 (NNS) complex is essential for controlling pervasive transcription and generating sn/snoRNAs in S. cerevisiae. The NNS complex terminates transcription of noncoding RNA genes and promotes exosome-dependent processing/degradation of the released transcripts. The Trf4-Air2-Mtr4 (TRAMP) complex polyadenylates NNS target RNAs and favors their degradation. NNS-dependent termination and degradation are coupled, but the mechanism underlying this coupling remains enigmatic. Here we provide structural and functional evidence demonstrating that the same domain of Nrd1p interacts with RNA polymerase II and Trf4p in a mutually exclusive manner, thus defining two alternative forms of the NNS complex, one involved in termination and the other in degradation. We show that the Nrd1-Trf4 interaction is required for optimal exosome activity in vivo and for the stimulation of polyadenylation of NNS targets by TRAMP in vitro. We propose that transcription termination and RNA degradation are coordinated by switching between two alternative partners of the NNS complex. The Nrd1 CTD interaction domain (CID) recognizes a CTD mimic in Trf4 The CID interacts with RNAPII and Trf4 in a mutually exclusive manner Architecture of the interactions between the NNS complex, the exosome, and TRAMP The interaction of Nrd1 with Trf4 stimulates the polyadenylation activity of TRAMP
Collapse
|
85
|
Grzechnik P, Tan-Wong SM, Proudfoot NJ. Terminate and make a loop: regulation of transcriptional directionality. Trends Biochem Sci 2014; 39:319-27. [PMID: 24928762 PMCID: PMC4085477 DOI: 10.1016/j.tibs.2014.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/24/2014] [Accepted: 05/12/2014] [Indexed: 01/28/2023]
Abstract
Transcriptional directionality is controlled by premature transcription termination. Transcriptional directionality is enforced by gene looping. mRNA-specific termination signals and factors are required for gene looping.
Bidirectional promoters are a common feature of many eukaryotic organisms from yeast to humans. RNA Polymerase II that is recruited to this type of promoter can start transcribing in either direction using alternative DNA strands as the template. Such promiscuous transcription can lead to the synthesis of unwanted transcripts that may have negative effects on gene expression. Recent studies have identified transcription termination and gene looping as critical players in the enforcement of promoter directionality. Interestingly, both mechanisms share key components. Here, we focus on recent findings relating to the transcriptional output of bidirectional promoters.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sue Mei Tan-Wong
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
86
|
Bacikova V, Pasulka J, Kubicek K, Stefl R. Structure and semi-sequence-specific RNA binding of Nrd1. Nucleic Acids Res 2014; 42:8024-38. [PMID: 24860164 PMCID: PMC4081072 DOI: 10.1093/nar/gku446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In Saccharomyces cerevisiae, the Nrd1-dependent termination and processing pathways play an important role in surveillance and processing of non-coding ribonucleic acids (RNAs). The termination and subsequent processing is dependent on the Nrd1 complex consisting of two RNA-binding proteins Nrd1 and Nab3 and Sen1 helicase. It is established that Nrd1 and Nab3 cooperatively recognize specific termination elements within nascent RNA, GUA[A/G] and UCUU[G], respectively. Interestingly, some transcripts do not require GUA[A/G] motif for transcription termination in vivo and binding in vitro, suggesting the existence of alternative Nrd1-binding motifs. Here we studied the structure and RNA-binding properties of Nrd1 using nuclear magnetic resonance (NMR), fluorescence anisotropy and phenotypic analyses in vivo. We determined the solution structure of a two-domain RNA-binding fragment of Nrd1, formed by an RNA-recognition motif and helix–loop bundle. NMR and fluorescence data show that not only GUA[A/G] but also several other G-rich and AU-rich motifs are able to bind Nrd1 with affinity in a low micromolar range. The broad substrate specificity is achieved by adaptable interaction surfaces of the RNA-recognition motif and helix–loop bundle domains that sandwich the RNA substrates. Our findings have implication for the role of Nrd1 in termination and processing of many non-coding RNAs arising from bidirectional pervasive transcription.
