51
|
Maikova A, Peltier J, Boudry P, Hajnsdorf E, Kint N, Monot M, Poquet I, Martin-Verstraete I, Dupuy B, Soutourina O. Discovery of new type I toxin-antitoxin systems adjacent to CRISPR arrays in Clostridium difficile. Nucleic Acids Res 2019. [PMID: 29529286 PMCID: PMC5961336 DOI: 10.1093/nar/gky124] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clostridium difficile, a major human enteropathogen, must cope with foreign DNA invaders and multiple stress factors inside the host. We have recently provided an experimental evidence of defensive function of the C. difficile CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system important for its survival within phage-rich gut communities. Here, we describe the identification of type I toxin-antitoxin (TA) systems with the first functional antisense RNAs in this pathogen. Through the analysis of deep-sequencing data, we demonstrate the general co-localization with CRISPR arrays for the majority of sequenced C. difficile strains. We provide a detailed characterization of the overlapping convergent transcripts for three selected TA pairs. The toxic nature of small membrane proteins is demonstrated by the growth arrest induced by their overexpression. The co-expression of antisense RNA acting as an antitoxin prevented this growth defect. Co-regulation of CRISPR-Cas and type I TA genes by the general stress response Sigma B and biofilm-related factors further suggests a possible link between these systems with a role in recurrent C. difficile infections. Our results provide the first description of genomic links between CRISPR and type I TA systems within defense islands in line with recently emerged concept of functional coupling of immunity and cell dormancy systems in prokaryotes.
Collapse
Affiliation(s)
- Anna Maikova
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow 143028, Russia.,Peter the Great St.Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Johann Peltier
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| | - Pierre Boudry
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| | - Eliane Hajnsdorf
- UMR8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Nicolas Kint
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France.,Département de Microbiologie et d'infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, J1E 4K8, Sherbrooke, QC, Canada
| | - Isabelle Poquet
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,INRA, UMR1319 Micalis (Microbiologie de l'Alimentation au service de la Santé), Domaine de Vilvert, 78352, Jouy-en-Josas Cedex, France
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| | - Olga Soutourina
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
52
|
The ribosomal protein S1-dependent standby site in tisB mRNA consists of a single-stranded region and a 5' structure element. Proc Natl Acad Sci U S A 2019; 116:15901-15906. [PMID: 31320593 PMCID: PMC6690012 DOI: 10.1073/pnas.1904309116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ribosome standby is a mechanism that allows translation initiation at ribosome-binding sites that display stable, inhibitory structures. It involves initiator-tRNA-independent 30S subunit binding to single-stranded RNA regions, and the subsequent relocation to the sequestered ribosome-binding sites (RBS). Direct evidence for 30S preloading had previously been elusive. We report here on a detailed characterization of the standby site in tisB mRNA. 30S subunits bind to a single-stranded region and a 5′-stem-loop structure, as shown by fluorescence anisotropy experiments and footprint mapping by cross-linking–immunoprecipitation experiments. Ribosomal protein S1, on its own and in the context of the 30S ribosome, binds to the standby site. This is required for standby-dependent translation, likely reflecting S1-dependent directional unfolding over more than ≈100 nt to reach the sequestered RBS. In bacteria, stable RNA structures that sequester ribosome-binding sites (RBS) impair translation initiation, and thus protein output. In some cases, ribosome standby can overcome inhibition by structure: 30S subunits bind sequence-nonspecifically to a single-stranded region and, on breathing of the inhibitory structure, relocate to the RBS for initiation. Standby can occur over long distances, as in the active, +42 tisB mRNA, encoding a toxin. This mRNA is translationally silenced by an antitoxin sRNA, IstR-1, that base pairs to the standby site. In tisB and other cases, a direct interaction between 30S subunits and a standby site has remained elusive. Based on fluorescence anisotropy experiments, ribosome toeprinting results, in vitro translation assays, and cross-linking–immunoprecipitation (CLIP) in vitro, carried out on standby-proficient and standby-deficient tisB mRNAs, we provide a thorough characterization of the tisB standby site. 30S subunits and ribosomal protein S1 alone display high-affinity binding to standby-competent fluorescein-labeled +42 mRNA, but not to mRNAs that lack functional standby sites. Ribosomal protein S1 is essential for standby, as 30∆S1 subunits do not support standby-dependent toeprints and TisB translation in vitro. S1 alone- and 30S-CLIP followed by RNA-seq mapping shows that the functional tisB standby site consists of the expected single-stranded region, but surprisingly, also a 5′-end stem-loop structure. Removal of the latter by 5′-truncations, or disruption of the stem, abolishes 30S binding and standby activity. Based on the CLIP-read mapping, the long-distance standby effect in +42 tisB mRNA (∼100 nt) is tentatively explained by S1-dependent directional unfolding toward the downstream RBS.
