51
|
Kim K, Heo DH, Kim I, Suh JY, Kim M. Exosome Cofactors Connect Transcription Termination to RNA Processing by Guiding Terminated Transcripts to the Appropriate Exonuclease within the Nuclear Exosome. J Biol Chem 2016; 291:13229-42. [PMID: 27076633 DOI: 10.1074/jbc.m116.715771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 12/11/2022] Open
Abstract
The yeast Nrd1 interacts with the C-terminal domain (CTD) of RNA polymerase II (RNApII) through its CTD-interacting domain (CID) and also associates with the nuclear exosome, thereby acting as both a transcription termination and RNA processing factor. Previously, we found that the Nrd1 CID is required to recruit the nuclear exosome to the Nrd1 complex, but it was not clear which exosome subunits were contacted. Here, we show that two nuclear exosome cofactors, Mpp6 and Trf4, directly and competitively interact with the Nrd1 CID and differentially regulate the association of Nrd1 with two catalytic subunits of the exosome. Importantly, Mpp6 promotes the processing of Nrd1-terminated transcripts preferentially by Dis3, whereas Trf4 leads to Rrp6-dependent processing. This suggests that Mpp6 and Trf4 may play a role in choosing a particular RNA processing route for Nrd1-terminated transcripts within the exosome by guiding the transcripts to the appropriate exonuclease.
Collapse
Affiliation(s)
- Kyumin Kim
- From the Department of Cellular and Molecular Pharmacology, University of California and California Institute for Quantitative Biosciences, San Francisco, California 94158
| | - Dong-Hyuk Heo
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Iktae Kim
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea, and
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea, and Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - Minkyu Kim
- From the Department of Cellular and Molecular Pharmacology, University of California and California Institute for Quantitative Biosciences, San Francisco, California 94158,
| |
Collapse
|
52
|
The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 2016; 17:227-39. [PMID: 26726035 DOI: 10.1038/nrm.2015.15] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RNA exosome complex is the most versatile RNA-degradation machine in eukaryotes. The exosome has a central role in several aspects of RNA biogenesis, including RNA maturation and surveillance. Moreover, it is emerging as an important player in regulating the expression levels of specific mRNAs in response to environmental cues and during cell differentiation and development. Although the mechanisms by which RNA is targeted to (or escapes from) the exosome are still not fully understood, general principles have begun to emerge, which we discuss in this Review. In addition, we introduce and discuss novel, previously unappreciated functions of the nuclear exosome, including in transcription regulation and in the maintenance of genome stability.
Collapse
|
53
|
Brewer-Jensen P, Wilson CB, Abernethy J, Mollison L, Card S, Searles LL. Suppressor of sable [Su(s)] and Wdr82 down-regulate RNA from heat-shock-inducible repetitive elements by a mechanism that involves transcription termination. RNA (NEW YORK, N.Y.) 2016; 22:139-54. [PMID: 26577379 PMCID: PMC4691828 DOI: 10.1261/rna.048819.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/23/2015] [Indexed: 05/26/2023]
Abstract
Although RNA polymerase II (Pol II) productively transcribes very long genes in vivo, transcription through extragenic sequences often terminates in the promoter-proximal region and the nascent RNA is degraded. Mechanisms that induce early termination and RNA degradation are not well understood in multicellular organisms. Here, we present evidence that the suppressor of sable [su(s)] regulatory pathway of Drosophila melanogaster plays a role in this process. We previously showed that Su(s) promotes exosome-mediated degradation of transcripts from endogenous repeated elements at an Hsp70 locus (Hsp70-αβ elements). In this report, we identify Wdr82 as a component of this process and show that it works with Su(s) to inhibit Pol II elongation through Hsp70-αβ elements. Furthermore, we show that the unstable transcripts produced during this process are polyadenylated at heterogeneous sites that lack canonical polyadenylation signals. We define two distinct regions that mediate this regulation. These results indicate that the Su(s) pathway promotes RNA degradation and transcription termination through a novel mechanism.
Collapse
Affiliation(s)
- Paul Brewer-Jensen
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | - Carrie B Wilson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | - John Abernethy
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | - Lonna Mollison
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | - Samantha Card
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | - Lillie L Searles
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| |
Collapse
|
54
|
Holmes RK, Tuck AC, Zhu C, Dunn-Davies HR, Kudla G, Clauder-Munster S, Granneman S, Steinmetz LM, Guthrie C, Tollervey D. Loss of the Yeast SR Protein Npl3 Alters Gene Expression Due to Transcription Readthrough. PLoS Genet 2015; 11:e1005735. [PMID: 26694144 PMCID: PMC4687934 DOI: 10.1371/journal.pgen.1005735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/20/2015] [Indexed: 01/25/2023] Open
Abstract
Yeast Npl3 is a highly abundant, nuclear-cytoplasmic shuttling, RNA-binding protein, related to metazoan SR proteins. Reported functions of Npl3 include transcription elongation, splicing and RNA 3’ end processing. We used UV crosslinking and analysis of cDNA (CRAC) to map precise RNA binding sites, and strand-specific tiling arrays to look at the effects of loss of Npl3 on all transcripts across the genome. We found that Npl3 binds diverse RNA species, both coding and non-coding, at sites indicative of roles in both early pre-mRNA processing and 3’ end formation. Tiling arrays and RNAPII mapping data revealed 3’ extended RNAPII-transcribed RNAs in the absence of Npl3, suggesting that defects in pre-mRNA packaging events result in termination readthrough. Transcription readthrough was widespread and frequently resulted in down-regulation of neighboring genes. We conclude that the absence of Npl3 results in widespread 3' extension of transcripts with pervasive effects on gene expression. Npl3 is a yeast mRNA binding protein with many reported functions in RNA processing. We wanted to identify direct targets and therefore combined analyses of the transcriptome-wide effects of the loss of Npl3 on gene expression with UV crosslinking and bioinformatics to identify RNA-binding sites for Npl3. We found that Npl3 binds diverse sites on large numbers of transcripts, and that the loss of Npl3 results in transcriptional readthrough on many genes. One effect of this transcription readthrough is that the expression of numerous flanking genes is strongly down regulated. This underlines the importance of faithful termination for the correct regulation of gene expression. The effects of the loss of Npl3 are seen on both mRNAs and non-protein coding RNAs. These have distinct but overlapping termination mechanisms, with both classes requiring Npl3 for correct RNA packaging.
Collapse
Affiliation(s)
- Rebecca K. Holmes
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Alex C. Tuck
- FMI Basel, Basel, Switzerland
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Hywel R. Dunn-Davies
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Grzegorz Kudla
- The Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | | | - Sander Granneman
- SynthSys, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
55
|
Barrass JD, Reid JEA, Huang Y, Hector RD, Sanguinetti G, Beggs JD, Granneman S. Transcriptome-wide RNA processing kinetics revealed using extremely short 4tU labeling. Genome Biol 2015; 16:282. [PMID: 26679539 PMCID: PMC4699367 DOI: 10.1186/s13059-015-0848-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 11/30/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND RNA levels detected at steady state are the consequence of multiple dynamic processes within the cell. In addition to synthesis and decay, transcripts undergo processing. Metabolic tagging with a nucleotide analog is one way of determining the relative contributions of synthesis, decay and conversion processes globally. RESULTS By improving 4-thiouracil labeling of RNA in Saccharomyces cerevisiae we were able to isolate RNA produced during as little as 1 minute, allowing the detection of nascent pervasive transcription. Nascent RNA labeled for 1.5, 2.5 or 5 minutes was isolated and analyzed by reverse transcriptase-quantitative polymerase chain reaction and RNA sequencing. High kinetic resolution enabled detection and analysis of short-lived non-coding RNAs as well as intron-containing pre-mRNAs in wild-type yeast. From these data we measured the relative stability of pre-mRNA species with different high turnover rates and investigated potential correlations with sequence features. CONCLUSIONS Our analysis of non-coding RNAs reveals a highly significant association between non-coding RNA stability, transcript length and predicted secondary structure. Our quantitative analysis of the kinetics of pre-mRNA splicing in yeast reveals that ribosomal protein transcripts are more efficiently spliced if they contain intron secondary structures that are predicted to be less stable. These data, in combination with previous results, indicate that there is an optimal range of stability of intron secondary structures that allows for rapid splicing.