Collapse
Affiliation(s)
- Veronika Bacikova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Josef Pasulka
- CEITEC-Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Karel Kubicek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
87
|
Liu H, Luo M, Wen JK. mRNA stability in the nucleus. J Zhejiang Univ Sci B 2014; 15:444-54. [PMID: 24793762 PMCID: PMC4076601 DOI: 10.1631/jzus.b1400088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/11/2014] [Indexed: 01/15/2023]
Abstract
Eukaryotic gene expression is controlled by different levels of biological events, such as transcription factors regulating the timing and strength of transcripts production, alteration of transcription rate by RNA processing, and mRNA stability during RNA processing and translation. RNAs, especially mRNAs, are relatively vulnerable molecules in living cells for ribonucleases (RNases). The maintenance of quality and quantity of transcripts is a key issue for many biological processes. Extensive studies draw the conclusion that the stability of RNAs is dedicated-regulated, occurring co- and post-transcriptionally, and translation-coupled as well, either in the nucleus or cytoplasm. Recently, RNA stability in the nucleus has aroused much research interest, especially the stability of newly-made transcripts. In this article, we summarize recent progresses on mRNA stability in the nucleus, especially focusing on quality control of newly-made RNA by RNA polymerase II in eukaryotes.
Collapse
Affiliation(s)
- Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Min Luo
- Chongqing Institute of Tuberculosis Prevention and Treatment, Chongqing 400050, China
| | - Ji-kai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
88
|
Castelnuovo M, Zaugg JB, Guffanti E, Maffioletti A, Camblong J, Xu Z, Clauder-Münster S, Steinmetz LM, Luscombe NM, Stutz F. Role of histone modifications and early termination in pervasive transcription and antisense-mediated gene silencing in yeast. Nucleic Acids Res 2014; 42:4348-62. [PMID: 24497191 PMCID: PMC3985671 DOI: 10.1093/nar/gku100] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 01/09/2014] [Accepted: 01/12/2014] [Indexed: 12/15/2022] Open
Abstract
Most genomes, including yeast Saccharomyces cerevisiae, are pervasively transcribed producing numerous non-coding RNAs, many of which are unstable and eliminated by nuclear or cytoplasmic surveillance pathways. We previously showed that accumulation of PHO84 antisense RNA (asRNA), in cells lacking the nuclear exosome component Rrp6, is paralleled by repression of sense transcription in a process dependent on the Hda1 histone deacetylase (HDAC) and the H3K4 histone methyl transferase Set1. Here we investigate this process genome-wide and measure the whole transcriptome of various histone modification mutants in a Δrrp6 strain using tiling arrays. We confirm widespread occurrence of potentially antisense-dependent gene regulation and identify three functionally distinct classes of genes that accumulate asRNAs in the absence of Rrp6. These classes differ in whether the genes are silenced by the asRNA and whether the silencing is HDACs and histone methyl transferase-dependent. Among the distinguishing features of asRNAs with regulatory potential, we identify weak early termination by Nrd1/Nab3/Sen1, extension of the asRNA into the open reading frame promoter and dependence of the silencing capacity on Set1 and the HDACs Hda1 and Rpd3 particularly at promoters undergoing extensive chromatin remodelling. Finally, depending on the efficiency of Nrd1/Nab3/Sen1 early termination, asRNA levels are modulated and their capability of silencing is changed.
Collapse
Affiliation(s)
- Manuele Castelnuovo
- Department of Cell Biology and NCCR "Frontiers in Genetics", iGE3, University of Geneva, 1211 Geneva, Switzerland, EBI-EMBL Hinxton, Cambridge CB101SD, England, European Molecular Biology Laboratory, 69117 Heidelberg, Germany, Department of Genetics, Stanford University, Stanford, CA 94395 USA and Stanford Genome Technology Center, Palo Alto, CA 94303, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Shah S, Wittmann S, Kilchert C, Vasiljeva L. lncRNA recruits RNAi and the exosome to dynamically regulate pho1 expression in response to phosphate levels in fission yeast. Genes Dev 2014; 28:231-44. [PMID: 24493644 PMCID: PMC3923966 DOI: 10.1101/gad.230177.113] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Numerous noncoding transcripts of unknown function have recently been identified. In this study, we report a novel mechanism that relies on transcription of noncoding RNA prt (pho1-repressing transcript) regulating expression of the pho1 gene. A product of this gene, Pho1, is a major secreted phosphatase needed for uptake of extracellular phosphate in fission yeast. prt is produced from the promoter located upstream of the pho1 gene in response to phosphate, and its transcription leads to deposition of RNAi-dependent H3K9me2 across the pho1 locus. In contrast, phosphate starvation leads to loss of H3K9me2 and pho1 induction. Strikingly, deletion of Clr4, a H3K9 methyltransferase, results in faster pho1 induction in response to phosphate starvation. We propose a new role for noncoding transcription in establishing transient heterochromatin to mediate an effective transcriptional response to environmental stimuli. RNAi recruitment to prt depends on the RNA-binding protein Mmi1. Importantly, we found that the exosome complex and Mmi1 are required for transcription termination and the subsequent degradation of prt but not pho1 mRNA. Moreover, in mitotic cells, transcription termination of meiotic RNAs also relies on this mechanism. We propose that exosome-dependent termination constitutes a specialized system that primes transcripts for degradation to ensure their efficient elimination.