Collapse
|
53
|
Altuvia Y, Bar A, Reiss N, Karavani E, Argaman L, Margalit H. In vivo cleavage rules and target repertoire of RNase III in Escherichia coli. Nucleic Acids Res 2019; 46:10380-10394. [PMID: 30113670 PMCID: PMC6212723 DOI: 10.1093/nar/gky684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/18/2018] [Indexed: 12/02/2022] Open
Abstract
Bacterial RNase III plays important roles in the processing and degradation of RNA transcripts. A major goal is to identify the cleavage targets of this endoribonuclease at a transcriptome-wide scale and delineate its in vivo cleavage rules. Here we applied to Escherichia coli grown to either exponential or stationary phase a tailored RNA-seq-based technology, which allows transcriptome-wide mapping of RNase III cleavage sites at a nucleotide resolution. Our analysis of the large-scale in vivo cleavage data substantiated the established cleavage pattern of a double cleavage in an intra-molecular stem structure, leaving 2-nt-long 3′ overhangs, and refined the base-pairing preferences in the cleavage site vicinity. Intriguingly, we observed that the two stem positions between the cleavage sites are highly base-paired, usually involving at least one G-C or C-G base pair. We present a clear distinction between intra-molecular stem structures that are RNase III substrates and intra-molecular stem structures randomly selected across the transcriptome, emphasizing the in vivo specificity of RNase III. Our study provides a comprehensive map of the cleavage sites in both intra-molecular and inter-molecular duplex substrates, providing novel insights into the involvement of RNase III in post-transcriptional regulation in the bacterial cell.
Collapse
Affiliation(s)
- Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Amir Bar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Niv Reiss
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ehud Karavani
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
54
|
Brantl S, Müller P. Toxin⁻Antitoxin Systems in Bacillus subtilis. Toxins (Basel) 2019; 11:toxins11050262. [PMID: 31075979 PMCID: PMC6562991 DOI: 10.3390/toxins11050262] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Toxin-antitoxin (TA) systems were originally discovered as plasmid maintenance systems in a multitude of free-living bacteria, but were afterwards found to also be widespread in bacterial chromosomes. TA loci comprise two genes, one coding for a stable toxin whose overexpression kills the cell or causes growth stasis, and the other coding for an unstable antitoxin that counteracts toxin action. Of the currently known six types of TA systems, in Bacillus subtilis, so far only type I and type II TA systems were found, all encoded on the chromosome. Here, we review our present knowledge of these systems, the mechanisms of antitoxin and toxin action, and the regulation of their expression, and we discuss their evolution and possible physiological role.
Collapse
Affiliation(s)
- Sabine Brantl
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut, AG Bakteriengenetik, Philosophenweg 12, D-07743 Jena, Germany.
| | - Peter Müller
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut, AG Bakteriengenetik, Philosophenweg 12, D-07743 Jena, Germany.
| |
Collapse
|
55
|
Lejars M, Kobayashi A, Hajnsdorf E. Physiological roles of antisense RNAs in prokaryotes. Biochimie 2019; 164:3-16. [PMID: 30995539 DOI: 10.1016/j.biochi.2019.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
Prokaryotes encounter constant and often brutal modifications to their environment. In order to survive, they need to maintain fitness, which includes adapting their protein expression patterns. Many factors control gene expression but this review focuses on just one, namely antisense RNAs (asRNAs), a class of non-coding RNAs (ncRNAs) characterized by their location in cis and their perfect complementarity with their targets. asRNAs were considered for a long time to be trivial and only to be found on mobile genetic elements. However, recent advances in methodology have revealed that their abundance and potential activities have been underestimated. This review aims to illustrate the role of asRNA in various physiologically crucial functions in both archaea and bacteria, which can be regrouped in three categories: cell maintenance, horizontal gene transfer and virulence. A literature survey of asRNAs demonstrates the difficulties to characterize and assign a role to asRNAs. With the aim of facilitating this task, we describe recent technological advances that could be of interest to identify new asRNAs and to discover their function.