Collapse
Affiliation(s)
- J David Barrass
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Jane E A Reid
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Yuanhua Huang
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Ralph D Hector
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3BF, UK
- Present Address: Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QB, UK
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Jean D Beggs
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| | - Sander Granneman
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
56
|
Fox MJ, Mosley AL. Rrp6: Integrated roles in nuclear RNA metabolism and transcription termination. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:91-104. [PMID: 26612606 DOI: 10.1002/wrna.1317] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 11/08/2022]
Abstract
The yeast RNA exosome is a eukaryotic ribonuclease complex essential for RNA processing, surveillance, and turnover. It is comprised of a barrel-shaped core and cap as well as a 3'-5' ribonuclease known as Dis3 that contains both endo- and exonuclease domains. A second exonuclease, Rrp6, is added in the nucleus. Dis3 and Rrp6 have both shared and distinct roles in RNA metabolism, and this review will focus primarily on Rrp6 and the roles of the RNA exosome in the nucleus. The functions of the nuclear exosome are modulated by cofactors and interacting partners specific to each type of substrate. Generally, the cofactor TRAMP (Trf4/5-Air2/1-Mtr4 polyadenylation) complex helps unwind unstable RNAs, RNAs requiring processing such as rRNAs, tRNAs, or snRNAs or improperly processed RNAs and direct it toward the exosome. In yeast, Rrp6 interacts with Nrd1, the cap-binding complex, and RNA polymerase II to aid in nascent RNA processing, termination, and polyA tail length regulation. Recent studies have shown that proper termination and processing of short, noncoding RNAs by Rrp6 is particularly important for transcription regulation across the genome and has important implications for regulation of diverse processes at the cellular level. Loss of proper Rrp6 and exosome activity may contribute to various pathologies such as autoimmune disease, neurological disorders, and cancer. WIREs RNA 2016, 7:91-104. doi: 10.1002/wrna.1317 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Melanie J Fox
- Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Amber L Mosley
- Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
57
|
Qu G, Kruszka K, Plewka P, Yang SY, Chiou TJ, Jarmolowski A, Szweykowska-Kulinska Z, Echeverria M, Karlowski WM. Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana. BMC Genomics 2015; 16:1009. [PMID: 26607788 PMCID: PMC4660826 DOI: 10.1186/s12864-015-2221-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/16/2015] [Indexed: 11/18/2022] Open
Abstract
Background In the past few decades, non-coding RNAs (ncRNAs) have emerged as important regulators of gene expression in eukaryotes. Most studies of ncRNAs in plants have focused on the identification of silencing microRNAs (miRNAs) and small interfering RNAs (siRNAs). Another important family of ncRNAs that has been well characterized in plants is the small nucleolar RNAs (snoRNAs) and the related small Cajal body-specific RNAs (scaRNAs). Both target chemical modifications of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). In plants, the snoRNA genes are organized in clusters, transcribed by RNA Pol II from a common promoter and subsequently processed into mature molecules. The promoter regions of snoRNA polycistronic genes in plants are highly enriched in two conserved cis-regulatory elements (CREs), Telo-box and Site II, which coordinate the expression of snoRNAs and ribosomal protein coding genes throughout the cell cycle. Results In order to identify novel ncRNA genes, we have used the snoRNA Telo-box/Site II motifs combination as a functional promoter indicator to screen the Arabidopsis genome. The predictions generated by this process were tested by detailed exploration of available RNA-Seq and expression data sets and experimental validation. As a result, we have identified several snoRNAs, scaRNAs and 'orphan' snoRNAs. We also show evidence for 16 novel ncRNAs that lack similarity to any reported RNA family. Finally, we have identified two dicistronic genes encoding precursors that are processed to mature snoRNA and miRNA molecules. We discuss the evolutionary consequences of this result in the context of a tight link between snoRNAs and miRNAs in eukaryotes. Conclusions We present an alternative computational approach for non-coding RNA detection. Instead of depending on sequence or structure similarity in the whole genome screenings, we have explored the properties of promoter regions of well-characterized ncRNAs. Interestingly, besides expected ncRNAs predictions we were also able to recover single precursor arrangement for snoRNA-miRNA. Accompanied by analyses performed on rice sequences, we conclude that such arrangement might have interesting functional and evolutionary consequences and discuss this result in the context of a tight link between snoRNAs and miRNAs in eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2221-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ge Qu
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland.
| | - Katarzyna Kruszka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, Poznan, 61-614, Poland.
| | - Patrycja Plewka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, Poznan, 61-614, Poland.
| | - Shu-Yi Yang
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128 Academia Rd. Sec. 2, Taipei, 115, Taiwan.
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128 Academia Rd. Sec. 2, Taipei, 115, Taiwan.
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, Poznan, 61-614, Poland.
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, Poznan, 61-614, Poland.
| | - Manuel Echeverria
- Faculté des Sciences, Université de Perpignan via Domitia, 52, Av Paul Alduy, Perpignan, 66860, France.
| | - Wojciech M Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland.
| |
Collapse
|
58
|
Nguyen D, Grenier St-Sauveur V, Bergeron D, Dupuis-Sandoval F, Scott MS, Bachand F. A Polyadenylation-Dependent 3' End Maturation Pathway Is Required for the Synthesis of the Human Telomerase RNA. Cell Rep 2015; 13:2244-57. [PMID: 26628368 DOI: 10.1016/j.celrep.2015.11.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/02/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022] Open
Abstract
Telomere maintenance by the telomerase reverse transcriptase requires a noncoding RNA subunit that acts as a template for the synthesis of telomeric repeats. In humans, the telomerase RNA (hTR) is a non-polyadenylated transcript produced from an independent transcriptional unit. As yet, the mechanism and factors responsible for hTR 3' end processing have remained largely unknown. Here, we show that hTR is matured via a polyadenylation-dependent pathway that relies on the nuclear poly(A)-binding protein PABPN1 and the poly(A)-specific RNase PARN. Depletion of PABPN1 and PARN results in telomerase RNA deficiency and the accumulation of polyadenylated precursors. Accordingly, a deficiency in PABPN1 leads to impaired telomerase activity and telomere shortening. In contrast, we find that hTRAMP-dependent polyadenylation and exosome-mediated degradation function antagonistically to hTR maturation, thereby limiting telomerase RNA accumulation. Our findings unveil a critical requirement for RNA polyadenylation in telomerase RNA biogenesis, providing alternative approaches for telomerase inhibition in cancer.
Collapse
Affiliation(s)
- Duy Nguyen
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | | | - Danny Bergeron
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Fabien Dupuis-Sandoval
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Michelle S Scott
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - François Bachand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
59
|
Hart JR, Roberts TC, Weinberg MS, Morris KV, Vogt PK. MYC regulates the non-coding transcriptome. Oncotarget 2015; 5:12543-54. [PMID: 25587025 PMCID: PMC4350361 DOI: 10.18632/oncotarget.3033] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 01/17/2023] Open
Abstract
Using RNA-seq (RNA sequencing) of ribosome-depleted RNA, we have identified 1,273 lncRNAs (long non-coding RNAs) in P493-6 human B-cells. Of these, 534 are either up- or downregulated in response to MYC overexpression. An increase in MYC occupancy near their TSS (transcription start sites) was observed for MYC-responsive lncRNAs suggesting these are direct MYC targets. MYC binds to the same TSS across several cell lines, but the number of TSS bound depends on cellular MYC levels and increases with higher MYC concentrations. Despite this concordance in promoter binding, a majority of expressed lncRNAs are specific for one cell line, suggesting a determinant role of additional, possibly differentiation-specific factors in the activity of MYC-bound lncRNA promoters. A significant fraction of the lncRNA transcripts lack polyadenylation. The RNA-seq data were confirmed on eight selected lncRNAs by NRO (nuclear run-on) and RT-qPCR (quantitative reverse transcription PCR).
Collapse
Affiliation(s)
- Jonathan R Hart
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Thomas C Roberts
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA. Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Marc S Weinberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA. Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, School of Pathology, University of the Witwatersrand, WITS, South Africa
| | - Kevin V Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA. School of Biotechnology and Biomedical Sciences, University of New South Wales, NSW, Australia
| | - Peter K Vogt
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
60
|
Tudek A, Candelli T, Libri D. Non-coding transcription by RNA polymerase II in yeast: Hasard or nécessité? Biochimie 2015; 117:28-36. [DOI: 10.1016/j.biochi.2015.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022]
|
61
|
Senataxin controls meiotic silencing through ATR activation and chromatin remodeling. Cell Discov 2015; 1:15025. [PMID: 27462424 PMCID: PMC4860845 DOI: 10.1038/celldisc.2015.25] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/17/2015] [Indexed: 12/13/2022] Open
Abstract
Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA–DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx−/− pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration.
Collapse
|
62
|
Flocculation inSaccharomyces cerevisiaeis regulated by RNA/DNA helicase Sen1p. FEBS Lett 2015; 589:3165-74. [DOI: 10.1016/j.febslet.2015.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 12/13/2022]
|
63
|
Abstract
The immunoglobulin diversification processes of somatic hypermutation and class switch recombination critically rely on transcription-coupled targeting of activation-induced cytidine deaminase (AID) to Ig loci in activated B lymphocytes. AID catalyzes deamination of cytidine deoxynucleotides on exposed single-stranded DNA. In addition to driving immunoglobulin diversity, promiscuous targeting of AID mutagenic activity poses a deleterious threat to genomic stability. Recent genome-wide studies have uncovered pervasive AID activity throughout the B cell genome. It is increasingly apparent that AID activity is frequently targeted to genomic loci undergoing early transcription termination where RNA exosome promotes the resolution of stalled transcription complexes via cotranscriptional RNA degradation mechanisms. Here, we review aspects and consequences of eukaryotic transcription that lead to early termination, RNA exosome recruitment, and ultimately targeting of AID mutagenic activity.