Collapse
Affiliation(s)
- Sneha Shah
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
90
|
The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:316-33. [PMID: 24530645 DOI: 10.1016/j.bbagrm.2014.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
Abstract
Ess1 is a prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II. Ess1 works by catalyzing the cis/trans conversion of pSer5-Pro6 bonds, and to a lesser extent pSer2-Pro3 bonds, within the carboxy-terminal domain (CTD) of Rpb1, the largest subunit of RNA pol II. Ess1 is conserved in organisms ranging from yeast to humans. In budding yeast, Ess1 is essential for growth and is required for efficient transcription initiation and termination, RNA processing, and suppression of cryptic transcription. In mammals, Ess1 (called Pin1) functions in a variety of pathways, including transcription, but it is not essential. Recent work has shown that Ess1 coordinates the binding and release of CTD-binding proteins that function as co-factors in the RNA pol II complex. In this way, Ess1 plays an integral role in writing (and reading) the so-called CTD code to promote production of mature RNA pol II transcripts including non-coding RNAs and mRNAs.
Collapse
|
91
|
Cross-talk of phosphorylation and prolyl isomerization of the C-terminal domain of RNA Polymerase II. Molecules 2014; 19:1481-511. [PMID: 24473209 PMCID: PMC4350670 DOI: 10.3390/molecules19021481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/06/2014] [Accepted: 01/21/2014] [Indexed: 12/04/2022] Open
Abstract
Post-translational modifications of the heptad repeat sequences in the C-terminal domain (CTD) of RNA polymerase II (Pol II) are well recognized for their roles in coordinating transcription with other nuclear processes that impinge upon transcription by the Pol II machinery; and this is primarily achieved through CTD interactions with the various nuclear factors. The identification of novel modifications on new regulatory sites of the CTD suggests that, instead of an independent action for all modifications on CTD, a combinatorial effect is in operation. In this review we focus on two well-characterized modifications of the CTD, namely serine phosphorylation and prolyl isomerization, and discuss the complex interplay between the enzymes modifying their respective regulatory sites. We summarize the current understanding of how the prolyl isomerization state of the CTD dictates the specificity of writers (CTD kinases), erasers (CTD phosphatases) and readers (CTD binding proteins) and how that correlates to transcription status. Subtle changes in prolyl isomerization states cannot be detected at the primary sequence level, we describe the methods that have been utilized to investigate this mode of regulation. Finally, a general model of how prolyl isomerization regulates the phosphorylation state of CTD, and therefore transcription-coupled processes, is proposed.
Collapse
|
92
|
Lenstra TL, Tudek A, Clauder S, Xu Z, Pachis ST, van Leenen D, Kemmeren P, Steinmetz LM, Libri D, Holstege FCP. The role of Ctk1 kinase in termination of small non-coding RNAs. PLoS One 2013; 8:e80495. [PMID: 24324601 PMCID: PMC3851182 DOI: 10.1371/journal.pone.0080495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/03/2013] [Indexed: 11/18/2022] Open
Abstract
Transcription termination in Saccharomyces cerevisiae can be performed by at least two distinct pathways and is influenced by the phosphorylation status of the carboxy-terminal domain (CTD) of RNA polymerase II (Pol II). Late termination of mRNAs is performed by the CPF/CF complex, the recruitment of which is dependent on CTD-Ser2 phosphorylation (Ser2P). Early termination of shorter cryptic unstable transcripts (CUTs) and small nucleolar/nuclear RNAs (sno/snRNAs) is performed by the Nrd1-Nab3-Sen1 (NNS) complex that binds phosphorylated CTD-Ser5 (Ser5P) via the CTD-interacting domain (CID) of Nrd1p. In this study, mutants of the different termination pathways were compared by genome-wide expression analysis. Surprisingly, the expression changes observed upon loss of the CTD-Ser2 kinase Ctk1p are more similar to those derived from alterations in the Ser5P-dependent NNS pathway, than from loss of CTD-Ser2P binding factors. Tiling array analysis of ctk1Δ cells reveals readthrough at snoRNAs, at many cryptic unstable transcripts (CUTs) and stable uncharacterized transcripts (SUTs), but only at some mRNAs. Despite the suggested predominant role in termination of mRNAs, we observed that a CTK1 deletion or a Pol II CTD mutant lacking all Ser2 positions does not result in a global mRNA termination defect. Rather, termination defects in these strains are widely observed at NNS-dependent genes. These results indicate that Ctk1p and Ser2 CTD phosphorylation have a wide impact in termination of small non-coding RNAs but only affect a subset of mRNA coding genes.