Collapse
Affiliation(s)
- Maxence Lejars
- CNRS UMR8261, IBPC, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| | - Asaki Kobayashi
- SABNP, INSERM U1204, Université d'Evry Val-d'Essonne, Bâtiment Maupertuis, Rue du Père Jarlan, 91000, Évry Cedex, France.
| | - Eliane Hajnsdorf
- CNRS UMR8261, IBPC, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
56
|
Spanka DT, Konzer A, Edelmann D, Berghoff BA. High-Throughput Proteomics Identifies Proteins With Importance to Postantibiotic Recovery in Depolarized Persister Cells. Front Microbiol 2019; 10:378. [PMID: 30894840 PMCID: PMC6414554 DOI: 10.3389/fmicb.2019.00378] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Bacterial populations produce phenotypic variants called persisters to survive harmful conditions. Persisters are highly tolerant to antibiotics and repopulate environments after the stress has vanished. In order to resume growth, persisters have to recover from the persistent state, but the processes behind recovery remain mostly elusive. Deciphering these processes is an essential step toward understanding the persister phenomenon in its entirety. High-throughput proteomics by mass spectrometry is a valuable tool to assess persister physiology during any stage of the persister life cycle, and is expected to considerably contribute to our understanding of the recovery process. In the present study, an Escherichia coli strain, that overproduces the membrane-depolarizing toxin TisB, was established as a model for persistence by the use of high-throughput proteomics. Labeling of TisB persisters with stable isotope-containing amino acids (pulsed-SILAC) revealed an active translational response to ampicillin, including several RpoS-dependent proteins. Subsequent investigation of the persister proteome during postantibiotic recovery by label-free quantitative proteomics identified proteins with importance to the recovery process. Among them, AhpF, a component of alkyl hydroperoxide reductase, and the outer membrane porin OmpF were found to affect the persistence time of TisB persisters. Assessing the role of AhpF and OmpF in TisB-independent persisters demonstrated that the importance of a particular protein for the recovery process strongly depends on the physiological condition of a persister cell. Our study provides important insights into persister physiology and the processes behind recovery of depolarized cells.
Collapse
Affiliation(s)
- Daniel-Timon Spanka
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Anne Konzer
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Daniel Edelmann
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
57
|
Choi JS, Kim W, Suk S, Park H, Bak G, Yoon J, Lee Y. The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli. RNA Biol 2018; 15:1319-1335. [PMID: 30293519 PMCID: PMC6284582 DOI: 10.1080/15476286.2018.1532252] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 01/08/2023] Open
Abstract
Most small noncoding RNAs (sRNAs) are known to base pair with target mRNAs and regulate mRNA stability or translation to trigger various changes in the cell metabolism of Escherichia coli. The SdsR sRNA is expressed specifically during the stationary phase and represses tolC and mutS expression. However, it was not previously known whether the growth-phase-dependent regulation of SdsR is important for cell growth. Here, we ectopically expressed SdsR during the exponential phase and examined cell growth and survival. We found that ectopic expression of SdsR led to a significant and Hfq-dependent cell death with accompanying cell filamentation. This SdsR-driven cell death was alleviated by overexpression of RyeA, an sRNA transcribed on the opposite DNA strand, suggesting that SdsR/RyeA is a novel type of toxin-antitoxin (T/A) system in which both the toxin and the antitoxin are sRNAs. We defined the minimal region required for the SdsR-driven cell death. We also performed RNA-seq analysis and identified 209 genes whose expression levels were altered by more than two-fold following pulse expression of ectopic SdsR at exponential phase. Finally, we found that that the observed SdsR-driven cell death was mainly caused by the SdsR-mediated repression of yhcB, which encodes an inner membrane protein.
Collapse
Affiliation(s)
| | | | - Shinae Suk
- Department of Chemistry, KAIST, Daejeon, Korea
| | | | - Geunu Bak
- Department of Chemistry, KAIST, Daejeon, Korea
| | | | | |
Collapse
|
58
|
Walling LR, Butler JS. Toxins targeting transfer RNAs: Translation inhibition by bacterial toxin-antitoxin systems. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1506. [PMID: 30296016 DOI: 10.1002/wrna.1506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 01/09/2023]
Abstract
Prokaryotic toxin-antitoxin (TA) systems are composed of a protein toxin and its cognate antitoxin. These systems are abundant in bacteria and archaea and play an important role in growth regulation. During favorable growth conditions, the antitoxin neutralizes the toxin's activity. However, during conditions of stress or starvation, the antitoxin is inactivated, freeing the toxin to inhibit growth and resulting in dormancy. One mechanism of growth inhibition used by several TA systems results from targeting transfer RNAs (tRNAs), either through preventing aminoacylation, acetylating the primary amino group, or endonucleolytic cleavage. All of these mechanisms inhibit translation and result in growth arrest. Many of these toxins only act on a specific tRNA or a specific subset of tRNAs; however, more work is necessary to understand the specificity determinants of these toxins. For the toxins whose specificity has been characterized, both sequence and structural components of the tRNA appear important for recognition by the toxin. Questions also remain regarding the mechanisms used by dormant bacteria to resume growth after toxin induction. Rescue of stalled ribosomes by transfer-messenger RNAs, removal of acetylated amino groups from tRNAs, or ligation of cleaved RNA fragments have all been implicated as mechanisms for reversing toxin-induced dormancy. However, the mechanisms of resuming growth after induction of the majority of tRNA targeting toxins are not yet understood. This article is categorized under: Translation > Translation Regulation RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Lauren R Walling