Collapse
Affiliation(s)
- Evangelos Pefanis
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| | - Uttiya Basu
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| |
Collapse
|
64
|
Grzechnik P, Gdula MR, Proudfoot NJ. Pcf11 orchestrates transcription termination pathways in yeast. Genes Dev 2015; 29:849-61. [PMID: 25877920 PMCID: PMC4403260 DOI: 10.1101/gad.251470.114] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/19/2015] [Indexed: 11/25/2022]
Abstract
In Saccharomyces cerevisiae, short noncoding RNA (ncRNA) generated by RNA polymerase II (Pol II) are terminated by the NRD complex consisting of Nrd1, Nab3, and Sen1. We now show that Pcf11, a component of the cleavage and polyadenylation complex (CPAC), is also generally required for NRD-dependent transcription termination through the action of its C-terminal domain (CTD)-interacting domain (CID). Pcf11 localizes downstream from Nrd1 on NRD terminators, and its recruitment depends on Nrd1. Furthermore, mutation of the Pcf11 CID results in Nrd1 retention on chromatin, delayed degradation of ncRNA, and restricted Pol II CTD Ser2 phosphorylation and Sen1-Pol II interaction. Finally, the pcf11-13 and sen1-1 mutant phenotypes are very similar, as both accumulate RNA:DNA hybrids and display Pol II pausing downstream from NRD terminators. We predict a mechanism by which the exchange of Nrd1 and Pcf11 on chromatin facilitates Pol II pausing and CTD Ser2-P phosphorylation. This in turn promotes Sen1 activity that is required for NRD-dependent transcription termination in vivo.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Michal Ryszard Gdula
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom;
| |
Collapse
|
65
|
Dhir A, Dhir S, Proudfoot NJ, Jopling CL. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nat Struct Mol Biol 2015; 22:319-27. [PMID: 25730776 PMCID: PMC4492989 DOI: 10.1038/nsmb.2982] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/05/2015] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) play a major part in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with cotranscriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. Although most miRNAs are located within introns of protein-coding transcripts, a substantial minority of miRNAs originate from long noncoding (lnc) RNAs, for which transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lncRNA transcripts containing miRNAs (lnc-pri-miRNAs) do not use the canonical cleavage-and-polyadenylation pathway but instead use Microprocessor cleavage to terminate transcription. Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a new RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells.
Collapse
Affiliation(s)
- Ashish Dhir
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Somdutta Dhir
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
66
|
Abstract
The RNA polymerase II transcription cycle is often divided into three major stages: initiation, elongation, and termination. Research over the last decade has blurred these divisions and emphasized the tightly regulated transitions that occur as RNA polymerase II synthesizes a transcript from start to finish. Transcription termination, the process that marks the end of transcription elongation, is regulated by proteins that interact with the polymerase, nascent transcript, and/or chromatin template. The failure to terminate transcription can cause accumulation of aberrant transcripts and interfere with transcription at downstream genes. Here, we review the mechanism, regulation, and physiological impact of a termination pathway that targets small noncoding transcripts produced by RNA polymerase II. We emphasize the Nrd1-Nab3-Sen1 pathway in yeast, in which the process has been extensively studied. The importance of understanding small RNA termination pathways is underscored by the need to control noncoding transcription in eukaryotic genomes.
Collapse
Affiliation(s)
- Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260;
| | | |
Collapse
|
67
|
Park J, Kang M, Kim M. Unraveling the mechanistic features of RNA polymerase II termination by the 5'-3' exoribonuclease Rat1. Nucleic Acids Res 2015; 43:2625-37. [PMID: 25722373 PMCID: PMC4357727 DOI: 10.1093/nar/gkv133] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Within a complex with Rai1, the 5′-3′ exoribonuclease Rat1 promotes termination of RNA polymerase II (RNAPII) on protein-coding genes, but its underlying molecular mechanism is still poorly understood. Using in vitro transcription termination assays, we have found that RNAPII is prone to more effective termination by Rat1/Rai1 when its catalytic site is disrupted due to NTP misincorporation, implying that paused RNAPII, which is often found in vivo near termination sites, could adopt a similar configuration to Rat1/Rai1 and trigger termination. Intriguingly, yeast Rat1/Rai1 does not terminate Escherichia coli RNAP, implying that a specific interaction between Rat1/Rai1 and RNAPII may be required for termination. Furthermore, the efficiency of termination increases as the RNA transcript undergoing degradation by Rat1 gets longer, which suggests that Rat1 may generate a driving force for dissociating RNAPII from the template while degrading the nascent transcripts to catch up to the polymerase. These results indicate that multiple mechanistic features contribute to Rat1-mediated termination of RNAPII.
Collapse
Affiliation(s)
- Jieun Park
- Center for RNA Research, Institute for Basic Science and Department of Biophysics and Chemical Biology, Seoul National University, 1 Gwanak-Ro, Gwanakgu, Seoul, 151-742, South Korea
| | - Myungjin Kang
- Center for RNA Research, Institute for Basic Science and Department of Biophysics and Chemical Biology, Seoul National University, 1 Gwanak-Ro, Gwanakgu, Seoul, 151-742, South Korea
| | - Minkyu Kim
- Center for RNA Research, Institute for Basic Science and Department of Biophysics and Chemical Biology, Seoul National University, 1 Gwanak-Ro, Gwanakgu, Seoul, 151-742, South Korea
| |
Collapse
|
68
|
The exosome component Rrp6 is required for RNA polymerase II termination at specific targets of the Nrd1-Nab3 pathway. PLoS Genet 2015; 11:e1004999. [PMID: 25680078 PMCID: PMC4378619 DOI: 10.1371/journal.pgen.1004999] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 01/13/2015] [Indexed: 12/11/2022] Open
Abstract
The exosome and its nuclear specific subunit Rrp6 form a 3’-5’ exonuclease complex that regulates diverse aspects of RNA biology including 3’ end processing and degradation of a variety of noncoding RNAs (ncRNAs) and unstable transcripts. Known targets of the nuclear exosome include short (<1000 bp) RNAPII transcripts such as small noncoding RNAs (snRNAs), cryptic unstable transcripts (CUTs), and some stable unannotated transcripts (SUTs) that are terminated by an Nrd1, Nab3, and Sen1 (NNS) dependent mechanism. NNS-dependent termination is coupled to RNA 3’ end processing and/or degradation by the Rrp6/exosome in yeast. Recent work suggests Nrd1 is necessary for transcriptome surveillance, regulating promoter directionality and suppressing antisense transcription independently of, or prior to, Rrp6 activity. It remains unclear whether Rrp6 is directly involved in termination; however, Rrp6 has been implicated in the 3’ end processing and degradation of ncRNA transcripts including CUTs. To determine the role of Rrp6 in NNS termination globally, we performed RNA sequencing (RNA-Seq) on total RNA and perform ChIP-exo analysis of RNA Polymerase II (RNAPII) localization. Deletion of RRP6 promotes hyper-elongation of multiple NNS-dependent transcripts resulting from both improperly processed 3’ RNA ends and faulty transcript termination at specific target genes. The defects in RNAPII termination cause transcriptome-wide changes in mRNA expression through transcription interference and/or antisense repression, similar to previously reported effects of depleting Nrd1 from the nucleus. Elongated transcripts were identified within all classes of known NNS targets with the largest changes in transcription termination occurring at CUTs. Interestingly, the extended transcripts that we have detected in our studies show remarkable similarity to Nrd1-unterminated transcripts at many locations, suggesting that Rrp6 acts with the NNS complex globally to promote transcription termination in addition to 3’ end RNA processing and/or degradation at specific targets. RNAPII is responsible for transcription of protein-coding genes and short, regulatory RNAs. In Saccharomyces cerevisiae, termination of RNAPII-transcribed RNAs ≤1000 bases requires the NNS complex (comprised of Nrd1, Nab3, and Sen1), processing by the exosome, and the nuclear specific catalytic subunit, Rrp6. It has been shown that Rrp6 interacts directly with Nrd1, but whether or not Rrp6 is required for NNS-dependent termination is unclear. Loss of Rrp6 function may result in extension (or inhibition of termination) of NNS-dependent transcripts, or Rrp6 may only function after the fact to carry out RNA 3’ end processing. Here, we performed in-depth differential expression analyses and compare RNA-sequencing data of transcript length and abundance in cells lacking RRP6 to ChIP-exo analysis of RNAPII localization. We find many transcripts that were defined as unterminated upon loss of Nrd1 activity are of similar length in rrp6Δ, and expression levels of downstream genes are significantly decreased. This suggests a similar transcription interference mechanism occurs in cells lacking either Nrd1 or Rrp6. Indeed we find increased RNAPII located downstream of its termination site at many know Nrd1-regulated transcripts. Overall, our findings clearly demonstrate that Rrp6 activity is required for efficient NNS termination in vivo.