Collapse
Affiliation(s)
- Tineke L. Lenstra
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Agnieszka Tudek
- LEA Laboratory of Nuclear RNA Metabolism, Centre de de Génétique Moléculaire, C.N.R.S.-UPR3404, Gif sur Yvette, France
| | - Sandra Clauder
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Zhenyu Xu
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Spyridon T. Pachis
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dik van Leenen
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patrick Kemmeren
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lars M. Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Domenico Libri
- LEA Laboratory of Nuclear RNA Metabolism, Centre de de Génétique Moléculaire, C.N.R.S.-UPR3404, Gif sur Yvette, France
- * E-mail: (DL); (FCPH)
| | - Frank C. P. Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (DL); (FCPH)
| |
Collapse
|
93
|
Garland W, Feigenbutz M, Turner M, Mitchell P. Rrp47 functions in RNA surveillance and stable RNA processing when divorced from the exoribonuclease and exosome-binding domains of Rrp6. RNA (NEW YORK, N.Y.) 2013; 19:1659-1668. [PMID: 24106327 PMCID: PMC3884647 DOI: 10.1261/rna.039388.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
The eukaryotic exosome exoribonuclease Rrp6 forms a complex with Rrp47 that functions in nuclear RNA quality control mechanisms, the degradation of cryptic unstable transcripts (CUTs), and in the 3' end maturation of stable RNAs. Stable expression of Rrp47 is dependent upon its interaction with the N-terminal domain of Rrp6 (Rrp6NT). To address the function of Rrp47 independently of Rrp6, we developed a DECOID (decreased expression of complexes by overexpression of interacting domains) strategy to resolve the Rrp6/Rrp47 complex in vivo and employed mpp6Δ and rex1Δ mutants that are synthetic lethal with loss-of-function rrp47 mutants. Strikingly, Rrp47 was able to function in mpp6Δ and rex1Δ mutants when separated from the catalytic and exosome-binding domains of Rrp6, whereas a truncated Rrp47 protein lacking its C-terminal region caused a block in cell growth. Northern analyses of the conditional mutants revealed a specific block in the 3' maturation of box C/D snoRNAs in the rex1 rrp47 mutant and widespread inhibition of Rrp6-mediated RNA surveillance processes in the mpp6 rrp47 mutant. In contrast, growth analyses and RNA northern blot hybridization analyses showed no effect on the rrp47Δ mutant upon overexpression of the Rrp6NT domain. These findings demonstrate that Rrp47 and Rrp6 have resolvable functions in Rrp6-mediated RNA surveillance and processing pathways. In addition, this study reveals a redundant requirement for Rrp6 or Rex1 in snoRNA maturation and demonstrates the effective use of the DECOID strategy for the resolution and functional analysis of protein complexes.
Collapse
|
94
|
|
95
|
The human cap-binding complex is functionally connected to the nuclear RNA exosome. Nat Struct Mol Biol 2013; 20:1367-76. [PMID: 24270879 PMCID: PMC3923317 DOI: 10.1038/nsmb.2703] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/04/2013] [Indexed: 11/29/2022]
Abstract
Nuclear processing and quality control of eukaryotic RNA is mediated by the RNA exosome, which is regulated by accessory factors. However, the mechanism of exosome recruitment to its ribonucleoprotein (RNP) targets remains poorly understood. Here we disclose a physical link between the human exosome and the cap-binding complex (CBC). The CBC associates with the ARS2 protein to form CBC-ARS2 (CBCA), and then further connects together with the ZC3H18 protein to the nuclear exosome targeting (NEXT) complex, forming CBC-NEXT (CBCN). RNA immunoprecipitation using CBCN factors as well as the analysis of combinatorial depletion of CBCN and exosome components underscore the functional relevance of CBC-exosome bridging at the level of target RNA. Specifically, CBCA suppresses read-through products of several RNA families by promoting their transcriptional termination. We suggest that the RNP 5′cap links transcription termination to exosomal RNA degradation via CBCN.