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - J Scott Butler
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York.,Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York.,Center for RNA Biology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
59
|
After the Fact(or): Posttranscriptional Gene Regulation in Enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 2018; 200:JB.00228-18. [PMID: 29967119 DOI: 10.1128/jb.00228-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To adapt to ever-changing environments, pathogens quickly alter gene expression. This can occur through transcriptional, posttranscriptional, or posttranslational regulation. Historically, transcriptional regulation has been thoroughly studied to understand pathogen niche adaptation, whereas posttranscriptional and posttranslational gene regulation has only relatively recently been appreciated to play a central role in bacterial pathogenesis. Posttranscriptional regulation may involve chaperones, nucleases, and/or noncoding small RNAs (sRNAs) and typically controls gene expression by altering the stability and/or translation of the target mRNA. In this review, we highlight the global importance of posttranscriptional regulation to enterohemorrhagic Escherichia coli (EHEC) gene expression and discuss specific mechanisms of how EHEC regulates expression of virulence factors critical to host colonization and disease progression. The low infectious dose of this intestinal pathogen suggests that EHEC is particularly well adapted to respond to the host environment.
Collapse
|
60
|
Melatonin Sensitizes Hepatocellular Carcinoma Cells to Chemotherapy Through Long Non-Coding RNA RAD51-AS1-Mediated Suppression of DNA Repair. Cancers (Basel) 2018; 10:cancers10090320. [PMID: 30201872 PMCID: PMC6162454 DOI: 10.3390/cancers10090320] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 12/26/2022] Open
Abstract
DNA repair systems are abnormally active in most hepatocellular carcinoma (HCC) cells due to accumulated mutations, resulting in elevated DNA repair capacity and resistance to chemotherapy and radiotherapy. Thus, targeting DNA repair mechanisms is a common treatment approach in HCC to sensitize cancer cells to DNA damage. In this study, we examined the anti-HCC effects of melatonin and elucidated the regulatory mechanisms. The results of functional assays showed that in addition to inhibiting the proliferation, migration, and invasion abilities of HCC cells, melatonin suppressed their DNA repair capacity, thereby promoting the cytotoxicity of chemotherapy and radiotherapy. Whole-transcriptome and gain- and loss-of-function analyses revealed that melatonin induces expression of the long noncoding RNA RAD51-AS1, which binds to RAD51 mRNA to inhibit its translation, effectively decreasing the DNA repair capacity of HCC cells and increasing their sensitivity to chemotherapy and radiotherapy. Animal models further demonstrated that a combination of melatonin and the chemotherapeutic agent etoposide (VP16) can significantly enhance tumor growth inhibition compared with monotherapy. Our results show that melatonin is a potential adjuvant treatment for chemotherapy and radiotherapy in HCC.
Collapse
|
61
|
Fesenko IA, Kirov IV, Filippova AA. Impact of Noncoding Part of the Genome on the Proteome Plasticity of the Eukaryotic Cell. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018040076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
62
|
Masachis S, Darfeuille F. Type I Toxin-Antitoxin Systems: Regulating Toxin Expression via Shine-Dalgarno Sequence Sequestration and Small RNA Binding. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0030-2018. [PMID: 30051800 PMCID: PMC11633621 DOI: 10.1128/microbiolspec.rwr-0030-2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 02/06/2023] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic loci composed of two adjacent genes: a toxin and an antitoxin that prevents toxin action. Despite their wide distribution in bacterial genomes, the reasons for TA systems being on chromosomes remain enigmatic. In this review, we focus on type I TA systems, composed of a small antisense RNA that plays the role of an antitoxin to control the expression of its toxin counterpart. It does so by direct base-pairing to the toxin-encoding mRNA, thereby inhibiting its translation and/or promoting its degradation. However, in many cases, antitoxin binding is not sufficient to avoid toxicity. Several cis-encoded mRNA elements are also required for repression, acting to uncouple transcription and translation via the sequestration of the ribosome binding site. Therefore, both antisense RNA binding and compact mRNA folding are necessary to tightly control toxin synthesis and allow the presence of these toxin-encoding systems on bacterial chromosomes.