Collapse
|
69
|
Porrua O, Libri D. Transcription termination and the control of the transcriptome: why, where and how to stop. Nat Rev Mol Cell Biol 2015; 16:190-202. [DOI: 10.1038/nrm3943] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
70
|
Pearson E, Moore C. The evolutionarily conserved Pol II flap loop contributes to proper transcription termination on short yeast genes. Cell Rep 2014; 9:821-8. [PMID: 25437538 DOI: 10.1016/j.celrep.2014.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 01/19/2023] Open
Abstract
Current models of transcription termination factor recruitment to the RNA polymerase II (Pol II) transcription complex rely exclusively on the direct interaction between the termination factor and phosphorylated isoforms of the Pol II C-terminal domain (CTD). Here, we report that the Pol II flap loop is needed for physical interaction of Pol II with the Pcf11/Clp1 subcomplex of cleavage factor IA (CF IA), which functions in both 3? end processing and Pol II termination, and for proper termination of short RNAs in vitro and in vivo. Deletion of the flap loop reduces the in vivo interaction of Pol II with CF IA but increases the association of Nrd1 during stages of the transcription cycle when the CTD is predominantly Ser5 phosphorylated. We propose a model in which the flap loop coordinates a binding equilibrium between the competing termination factors Pcf11 and Nrd1 to Pol II during termination of short RNA synthesis.
Collapse
Affiliation(s)
- Erika Pearson
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Claire Moore
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
71
|
Schaughency P, Merran J, Corden JL. Genome-wide mapping of yeast RNA polymerase II termination. PLoS Genet 2014; 10:e1004632. [PMID: 25299594 PMCID: PMC4191890 DOI: 10.1371/journal.pgen.1004632] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/21/2014] [Indexed: 12/22/2022] Open
Abstract
Yeast RNA polymerase II (Pol II) terminates transcription of coding transcripts through the polyadenylation (pA) pathway and non-coding transcripts through the non-polyadenylation (non-pA) pathway. We have used PAR-CLIP to map the position of Pol II genome-wide in living yeast cells after depletion of components of either the pA or non-pA termination complexes. We show here that Ysh1, responsible for cleavage at the pA site, is required for efficient removal of Pol II from the template. Depletion of Ysh1 from the nucleus does not, however, lead to readthrough transcription. In contrast, depletion of the termination factor Nrd1 leads to widespread runaway elongation of non-pA transcripts. Depletion of Sen1 also leads to readthrough at non-pA terminators, but in contrast to Nrd1, this readthrough is less processive, or more susceptible to pausing. The data presented here provide delineation of in vivo Pol II termination regions and highlight differences in the sequences that signal termination of different classes of non-pA transcripts. Transcription termination is an important regulatory event for both non-coding and coding transcripts. Using high-throughput sequencing, we have mapped RNA Polymerase II's position in the genome after depletion of termination factors from the nucleus. We found that depletion of Ysh1 and Sen1 cause build up of polymerase directly downstream of coding and non-coding genes, respectively. Depletion of Nrd1 causes an increase in polymerase that is distributed up to 1,000 bases downstream of non-coding genes. The depletion of Nrd1 helped us to identify more than 250 unique termination regions for non-coding RNAs. Within this set of newly identified non-coding termination regions, we are further able to classify them based on sequence motif similarities, suggesting a functional role for different terminator motifs. The role of these factors in transcriptional termination of coding and/or non-coding transcripts can be inferred from the effect of polymerase's position downstream of given termination sites. This method of depletion and sequencing can be used to further elucidate other factors whose importance to transcription has yet to be determined.
Collapse
Affiliation(s)
- Paul Schaughency
- Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
| | - Jonathan Merran
- Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
| | - Jeffry L. Corden
- Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
72
|
Grzechnik P, Tan-Wong SM, Proudfoot NJ. Terminate and make a loop: regulation of transcriptional directionality. Trends Biochem Sci 2014; 39:319-27. [PMID: 24928762 PMCID: PMC4085477 DOI: 10.1016/j.tibs.2014.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/24/2014] [Accepted: 05/12/2014] [Indexed: 01/28/2023]
Abstract
Transcriptional directionality is controlled by premature transcription termination. Transcriptional directionality is enforced by gene looping. mRNA-specific termination signals and factors are required for gene looping.
Bidirectional promoters are a common feature of many eukaryotic organisms from yeast to humans. RNA Polymerase II that is recruited to this type of promoter can start transcribing in either direction using alternative DNA strands as the template. Such promiscuous transcription can lead to the synthesis of unwanted transcripts that may have negative effects on gene expression. Recent studies have identified transcription termination and gene looping as critical players in the enforcement of promoter directionality. Interestingly, both mechanisms share key components. Here, we focus on recent findings relating to the transcriptional output of bidirectional promoters.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sue Mei Tan-Wong
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
73
|
Liu H, Luo M, Wen JK. mRNA stability in the nucleus. J Zhejiang Univ Sci B 2014; 15:444-54. [PMID: 24793762 PMCID: PMC4076601 DOI: 10.1631/jzus.b1400088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/11/2014] [Indexed: 01/15/2023]
Abstract
Eukaryotic gene expression is controlled by different levels of biological events, such as transcription factors regulating the timing and strength of transcripts production, alteration of transcription rate by RNA processing, and mRNA stability during RNA processing and translation. RNAs, especially mRNAs, are relatively vulnerable molecules in living cells for ribonucleases (RNases). The maintenance of quality and quantity of transcripts is a key issue for many biological processes. Extensive studies draw the conclusion that the stability of RNAs is dedicated-regulated, occurring co- and post-transcriptionally, and translation-coupled as well, either in the nucleus or cytoplasm. Recently, RNA stability in the nucleus has aroused much research interest, especially the stability of newly-made transcripts. In this article, we summarize recent progresses on mRNA stability in the nucleus, especially focusing on quality control of newly-made RNA by RNA polymerase II in eukaryotes.
Collapse
Affiliation(s)
- Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Min Luo
- Chongqing Institute of Tuberculosis Prevention and Treatment, Chongqing 400050, China
| | - Ji-kai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
74
|
Shah S, Wittmann S, Kilchert C, Vasiljeva L. lncRNA recruits RNAi and the exosome to dynamically regulate pho1 expression in response to phosphate levels in fission yeast. Genes Dev 2014; 28:231-44. [PMID: 24493644 PMCID: PMC3923966 DOI: 10.1101/gad.230177.113] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Numerous noncoding transcripts of unknown function have recently been identified. In this study, we report a novel mechanism that relies on transcription of noncoding RNA prt (pho1-repressing transcript) regulating expression of the pho1 gene. A product of this gene, Pho1, is a major secreted phosphatase needed for uptake of extracellular phosphate in fission yeast. prt is produced from the promoter located upstream of the pho1 gene in response to phosphate, and its transcription leads to deposition of RNAi-dependent H3K9me2 across the pho1 locus. In contrast, phosphate starvation leads to loss of H3K9me2 and pho1 induction. Strikingly, deletion of Clr4, a H3K9 methyltransferase, results in faster pho1 induction in response to phosphate starvation. We propose a new role for noncoding transcription in establishing transient heterochromatin to mediate an effective transcriptional response to environmental stimuli. RNAi recruitment to prt depends on the RNA-binding protein Mmi1. Importantly, we found that the exosome complex and Mmi1 are required for transcription termination and the subsequent degradation of prt but not pho1 mRNA. Moreover, in mitotic cells, transcription termination of meiotic RNAs also relies on this mechanism. We propose that exosome-dependent termination constitutes a specialized system that primes transcripts for degradation to ensure their efficient elimination.