Collapse
|
96
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
97
|
Transcriptome surveillance by selective termination of noncoding RNA synthesis. Cell 2013; 155:1075-87. [PMID: 24210918 DOI: 10.1016/j.cell.2013.10.024] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/12/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022]
Abstract
Pervasive transcription of eukaryotic genomes stems to a large extent from bidirectional promoters that synthesize mRNA and divergent noncoding RNA (ncRNA). Here, we show that ncRNA transcription in the yeast S. cerevisiae is globally restricted by early termination that relies on the essential RNA-binding factor Nrd1. Depletion of Nrd1 from the nucleus results in 1,526 Nrd1-unterminated transcripts (NUTs) that originate from nucleosome-depleted regions (NDRs) and can deregulate mRNA synthesis by antisense repression and transcription interference. Transcriptome-wide Nrd1-binding maps reveal divergent NUTs at most promoters and antisense NUTs in most 3' regions of genes. Nrd1 and its partner Nab3 preferentially bind RNA motifs that are depleted in mRNAs and enriched in ncRNAs and some mRNAs whose synthesis is controlled by transcription attenuation. These results define a global mechanism for transcriptome surveillance that selectively terminates ncRNA synthesis to provide promoter directionality and to suppress antisense transcription.
Collapse
|
98
|
Marina DB, Shankar S, Natarajan P, Finn KJ, Madhani HD. A conserved ncRNA-binding protein recruits silencing factors to heterochromatin through an RNAi-independent mechanism. Genes Dev 2013; 27:1851-6. [PMID: 24013500 PMCID: PMC3778239 DOI: 10.1101/gad.226019.113] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) can trigger repressive chromatin, but how they recruit silencing factors remains unclear. In Schizosaccharomyces pombe, heterochromatin assembly on transcribed noncoding pericentromeric repeats requires both RNAi and RNAi-independent mechanisms. In Saccharomyces cerevisiae, which lacks a repressive chromatin mark (H3K9me [methylated Lys9 on histone H3]), unstable ncRNAs are recognized by the RNA-binding protein Nrd1. We show that the S. pombe ortholog Seb1 is associated with pericentromeric lncRNAs. Individual mutation of dcr1+ (Dicer) or seb1+ results in equivalent partial reductions of pericentromeric H3K9me levels, but a double mutation eliminates this mark. Seb1 functions independently of RNAi by recruiting the NuRD (nucleosome remodeling and deacetylase)-related chromatin-modifying complex SHREC (Snf2-HDAC [histone deacetylase] repressor complex).
Collapse
Affiliation(s)
- Diana B Marina
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | | | | | | | | |
Collapse
|
99
|
|
100
|
de Boer CG, van Bakel H, Tsui K, Li J, Morris QD, Nislow C, Greenblatt JF, Hughes TR. A unified model for yeast transcript definition. Genome Res 2013; 24:154-66. [PMID: 24170600 PMCID: PMC3875857 DOI: 10.1101/gr.164327.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Identifying genes in the genomic context is central to a cell's ability to interpret the genome. Yet, in general, the signals used to define eukaryotic genes are poorly described. Here, we derived simple classifiers that identify where transcription will initiate and terminate using nucleic acid sequence features detectable by the yeast cell, which we integrate into a Unified Model (UM) that models transcription as a whole. The cis-elements that denote where transcription initiates function primarily through nucleosome depletion, and, using a synthetic promoter system, we show that most of these elements are sufficient to initiate transcription in vivo. Hrp1 binding sites are the major characteristic of terminators; these binding sites are often clustered in terminator regions and can terminate transcription bidirectionally. The UM predicts global transcript structure by modeling transcription of the genome using a hidden Markov model whose emissions are the outputs of the initiation and termination classifiers. We validated the novel predictions of the UM with available RNA-seq data and tested it further by directly comparing the transcript structure predicted by the model to the transcription generated by the cell for synthetic DNA segments of random design. We show that the UM identifies transcription start sites more accurately than the initiation classifier alone, indicating that the relative arrangement of promoter and terminator elements influences their function. Our model presents a concrete description of how the cell defines transcript units, explains the existence of nongenic transcripts, and provides insight into genome evolution.
Collapse
|