Collapse
Affiliation(s)
- Sara Masachis
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, University of Bordeaux, F-33000 Bordeaux, France
| | - Fabien Darfeuille
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, University of Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
63
|
Westermann AJ. Regulatory RNAs in Virulence and Host-Microbe Interactions. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0002-2017. [PMID: 30003867 PMCID: PMC11633609 DOI: 10.1128/microbiolspec.rwr-0002-2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial regulatory RNAs are key players in adaptation to changing environmental conditions and response to diverse cellular stresses. However, while regulatory RNAs of bacterial pathogens have been intensely studied under defined conditions in vitro, characterization of their role during the infection of eukaryotic host organisms is lagging behind. This review summarizes our current understanding of the contribution of the different classes of regulatory RNAs and RNA-binding proteins to bacterial virulence and illustrates their role in infection by reviewing the mechanisms of some prominent representatives of each class. Emerging technologies are described that bear great potential for global, unbiased studies of virulence-related RNAs in bacterial model and nonmodel pathogens in the future. The review concludes by deducing common principles of RNA-mediated gene expression control of virulence programs in different pathogens, and by defining important open questions for upcoming research in the field.
Collapse
Affiliation(s)
- Alexander J Westermann
- Institute of Molecular Infection Biology, University of Würzburg
- Helmholtz Institute for RNA-Based Infection Research, D-97080 Würzburg, Germany
| |
Collapse
|
64
|
Corylin increases the sensitivity of hepatocellular carcinoma cells to chemotherapy through long noncoding RNA RAD51-AS1-mediated inhibition of DNA repair. Cell Death Dis 2018; 9:543. [PMID: 29749376 PMCID: PMC5945779 DOI: 10.1038/s41419-018-0575-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Abstract
Corylin, a biologically active agent extracted from Psoralea corylifolia L. (Fabaceae), promotes bone differentiation and inhibits inflammation. Currently, few reports have addressed the biological functions that are regulated by corylin, and to date, no studies have investigated its antitumor activity. In this study, we used cell functional assays to analyze the antitumor activity of corylin in hepatocellular carcinoma (HCC). Furthermore, whole-transcriptome assays were performed to identify the downstream genes that were regulated by corylin, and gain-of-function and loss-of-function experiments were conducted to examine the regulatory roles of the above genes. We found that corylin significantly inhibited the proliferation, migration, and invasion of HCC cells and increased the toxic effects of chemotherapeutic agents against HCC cells. These properties were due to the induction of a long noncoding RNA, RAD51-AS1, which bound to RAD51 mRNA, thereby inhibiting RAD51 protein expression, thus inhibiting the DNA damage repair ability of HCC cells. Animal experiments also showed that a combination treatment with corylin significantly increased the inhibitory effects of the chemotherapeutic agent etoposide (VP16) on tumor growth. These findings indicate that corylin has strong potential as an adjuvant drug in HCC treatment and that corylin can strengthen the therapeutic efficacy of chemotherapy and radiotherapy.
Collapse
|
65
|
Small RNA-mediated regulation in bacteria: A growing palette of diverse mechanisms. Gene 2018; 656:60-72. [PMID: 29501814 DOI: 10.1016/j.gene.2018.02.068] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/19/2018] [Accepted: 02/27/2018] [Indexed: 11/23/2022]
Abstract
Small RNAs (sRNAs) in bacteria have evolved with diverse mechanisms to balance their target gene expression in response to changes in the environment. Accumulating studies on bacterial regulatory processes firmly established that sRNAs modulate their target gene expression generally at the posttranscriptional level. Identification of large number of sRNAs by advanced technologies, like deep sequencing, tilling microarray, indicates the existence of a plethora of distinctive sRNA-mediated regulatory mechanisms in bacteria. Types of the novel mechanisms are increasing with the discovery of new sRNAs. Complementary base pairing between sRNAs and target RNAs assisted by RNA chaperones like Hfq and ProQ, in many occasions, to regulate the cognate gene expression is prevalent in sRNA mechanisms. sRNAs, in most studied cases, can directly base pair with target mRNA to remodel its expression. Base pairing can happen either in the untranslated regions or in the coding regions of mRNA to activate/repress its translation. sRNAs also act as target mimic to titrate away different regulatory RNAs from its target. Other mechanism includes the sequestration of regulatory proteins, especially transcription factors, by sRNAs. Numerous sRNAs, following analogous mechanism, are widespread in bacteria, and thus, has drawn immense attention for the development of RNA-based technologies. Nevertheless, typical sRNA mechanisms are also discovered to be confined in some bacteria. Analysis of the sRNA mechanisms unravels their existence in both the single step processes and the complex regulatory networks with a global effect on cell physiology. This review deals with the diverse array of mechanisms, which sRNAs follow to maintain bacterial lifestyle.