Collapse
Affiliation(s)
- Sneha Shah
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
75
|
Gaillard H, Aguilera A. Cleavage factor I links transcription termination to DNA damage response and genome integrity maintenance in Saccharomyces cerevisiae. PLoS Genet 2014; 10:e1004203. [PMID: 24603480 PMCID: PMC3945788 DOI: 10.1371/journal.pgen.1004203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/10/2014] [Indexed: 12/18/2022] Open
Abstract
During transcription, the nascent pre-mRNA undergoes a series of processing steps before being exported to the cytoplasm. The 3'-end processing machinery involves different proteins, this function being crucial to cell growth and viability in eukaryotes. Here, we found that the rna14-1, rna15-1, and hrp1-5 alleles of the cleavage factor I (CFI) cause sensitivity to UV-light in the absence of global genome repair in Saccharomyces cerevisiae. Unexpectedly, CFI mutants were proficient in UV-lesion repair in a transcribed gene. DNA damage checkpoint activation and RNA polymerase II (RNAPII) degradation in response to UV were delayed in CFI-deficient cells, indicating that CFI participates in the DNA damage response (DDR). This is further sustained by the synthetic growth defects observed between rna14-1 and mutants of different repair pathways. Additionally, we found that rna14-1 suffers severe replication progression defects and that a functional G1/S checkpoint becomes essential in avoiding genetic instability in those cells. Thus, CFI function is required to maintain genome integrity and to prevent replication hindrance. These findings reveal a new function for CFI in the DDR and underscore the importance of coordinating transcription termination with replication in the maintenance of genomic stability.
Collapse
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Sevilla, Spain
- * E-mail:
| |
Collapse
|
76
|
The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:316-33. [PMID: 24530645 DOI: 10.1016/j.bbagrm.2014.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
Abstract
Ess1 is a prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II. Ess1 works by catalyzing the cis/trans conversion of pSer5-Pro6 bonds, and to a lesser extent pSer2-Pro3 bonds, within the carboxy-terminal domain (CTD) of Rpb1, the largest subunit of RNA pol II. Ess1 is conserved in organisms ranging from yeast to humans. In budding yeast, Ess1 is essential for growth and is required for efficient transcription initiation and termination, RNA processing, and suppression of cryptic transcription. In mammals, Ess1 (called Pin1) functions in a variety of pathways, including transcription, but it is not essential. Recent work has shown that Ess1 coordinates the binding and release of CTD-binding proteins that function as co-factors in the RNA pol II complex. In this way, Ess1 plays an integral role in writing (and reading) the so-called CTD code to promote production of mature RNA pol II transcripts including non-coding RNAs and mRNAs.
Collapse
|
77
|
Cross-talk of phosphorylation and prolyl isomerization of the C-terminal domain of RNA Polymerase II. Molecules 2014; 19:1481-511. [PMID: 24473209 PMCID: PMC4350670 DOI: 10.3390/molecules19021481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/06/2014] [Accepted: 01/21/2014] [Indexed: 12/04/2022] Open
Abstract
Post-translational modifications of the heptad repeat sequences in the C-terminal domain (CTD) of RNA polymerase II (Pol II) are well recognized for their roles in coordinating transcription with other nuclear processes that impinge upon transcription by the Pol II machinery; and this is primarily achieved through CTD interactions with the various nuclear factors. The identification of novel modifications on new regulatory sites of the CTD suggests that, instead of an independent action for all modifications on CTD, a combinatorial effect is in operation. In this review we focus on two well-characterized modifications of the CTD, namely serine phosphorylation and prolyl isomerization, and discuss the complex interplay between the enzymes modifying their respective regulatory sites. We summarize the current understanding of how the prolyl isomerization state of the CTD dictates the specificity of writers (CTD kinases), erasers (CTD phosphatases) and readers (CTD binding proteins) and how that correlates to transcription status. Subtle changes in prolyl isomerization states cannot be detected at the primary sequence level, we describe the methods that have been utilized to investigate this mode of regulation. Finally, a general model of how prolyl isomerization regulates the phosphorylation state of CTD, and therefore transcription-coupled processes, is proposed.
Collapse
|
78
|
Webb S, Hector RD, Kudla G, Granneman S. PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast. Genome Biol 2014; 15:R8. [PMID: 24393166 PMCID: PMC4053934 DOI: 10.1186/gb-2014-15-1-r8] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/07/2014] [Indexed: 12/04/2022] Open
Abstract
Background Nrd1 and Nab3 are essential sequence-specific yeast RNA binding proteins that function as a heterodimer in the processing and degradation of diverse classes of RNAs. These proteins also regulate several mRNA coding genes; however, it remains unclear exactly what percentage of the mRNA component of the transcriptome these proteins control. To address this question, we used the pyCRAC software package developed in our laboratory to analyze CRAC and PAR-CLIP data for Nrd1-Nab3-RNA interactions. Results We generated high-resolution maps of Nrd1-Nab3-RNA interactions, from which we have uncovered hundreds of new Nrd1-Nab3 mRNA targets, representing between 20 and 30% of protein-coding transcripts. Although Nrd1 and Nab3 showed a preference for binding near 5′ ends of relatively short transcripts, they bound transcripts throughout coding sequences and 3′ UTRs. Moreover, our data for Nrd1-Nab3 binding to 3′ UTRs was consistent with a role for these proteins in the termination of transcription. Our data also support a tight integration of Nrd1-Nab3 with the nutrient response pathway. Finally, we provide experimental evidence for some of our predictions, using northern blot and RT-PCR assays. Conclusions Collectively, our data support the notion that Nrd1 and Nab3 function is tightly integrated with the nutrient response and indicate a role for these proteins in the regulation of many mRNA coding genes. Further, we provide evidence to support the hypothesis that Nrd1-Nab3 represents a failsafe termination mechanism in instances of readthrough transcription.
Collapse
|
79
|
Lenstra TL, Tudek A, Clauder S, Xu Z, Pachis ST, van Leenen D, Kemmeren P, Steinmetz LM, Libri D, Holstege FCP. The role of Ctk1 kinase in termination of small non-coding RNAs. PLoS One 2013; 8:e80495. [PMID: 24324601 PMCID: PMC3851182 DOI: 10.1371/journal.pone.0080495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/03/2013] [Indexed: 11/18/2022] Open
Abstract
Transcription termination in Saccharomyces cerevisiae can be performed by at least two distinct pathways and is influenced by the phosphorylation status of the carboxy-terminal domain (CTD) of RNA polymerase II (Pol II). Late termination of mRNAs is performed by the CPF/CF complex, the recruitment of which is dependent on CTD-Ser2 phosphorylation (Ser2P). Early termination of shorter cryptic unstable transcripts (CUTs) and small nucleolar/nuclear RNAs (sno/snRNAs) is performed by the Nrd1-Nab3-Sen1 (NNS) complex that binds phosphorylated CTD-Ser5 (Ser5P) via the CTD-interacting domain (CID) of Nrd1p. In this study, mutants of the different termination pathways were compared by genome-wide expression analysis. Surprisingly, the expression changes observed upon loss of the CTD-Ser2 kinase Ctk1p are more similar to those derived from alterations in the Ser5P-dependent NNS pathway, than from loss of CTD-Ser2P binding factors. Tiling array analysis of ctk1Δ cells reveals readthrough at snoRNAs, at many cryptic unstable transcripts (CUTs) and stable uncharacterized transcripts (SUTs), but only at some mRNAs. Despite the suggested predominant role in termination of mRNAs, we observed that a CTK1 deletion or a Pol II CTD mutant lacking all Ser2 positions does not result in a global mRNA termination defect. Rather, termination defects in these strains are widely observed at NNS-dependent genes. These results indicate that Ctk1p and Ser2 CTD phosphorylation have a wide impact in termination of small non-coding RNAs but only affect a subset of mRNA coding genes.
Collapse
Affiliation(s)
- Tineke L. Lenstra
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Agnieszka Tudek
- LEA Laboratory of Nuclear RNA Metabolism, Centre de de Génétique Moléculaire, C.N.R.S.-UPR3404, Gif sur Yvette, France
| | - Sandra Clauder
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Zhenyu Xu
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Spyridon T. Pachis
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dik van Leenen
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patrick Kemmeren
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lars M. Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Domenico Libri
- LEA Laboratory of Nuclear RNA Metabolism, Centre de de Génétique Moléculaire, C.N.R.S.-UPR3404, Gif sur Yvette, France
- * E-mail: (DL); (FCPH)
| | - Frank C. P. Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (DL); (FCPH)
| |
Collapse
|
80
|
Tuck AC, Tollervey D. A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs. Cell 2013; 154:996-1009. [PMID: 23993093 PMCID: PMC3778888 DOI: 10.1016/j.cell.2013.07.047] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/25/2013] [Accepted: 07/31/2013] [Indexed: 01/30/2023]
Abstract
Eukaryotic genomes generate a heterogeneous ensemble of mRNAs and long noncoding RNAs (lncRNAs). LncRNAs and mRNAs are both transcribed by Pol II and acquire 5′ caps and poly(A) tails, but only mRNAs are translated into proteins. To address how these classes are distinguished, we identified the transcriptome-wide targets of 13 RNA processing, export, and turnover factors in budding yeast. Comparing the maturation pathways of mRNAs and lncRNAs revealed that transcript fate is largely determined during 3′ end formation. Most lncRNAs are targeted for nuclear RNA surveillance, but a subset with 3′ cleavage and polyadenylation features resembling the mRNA consensus can be exported to the cytoplasm. The Hrp1 and Nab2 proteins act at this decision point, with dual roles in mRNA cleavage/polyadenylation and lncRNA surveillance. Our data also reveal the dynamic and heterogeneous nature of mRNA maturation, and highlight a subset of “lncRNA-like” mRNAs regulated by the nuclear surveillance machinery. Transcriptome-wide analysis shows dynamic assembly of ribonucleoprotein particles LncRNA and mRNA subclasses undergo distinct maturation and turnover pathways Transcript fate is determined during 3′ end formation Transcript classes overlap, with many “mRNA-like” lncRNAs and “lncRNA-like” mRNAs
Collapse
Affiliation(s)
- Alex Charles Tuck
- The University of Edinburgh, Wellcome Trust Centre for Cell Biology, Michael Swann Building, Kings Buildings, Edinburgh EH9 3JR, UK
| | - David Tollervey
- The University of Edinburgh, Wellcome Trust Centre for Cell Biology, Michael Swann Building, Kings Buildings, Edinburgh EH9 3JR, UK.