Collapse
|
66
|
Identification and functional characterization of bacterial small non-coding RNAs and their target: A review. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
67
|
Harms A, Brodersen DE, Mitarai N, Gerdes K. Toxins, Targets, and Triggers: An Overview of Toxin-Antitoxin Biology. Mol Cell 2018; 70:768-784. [PMID: 29398446 DOI: 10.1016/j.molcel.2018.01.003] [Citation(s) in RCA: 448] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/06/2017] [Accepted: 01/02/2018] [Indexed: 12/01/2022]
Abstract
Bacterial toxin-antitoxin (TA) modules are abundant genetic elements that encode a toxin protein capable of inhibiting cell growth and an antitoxin that counteracts the toxin. The majority of toxins are enzymes that interfere with translation or DNA replication, but a wide variety of molecular activities and cellular targets have been described. Antitoxins are proteins or RNAs that often control their cognate toxins through direct interactions and, in conjunction with other signaling elements, through transcriptional and translational regulation of TA module expression. Three major biological functions of TA modules have been discovered, post-segregational killing ("plasmid addiction"), abortive infection (bacteriophage immunity through altruistic suicide), and persister formation (antibiotic tolerance through dormancy). In this review, we summarize the current state of the field and highlight how multiple levels of regulation shape the conditions of toxin activation to achieve the different biological functions of TA modules.
Collapse
Affiliation(s)
- Alexander Harms
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Ditlev Egeskov Brodersen
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Namiko Mitarai
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark; Niels Bohr Institute, Department of Physics, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kenn Gerdes
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
68
|
Impact of bacterial sRNAs in stress responses. Biochem Soc Trans 2017; 45:1203-1212. [PMID: 29101308 PMCID: PMC5730939 DOI: 10.1042/bst20160363] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/11/2022]
Abstract
Bacterial life is harsh and involves numerous environmental and internal challenges that are perceived as stresses. Consequently, adequate responses to survive, cope with, and counteract stress conditions have evolved. In the last few decades, a class of small, non-coding RNAs (sRNAs) has been shown to be involved as key players in stress responses. This review will discuss — primarily from an enterobacterial perspective — selected stress response pathways that involve antisense-type sRNAs. These include themes of how bacteria deal with severe envelope stress, threats of DNA damage, problems with poisoning due to toxic sugar intermediates, issues of iron homeostasis, and nutrient limitation/starvation. The examples discussed highlight how stress relief can be achieved, and how sRNAs act mechanistically in regulatory circuits. For some cases, we will propose scenarios that may suggest why contributions from post-transcriptional control by sRNAs, rather than transcriptional control alone, appear to be a beneficial and universally selected feature.
Collapse
|
69
|
Stem-Loop Structures within mRNA Coding Sequences Activate Translation Initiation and Mediate Control by Small Regulatory RNAs. Mol Cell 2017; 68:158-170.e3. [DOI: 10.1016/j.molcel.2017.08.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/08/2017] [Accepted: 08/18/2017] [Indexed: 11/20/2022]
|
70
|
Ellis MJ, Trussler RS, Charles O, Haniford DB. A transposon-derived small RNA regulates gene expression in Salmonella Typhimurium. Nucleic Acids Res 2017; 45:5470-5486. [PMID: 28335027 PMCID: PMC5435999 DOI: 10.1093/nar/gkx094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/06/2017] [Indexed: 12/30/2022] Open
Abstract
Bacterial sRNAs play an important role in regulating many cellular processes including metabolism, outer membrane homeostasis and virulence. Although sRNAs were initially found in intergenic regions, there is emerging evidence that protein coding regions of the genome are a rich reservoir of sRNAs. Here we report that the 5΄UTR of IS200 transposase mRNA (tnpA) is processed to produce regulatory RNAs that affect expression of over 70 genes in Salmonella Typhimurium. We provide evidence that the tnpA derived sRNA base-pairs with invF mRNA to repress expression. As InvF is a transcriptional activator of SPI-1 encoded and other effector proteins, tnpA indirectly represses these genes. We show that deletion of IS200 elements in S. Typhimurium increases invasion in vitro and reduces growth rate, while over-expression of tnpA suppresses invasion. Our work indicates that tnpA acts as an sRNA ‘sponge’ that sets a threshold for activation of Salmonella pathogenicity island (SPI)-1 effector proteins and identifies a new class of ‘passenger gene’ for bacterial transposons, providing the first example of a bacterial transposon producing a regulatory RNA that controls host gene expression.