| |
Collapse
|
81
|
Transcriptome surveillance by selective termination of noncoding RNA synthesis. Cell 2013; 155:1075-87. [PMID: 24210918 DOI: 10.1016/j.cell.2013.10.024] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/12/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022]
Abstract
Pervasive transcription of eukaryotic genomes stems to a large extent from bidirectional promoters that synthesize mRNA and divergent noncoding RNA (ncRNA). Here, we show that ncRNA transcription in the yeast S. cerevisiae is globally restricted by early termination that relies on the essential RNA-binding factor Nrd1. Depletion of Nrd1 from the nucleus results in 1,526 Nrd1-unterminated transcripts (NUTs) that originate from nucleosome-depleted regions (NDRs) and can deregulate mRNA synthesis by antisense repression and transcription interference. Transcriptome-wide Nrd1-binding maps reveal divergent NUTs at most promoters and antisense NUTs in most 3' regions of genes. Nrd1 and its partner Nab3 preferentially bind RNA motifs that are depleted in mRNAs and enriched in ncRNAs and some mRNAs whose synthesis is controlled by transcription attenuation. These results define a global mechanism for transcriptome surveillance that selectively terminates ncRNA synthesis to provide promoter directionality and to suppress antisense transcription.
Collapse
|
82
|
Marina DB, Shankar S, Natarajan P, Finn KJ, Madhani HD. A conserved ncRNA-binding protein recruits silencing factors to heterochromatin through an RNAi-independent mechanism. Genes Dev 2013; 27:1851-6. [PMID: 24013500 PMCID: PMC3778239 DOI: 10.1101/gad.226019.113] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) can trigger repressive chromatin, but how they recruit silencing factors remains unclear. In Schizosaccharomyces pombe, heterochromatin assembly on transcribed noncoding pericentromeric repeats requires both RNAi and RNAi-independent mechanisms. In Saccharomyces cerevisiae, which lacks a repressive chromatin mark (H3K9me [methylated Lys9 on histone H3]), unstable ncRNAs are recognized by the RNA-binding protein Nrd1. We show that the S. pombe ortholog Seb1 is associated with pericentromeric lncRNAs. Individual mutation of dcr1+ (Dicer) or seb1+ results in equivalent partial reductions of pericentromeric H3K9me levels, but a double mutation eliminates this mark. Seb1 functions independently of RNAi by recruiting the NuRD (nucleosome remodeling and deacetylase)-related chromatin-modifying complex SHREC (Snf2-HDAC [histone deacetylase] repressor complex).
Collapse
Affiliation(s)
- Diana B Marina
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | | | | | | | | |
Collapse
|
83
|
Heo DH, Yoo I, Kong J, Lidschreiber M, Mayer A, Choi BY, Hahn Y, Cramer P, Buratowski S, Kim M. The RNA polymerase II C-terminal domain-interacting domain of yeast Nrd1 contributes to the choice of termination pathway and couples to RNA processing by the nuclear exosome. J Biol Chem 2013; 288:36676-90. [PMID: 24196955 DOI: 10.1074/jbc.m113.508267] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA polymerase II (RNApII) C-terminal domain (CTD)-interacting domain (CID) proteins are involved in two distinct RNApII termination pathways and recognize different phosphorylated forms of CTD. To investigate the role of differential CTD-CID interactions in the choice of termination pathway, we altered the CTD-binding specificity of Nrd1 by domain swapping. Nrd1 with the CID from Rtt103 (Nrd1(CID(Rtt103))) causes read-through transcription at many genes, but can also trigger termination where multiple Nrd1/Nab3-binding sites and the Ser(P)-2 CTD co-exist. Therefore, CTD-CID interactions target specific termination complexes to help choose an RNApII termination pathway. Interactions of Nrd1 with both CTD and nascent transcripts contribute to efficient termination by the Nrd1 complex. Surprisingly, replacing the Nrd1 CID with that from Rtt103 reduces binding to Rrp6/Trf4, and RNA transcripts terminated by Nrd1(CID(Rtt103)) are predominantly processed by core exosome. Thus, the Nrd1 CID couples Ser(P)-5 CTD not only to termination, but also to RNA processing by the nuclear exosome.
Collapse
Affiliation(s)
- Dong-hyuk Heo
- From the Center for RNA Research, Institute for Basic Science and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Richard P, Feng S, Manley JL. A SUMO-dependent interaction between Senataxin and the exosome, disrupted in the neurodegenerative disease AOA2, targets the exosome to sites of transcription-induced DNA damage. Genes Dev 2013; 27:2227-32. [PMID: 24105744 PMCID: PMC3814643 DOI: 10.1101/gad.224923.113] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Senataxin (SETX) is an RNA/DNA helicase implicated in transcription termination and the DNA damage response and is mutated in two distinct neurological disorders: AOA2 (ataxia oculomotor apraxia 2) and ALS4 (amyotrophic lateral sclerosis 4). Here we provide evidence that Rrp45, a subunit of the exosome, associates with SETX in a manner dependent on SETX sumoylation. We show that the interaction and SETX sumoylation are disrupted by SETX mutations associated with AOA2 but not ALS4. Furthermore, Rrp45 colocalizes with SETX in distinct foci upon induction of transcription-related DNA damage. Our results thus provide evidence for a SUMO-dependent interaction between SETX and the exosome, disrupted in AOA2, that targets the exosome to sites of DNA damage.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
85
|
Loya TJ, O'Rourke TW, Degtyareva N, Reines D. A network of interdependent molecular interactions describes a higher order Nrd1-Nab3 complex involved in yeast transcription termination. J Biol Chem 2013; 288:34158-34167. [PMID: 24100036 DOI: 10.1074/jbc.m113.516765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nab3 and Nrd1 are yeast heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins that heterodimerize and bind RNA. Genetic and biochemical evidence reveals that they are integral to the termination of transcription of short non-coding RNAs by RNA polymerase II. Here we define a Nab3 mutation (nab3Δ134) that removes an essential part of the protein's C terminus but nevertheless can rescue, in trans, the phenotype resulting from a mutation in the RNA recognition motif of Nab3. This low complexity region of Nab3 appears intrinsically unstructured and can form a hydrogel in vitro. These data support a model in which multiple Nrd1-Nab3 heterodimers polymerize onto substrate RNA to effect termination, allowing complementation of one mutant Nab3 molecule by another lacking a different function. The self-association property of Nab3 adds to the previously documented interactions between these hnRNP-like proteins, RNA polymerase II, and the nascent transcript, leading to a network of nucleoprotein interactions that define a higher order Nrd1-Nab3 complex. This was underscored from the synthetic phenotypes of yeast strains with pairwise combinations of Nrd1 and Nab3 mutations known to affect their distinct biochemical activities. The mutations included a Nab3 self-association defect, a Nab3-Nrd1 heterodimerization defect, a Nrd1-polymerase II binding defect, and an Nab3-RNA recognition motif mutation. Although no single mutation was lethal, cells with any two mutations were not viable for four such pairings, and a fifth displayed a synthetic growth defect. These data strengthen the idea that a multiplicity of interactions is needed to assemble a higher order Nrd1-Nab3 complex that coats specific nascent RNAs in preparation for termination.
Collapse
Affiliation(s)
- Travis J Loya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Thomas W O'Rourke
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Natalya Degtyareva
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Daniel Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.
| |
Collapse
|
86
|
O'Reilly D, Kuznetsova OV, Laitem C, Zaborowska J, Dienstbier M, Murphy S. Human snRNA genes use polyadenylation factors to promote efficient transcription termination. Nucleic Acids Res 2013; 42:264-75. [PMID: 24097444 PMCID: PMC3874203 DOI: 10.1093/nar/gkt892] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II transcribes both protein coding and non-coding RNA genes and, in yeast, different mechanisms terminate transcription of the two gene types. Transcription termination of mRNA genes is intricately coupled to cleavage and polyadenylation, whereas transcription of small nucleolar (sno)/small nuclear (sn)RNA genes is terminated by the RNA-binding proteins Nrd1, Nab3 and Sen1. The existence of an Nrd1-like pathway in humans has not yet been demonstrated. Using the U1 and U2 genes as models, we show that human snRNA genes are more similar to mRNA genes than yeast snRNA genes with respect to termination. The Integrator complex substitutes for the mRNA cleavage and polyadenylation specificity factor complex to promote cleavage and couple snRNA 3′-end processing with termination. Moreover, members of the associated with Pta1 (APT) and cleavage factor I/II complexes function as transcription terminators for human snRNA genes with little, if any, role in snRNA 3′-end processing. The gene-specific factor, proximal sequence element-binding transcription factor (PTF), helps clear the U1 and U2 genes of nucleosomes, which provides an easy passage for pol II, and the negative elongation factor facilitates termination at the end of the genes where nucleosome levels increase. Thus, human snRNA genes may use chromatin structure as an additional mechanism to promote efficient transcription termination in vivo.
Collapse
Affiliation(s)
- Dawn O'Reilly
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK and CGAT, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | | | |
Collapse
|
87
|
Affiliation(s)
- Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377 Munich,
Germany
| | - Matthias Geyer
- Center of Advanced European Studies and Research, Group Physical Biochemistry,
Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
88
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
89
|
Porrua O, Libri D. A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. Nat Struct Mol Biol 2013; 20:884-91. [PMID: 23748379 DOI: 10.1038/nsmb.2592] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/22/2013] [Indexed: 12/25/2022]
Abstract
Transcription termination is essential to generate functional RNAs and to prevent disruptive polymerase collisions resulting from concurrent transcription. The yeast Sen1p helicase is involved in termination of most noncoding RNAs transcribed by RNA polymerase II (RNAPII). However, the mechanism of termination and the role of this protein have remained enigmatic. Here we address the mechanism of Sen1p-dependent termination by using a highly purified in vitro system. We show that Sen1p is the key enzyme of the termination reaction and reveal features of the termination mechanism. Like the bacterial termination factor Rho, Sen1p recognizes the nascent RNA and hydrolyzes ATP to dissociate the elongation complex. Sen1p-dependent termination is highly specific and, notably, does not require the C-terminal domain of RNAPII. We also show that termination is inhibited by RNA-DNA hybrids. Our results elucidate the role of Sen1p in controlling pervasive transcription.
Collapse
Affiliation(s)
- Odil Porrua
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif sur Yvette, France.
| | | |
Collapse
|
90
|
Livyatan I, Harikumar A, Nissim-Rafinia M, Duttagupta R, Gingeras TR, Meshorer E. Non-polyadenylated transcription in embryonic stem cells reveals novel non-coding RNA related to pluripotency and differentiation. Nucleic Acids Res 2013; 41:6300-15. [PMID: 23630323 PMCID: PMC3695530 DOI: 10.1093/nar/gkt316] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transcriptional landscape in embryonic stem cells (ESCs) and during ESC differentiation has received considerable attention, albeit mostly confined to the polyadenylated fraction of RNA, whereas the non-polyadenylated (NPA) fraction remained largely unexplored. Notwithstanding, the NPA RNA super-family has every potential to participate in the regulation of pluripotency and stem cell fate. We conducted a comprehensive analysis of NPA RNA in ESCs using a combination of whole-genome tiling arrays and deep sequencing technologies. In addition to identifying previously characterized and new non-coding RNA members, we describe a group of novel conserved RNAs (snacRNAs: small NPA conserved), some of which are differentially expressed between ESC and neuronal progenitor cells, providing the first evidence of a novel group of potentially functional NPA RNA involved in the regulation of pluripotency and stem cell fate. We further show that minor spliceosomal small nuclear RNAs, which are NPA, are almost completely absent in ESCs and are upregulated in differentiation. Finally, we show differential processing of the minor intron of the polycomb group gene Eed. Our data suggest that NPA RNA, both known and novel, play important roles in ESCs.
Collapse
|
91
|
Acquaviva L, Drogat J, Dehé PM, de La Roche Saint-André C, Géli V. Spp1 at the crossroads of H3K4me3 regulation and meiotic recombination. Epigenetics 2013; 8:355-60. [PMID: 23511748 PMCID: PMC3674044 DOI: 10.4161/epi.24295] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Saccharomyces cerevisiae, all H3K4 methylation is performed by a single Set1 Complex (Set1C) that is composed of the catalytic (Set1) and seven other subunits (Swd1, Swd2, Swd3, Bre2, Sdc1, Spp1 and Shg1). It has been known for quite some time that trimethylated H3K4 (H3K4me3) is enriched in the vicinity of meiotic double-strand breaks (DSBs), but the link between H3K4me3 and the meiotic nuclease Spo11 was uncovered only recently. The PHD-containing subunit Spp1, by interacting with H3K4me3 and Mer2, was shown to promote the recruitment of potential meiotic DSB sites to the chromosomal axis allowing their subsequent cleavage by Spo11. Therefore, Spp1 emerged as a key regulator of the H3K4 trimethylation catalyzed by Set1C and of the formation of meiotic DSBs. These findings illustrate the remarkable multifunctionality of Spp1, which not only regulates the catalytic activity of the enzyme (Set1), but also interacts with the deposited mark, and mediates its biological effect (meiotic DSB formation) independently of the complex. As it was previously described for Swd2, and now for Spp1, we anticipate that other Set1C subunits, in addition to regulating H3K4 methylation, may participate in diverse biological functions inside or outside of the complex.
Collapse
Affiliation(s)
- Laurent Acquaviva
- Marseille Cancer Research Center (CRCM);U1068 Inserm; UMR7258 CNRS; Aix-Marseille Univ; Institut Paoli-Calmettes; Marseille, France
| | - Julie Drogat
- Marseille Cancer Research Center (CRCM);U1068 Inserm; UMR7258 CNRS; Aix-Marseille Univ; Institut Paoli-Calmettes; Marseille, France
| | - Pierre-Marie Dehé
- Marseille Cancer Research Center (CRCM);U1068 Inserm; UMR7258 CNRS; Aix-Marseille Univ; Institut Paoli-Calmettes; Marseille, France
| | | | - Vincent Géli
- Marseille Cancer Research Center (CRCM);U1068 Inserm; UMR7258 CNRS; Aix-Marseille Univ; Institut Paoli-Calmettes; Marseille, France
| |
Collapse
|
92
|
Lee KM, Tarn WY. Coupling pre-mRNA processing to transcription on the RNA factory assembly line. RNA Biol 2013; 10:380-90. [PMID: 23392244 DOI: 10.4161/rna.23697] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has been well-documented that nuclear processing of primary transcripts of RNA polymerase II occurs co-transcriptionally and is functionally coupled to transcription. Moreover, increasing evidence indicates that transcription influences pre-mRNA splicing and even several post-splicing RNA processing events. In this review, we discuss the issues of how RNA polymerase II modulates co-transcriptional RNA processing events via its carboxyl terminal domain, and the protein domains involved in coupling of transcription and RNA processing events. In addition, we describe how transcription influences the expression or stability of mRNAs through the formation of distinct mRNP complexes. Finally, we delineate emerging findings that chromatin modifications function in the regulation of RNA processing steps, especially splicing, in addition to transcription. Overall, we provide a comprehensive view that transcription could integrate different control systems, from epigenetic to post-transcriptional control, for efficient gene expression.
Collapse
Affiliation(s)
- Kuo-Ming Lee
- Institute of Biomedical Sciences; Academia Sinica; Taipei, Taiwan
| | | |
Collapse
|
93
|
Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012; 26:2119-37. [PMID: 23028141 DOI: 10.1101/gad.200303.112] [Citation(s) in RCA: 495] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of multiple heptad repeats (consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), varying in number from 26 in yeast to 52 in vertebrates. The CTD functions to help couple transcription and processing of the nascent RNA and also plays roles in transcription elongation and termination. The CTD is subject to extensive post-translational modification, most notably phosphorylation, during the transcription cycle, which modulates its activities in the above processes. Therefore, understanding the nature of CTD modifications, including how they function and how they are regulated, is essential to understanding the mechanisms that control gene expression. While the significance of phosphorylation of Ser2 and Ser5 residues has been studied and appreciated for some time, several additional modifications have more recently been added to the CTD repertoire, and insight into their function has begun to emerge. Here, we review findings regarding modification and function of the CTD, highlighting the important role this unique domain plays in coordinating gene activity.