Collapse
Affiliation(s)
- Michael J Ellis
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ryan S Trussler
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Onella Charles
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - David B Haniford
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
71
|
Klimina KM, Poluektova EU, Danilenko VN. Bacterial toxin–antitoxin systems: Properties, functional significance, and possibility of use (Review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817050076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
72
|
Arnion H, Korkut DN, Masachis Gelo S, Chabas S, Reignier J, Iost I, Darfeuille F. Mechanistic insights into type I toxin antitoxin systems in Helicobacter pylori: the importance of mRNA folding in controlling toxin expression. Nucleic Acids Res 2017; 45:4782-4795. [PMID: 28077560 PMCID: PMC5416894 DOI: 10.1093/nar/gkw1343] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/22/2016] [Indexed: 12/16/2022] Open
Abstract
Type I toxin-antitoxin (TA) systems have been identified in a wide range of bacterial genomes. Here, we report the characterization of a new type I TA system present on the chromosome of the major human gastric pathogen, Helicobacter pylori. We show that the aapA1 gene encodes a 30 amino acid peptide whose artificial expression in H. pylori induces cell death. The synthesis of this toxin is prevented by the transcription of an antitoxin RNA, named IsoA1, expressed on the opposite strand of the toxin gene. We further reveal additional layers of post-transcriptional regulation that control toxin expression: (i) transcription of the aapA1 gene generates a full-length transcript whose folding impedes translation (ii) a 3΄ end processing of this message generates a shorter transcript that, after a structural rearrangement, becomes translatable (iii) but this rearrangement also leads to the formation of two stem-loop structures allowing formation of an extended duplex with IsoA1 via kissing-loop interactions. This interaction ensures both the translation inhibition of the AapA1 active message and its rapid degradation by RNase III, thus preventing toxin synthesis under normal growth conditions. Finally, a search for homologous mRNA structures identifies similar TA systems in a large number of Helicobacter and Campylobacter genomes.
Collapse
Affiliation(s)
- Hélène Arnion
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Dursun Nizam Korkut
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Sara Masachis Gelo
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Sandrine Chabas
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Jérémy Reignier
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Isabelle Iost
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Fabien Darfeuille
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| |
Collapse
|
73
|
Wen J, Harp JR, Fozo EM. The 5΄ UTR of the type I toxin ZorO can both inhibit and enhance translation. Nucleic Acids Res 2017; 45:4006-4020. [PMID: 27903909 PMCID: PMC5397157 DOI: 10.1093/nar/gkw1172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/14/2016] [Indexed: 01/30/2023] Open
Abstract
Many bacterial type I toxin mRNAs possess a long 5΄ untranslated region (UTR) that serves as the target site of the corresponding antitoxin sRNA. This is the case for the zorO-orzO type I system where the OrzO antitoxin base pairs to the 174-nucleotide zorO 5΄ UTR. Here, we demonstrate that the full-length 5΄ UTR of the zorO type I toxin hinders its own translation independent of the sRNA whereas a processed 5΄ UTR (zorO Δ28) promotes translation. The full-length zorO 5΄ UTR folds into an extensive secondary structure sequestering the ribosome binding site (RBS). Processing of the 5΄ UTR does not alter the RBS structure, but opens a large region (EAP region) located upstream of the RBS. Truncation of this EAP region impairs zorO translation, but this defect can be rescued upon exposing the RBS. Additionally, the region spanning +35 to +50 of the zorO mRNA is needed for optimal translation of zorO. Importantly, the positive and negative effects on translation imparted by the 5΄ UTR can be transferred onto a reporter gene, indicative that the 5΄ UTR can solely drive regulation. Moreover, we show that the OrzO sRNA can inhibit zorO translation via base pairing to the of the EAP region.
Collapse
Affiliation(s)
- Jia Wen
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - John R Harp
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Elizabeth M Fozo
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
74
|
Chen J, Gottesman S. Hfq links translation repression to stress-induced mutagenesis in E. coli. Genes Dev 2017; 31:1382-1395. [PMID: 28794186 PMCID: PMC5580658 DOI: 10.1101/gad.302547.117] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023]
Abstract
Here, Chen et al. show an example of Hfq repressing translation in the absence of sRNAs via major remodeling of the mRNA. They demonstrate that, by interacting with the mutS leader, Hfq serves as a critical switch that modulates bacteria from high-fidelity DNA replication to stress-induced mutagenesis. Mismatch repair (MMR) is a conserved mechanism exploited by cells to correct DNA replication errors both in growing cells and under nongrowing conditions. Hfq (host factor for RNA bacteriophage Qβ replication), a bacterial Lsm family RNA-binding protein, chaperones RNA–RNA interactions between regulatory small RNAs (sRNAs) and target messenger RNAs (mRNAs), leading to alterations of mRNA translation and/or stability. Hfq has been reported to post-transcriptionally repress the DNA MMR gene mutS in stationary phase, possibly limiting MMR to allow increased mutagenesis. Here we report that Hfq deploys dual mechanisms to control mutS expression. First, Hfq binds directly to an (AAN)3 motif within the mutS 5′ untranslated region (UTR), repressing translation in the absence of sRNA partners both in vivo and in vitro. Second, Hfq acts in a canonical pathway, promoting base-pairing of ArcZ sRNA with the mutS leader to inhibit translation. Most importantly, using pathway-specific mutS chromosomal alleles that specifically abrogate either regulatory pathway or both, we demonstrate that tight control of MutS levels in stationary phase contributes to stress-induced mutagenesis. By interacting with the mutS leader, Hfq serves as a critical switch that modulates bacteria from high-fidelity DNA replication to stress-induced mutagenesis.