Collapse
Affiliation(s)
- Jing-Ping Hsin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
94
|
Andersen PK, Lykke-Andersen S, Jensen TH. Promoter-proximal polyadenylation sites reduce transcription activity. Genes Dev 2012; 26:2169-79. [PMID: 23028143 DOI: 10.1101/gad.189126.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site, which in turn causes reduced transcription. Functional depletion of U1 snRNP in the context of the wild-type SD triggers the same CpA event accompanied by decreased RNA levels. Thus, in accordance with recent findings, U1 snRNP can shield premature pA sites. The negative impact of unshielded pA sites on transcription requires promoter proximity, as demonstrated using artificial constructs and supported by a genome-wide data set. Importantly, transcription down-regulation can be recapitulated in a gene context devoid of splice sites by placing a functional bona fide pA site/transcription terminator within ~500 base pairs of the promoter. In contrast, promoter-proximal positioning of a pA site-independent histone gene terminator supports high transcription levels. We propose that optimal communication between a pA site-dependent gene terminator and its promoter critically depends on gene length and that short RNA polymerase II-transcribed genes use specialized termination mechanisms to maintain high transcription levels.
Collapse
Affiliation(s)
- Pia K Andersen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | | | | |
Collapse
|
95
|
Hazelbaker DZ, Marquardt S, Wlotzka W, Buratowski S. Kinetic competition between RNA Polymerase II and Sen1-dependent transcription termination. Mol Cell 2012. [PMID: 23177741 DOI: 10.1016/j.molcel.2012.10.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The essential helicase-like protein Sen1 mediates termination of RNA Polymerase II (Pol II) transcription at snoRNAs and other noncoding RNAs in yeast. A mutation in the Pol II subunit Rpb1 that increases the elongation rate increases read-through transcription at Sen1-mediated terminators. Termination and growth defects in sen1 mutant cells are partially suppressed by a slowly transcribing Pol II mutant and are exacerbated by a faster-transcribing Pol II mutant. Deletion of the nuclear exosome subunit Rrp6 allows visualization of noncoding RNA intermediates that are terminated but not yet processed. Sen1 mutants or faster-transcribing Pol II increase the average lengths of preprocessed snoRNA, CUT, and SUT transcripts, while slowed Pol II transcription produces shorter transcripts. These connections between transcription rate and Sen1 activity support a model whereby kinetic competition between elongating Pol II and Sen1 helicase establishes the temporal and spatial window for early Pol II termination.
Collapse
Affiliation(s)
- Dane Z Hazelbaker
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
96
|
Effects of the Paf1 complex and histone modifications on snoRNA 3'-end formation reveal broad and locus-specific regulation. Mol Cell Biol 2012; 33:170-82. [PMID: 23109428 DOI: 10.1128/mcb.01233-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Across diverse eukaryotes, the Paf1 complex (Paf1C) plays critical roles in RNA polymerase II transcription elongation and regulation of histone modifications. Beyond these roles, the human and Saccharomyces cerevisiae Paf1 complexes also interact with RNA 3'-end processing components to affect transcript 3'-end formation. Specifically, the Saccharomyces cerevisiae Paf1C functions with the RNA binding proteins Nrd1 and Nab3 to regulate the termination of at least two small nucleolar RNAs (snoRNAs). To determine how Paf1C-dependent functions regulate snoRNA formation, we used high-density tiling arrays to analyze transcripts in paf1Δ cells and uncover new snoRNA targets of Paf1. Detailed examination of Paf1-regulated snoRNA genes revealed locus-specific requirements for Paf1-dependent posttranslational histone modifications. We also discovered roles for the transcriptional regulators Bur1-Bur2, Rad6, and Set2 in snoRNA 3'-end formation. Surprisingly, at some snoRNAs, this function of Rad6 appears to be primarily independent of its role in histone H2B monoubiquitylation. Cumulatively, our work reveals a broad requirement for the Paf1C in snoRNA 3'-end formation in S. cerevisiae, implicates the participation of transcriptional proteins and histone modifications in this process, and suggests that the Paf1C contributes to the fine tuning of nuanced levels of regulation that exist at individual loci.
Collapse
|
97
|
Mischo HE, Proudfoot NJ. Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:174-85. [PMID: 23085255 PMCID: PMC3793857 DOI: 10.1016/j.bbagrm.2012.10.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/29/2022]
Abstract
Termination of transcription by RNA polymerase II requires two distinct processes: The formation of a defined 3′ end of the transcribed RNA, as well as the disengagement of RNA polymerase from its DNA template. Both processes are intimately connected and equally pivotal in the process of functional messenger RNA production. However, research in recent years has elaborated how both processes can additionally be employed to control gene expression in qualitative and quantitative ways. This review embraces these new findings and attempts to paint a broader picture of how this final step in the transcription cycle is of critical importance to many aspects of gene regulation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Hannah E Mischo
- Cancer Research UK London Research Institute, Blanche Lane South Mimms, Herts, UK.
| | | |
Collapse
|
98
|
Porrua O, Hobor F, Boulay J, Kubicek K, D'Aubenton-Carafa Y, Gudipati RK, Stefl R, Libri D. In vivo SELEX reveals novel sequence and structural determinants of Nrd1-Nab3-Sen1-dependent transcription termination. EMBO J 2012; 31:3935-48. [PMID: 23032188 DOI: 10.1038/emboj.2012.237] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/26/2012] [Indexed: 11/09/2022] Open
Abstract
The Nrd1-Nab3-Sen1 (NNS) complex pathway is responsible for transcription termination of cryptic unstable transcripts and sn/snoRNAs. The NNS complex recognizes short motifs on the nascent RNA, but the presence of these sequences alone is not sufficient to define a functional terminator. We generated a homogeneous set of several hundreds of artificial, NNS-dependent terminators with an in vivo selection approach. Analysis of these terminators revealed novel and extended sequence determinants for transcription termination and NNS complex binding as well as supermotifs that are critical for termination. Biochemical and structural data revealed that affinity and specificity of RNA recognition by Nab3p relies on induced fit recognition implicating an α-helical extension of the RNA recognition motif. Interestingly, the same motifs can be recognized by the NNS or the mRNA termination complex depending on their position relative to the start of transcription, suggesting that they function as general transcriptional insulators to prevent interference between the non-coding and the coding yeast transcriptomes.
Collapse
Affiliation(s)
- Odil Porrua
- Centre de Génétique Moléculaire, Gif sur Yvette, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Egloff S, Dienstbier M, Murphy S. Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet 2012; 28:333-41. [PMID: 22622228 DOI: 10.1016/j.tig.2012.03.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
The carboxyl-terminal domain (CTD) of RNA polymerase (pol) II comprises multiple tandem repeats with the consensus sequence Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7) that can be extensively and reversibly modified in vivo. CTD modifications orchestrate the interplay between transcription and processing of mRNA. Although phosphorylation of Ser2 (Ser2P) and Ser5 (Ser5P) residues has been described as being essential for the expression of most pol II-transcribed genes, recent findings highlight gene-specific effects of newly discovered CTD modifications. Here, we incorporate these latest findings in an updated review of the currently known elements that contribute to the CTD code and how it is recognized by proteins involved in transcription and RNA maturation. As modification of the CTD has a major impact on gene expression, a better understanding of the CTD code is integral to the understanding of how gene expression is regulated.
Collapse
Affiliation(s)
- Sylvain Egloff
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote, F-31000 Toulouse, France
| | | | | |
Collapse
|
100
|
Loya TJ, O'Rourke TW, Reines D. A genetic screen for terminator function in yeast identifies a role for a new functional domain in termination factor Nab3. Nucleic Acids Res 2012; 40:7476-91. [PMID: 22564898 PMCID: PMC3424548 DOI: 10.1093/nar/gks377] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The yeast IMD2 gene encodes an enzyme involved in GTP synthesis. Its expression is controlled by guanine nucleotides through a set of alternate start sites and an intervening transcriptional terminator. In the off state, transcription results in a short non-coding RNA that starts upstream of the gene. Transcription terminates via the Nrd1-Nab3-Sen1 complex and is degraded by the nuclear exosome. Using a sensitive terminator read-through assay, we identified trans-acting Terminator Override (TOV) genes that operate this terminator. Four genes were identified: the RNA polymerase II phosphatase SSU72, the RNA polymerase II binding protein PCF11, the TRAMP subunit TRF4 and the hnRNP-like, NAB3. The TOV phenotype can be explained by the loss of function of these gene products as described in models in which termination and RNA degradation are coupled to the phosphorylation state of RNA polymerase II's repeat domain. The most interesting mutations were those found in NAB3, which led to the finding that the removal of merely three carboxy-terminal amino acids compromised Nab3's function. This region of previously unknown function is distant from the protein's well-known RNA binding and Nrd1 binding domains. Structural homology modeling suggests this Nab3 ‘tail’ forms an α-helical multimerization domain that helps assemble it onto an RNA substrate.
Collapse
Affiliation(s)
- Travis J Loya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|