Collapse
Affiliation(s)
- Jiandong Chen
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
75
|
Abstract
Bacterial pathogens must endure or adapt to different environments and stresses during transmission and infection. Posttranscriptional gene expression control by regulatory RNAs, such as small RNAs and riboswitches, is now considered central to adaptation in many bacteria, including pathogens. The study of RNA-based regulation (riboregulation) in pathogenic species has provided novel insight into how these bacteria regulate virulence gene expression. It has also uncovered diverse mechanisms by which bacterial small RNAs, in general, globally control gene expression. Riboregulators as well as their targets may also prove to be alternative targets or provide new strategies for antimicrobials. In this article, we present an overview of the general mechanisms that bacteria use to regulate with RNA, focusing on examples from pathogens. In addition, we also briefly review how deep sequencing approaches have aided in opening new perspectives in small RNA identification and the study of their functions. Finally, we discuss examples of riboregulators in two model pathogens that control virulence factor expression or survival-associated phenotypes, such as stress tolerance, biofilm formation, or cell-cell communication, to illustrate how riboregulation factors into regulatory networks in bacterial pathogens.
Collapse
|
76
|
Berghoff BA, Wagner EGH. RNA-based regulation in type I toxin-antitoxin systems and its implication for bacterial persistence. Curr Genet 2017; 63:1011-1016. [PMID: 28560584 PMCID: PMC5668327 DOI: 10.1007/s00294-017-0710-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 02/02/2023]
Abstract
Bacterial dormancy is a valuable survival strategy upon challenging environmental conditions. Dormant cells tolerate the consequences of high stress levels and may re-populate the environment upon return to favorable conditions. Antibiotic-tolerant bacteria—termed persisters—regularly cause relapsing infections, increase the likelihood of antibiotic resistance, and, therefore, earn increasing attention. Their generation often depends on toxins from chromosomal toxin–antitoxin systems. Here, we review recent insights concerning RNA-based control of toxin synthesis, and discuss possible implications for persister generation.
Collapse
Affiliation(s)
- Bork A Berghoff
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität, 35392, Giessen, Germany.
| | - E Gerhart H Wagner
- Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
77
|
Yang QE, Walsh TR. Toxin-antitoxin systems and their role in disseminating and maintaining antimicrobial resistance. FEMS Microbiol Rev 2017; 41:343-353. [PMID: 28449040 PMCID: PMC5812544 DOI: 10.1093/femsre/fux006] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
Toxin-antitoxin systems (TAs) are ubiquitous among bacteria and play a crucial role in the dissemination and evolution of antibiotic resistance, such as maintaining multi-resistant plasmids and inducing persistence formation. Generally, activities of the toxins are neutralised by their conjugate antitoxins. In contrast, antitoxins are more liable to degrade under specific conditions such as stress, and free active toxins interfere with essential cellular processes including replication, translation and cell-wall synthesis. TAs have also been shown to be responsible for plasmid maintenance, stress management, bacterial persistence and biofilm formation. We discuss here the recent findings of these multifaceted TAs (type I-VI) and in particular examine the role of TAs in augmenting the dissemination and maintenance of multi-drug resistance in bacteria.
Collapse
Affiliation(s)
- Qiu E. Yang
- Division of Infection and Immunity, Heath Park Hospital, Cardiff University, Cardiff CF14 4XN, UK
| | - Timothy R. Walsh
- Division of Infection and Immunity, Heath Park Hospital, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
78
|
Smirnov A, Wang C, Drewry LL, Vogel J. Molecular mechanism of mRNA repression in trans by a ProQ-dependent small RNA. EMBO J 2017; 36:1029-1045. [PMID: 28336682 PMCID: PMC5391140 DOI: 10.15252/embj.201696127] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 12/26/2022] Open
Abstract
Research into post-transcriptional control of mRNAs by small noncoding RNAs (sRNAs) in the model bacteria Escherichia coli and Salmonella enterica has mainly focused on sRNAs that associate with the RNA chaperone Hfq. However, the recent discovery of the protein ProQ as a common binding partner that stabilizes a distinct large class of structured sRNAs suggests that additional RNA regulons exist in these organisms. The cellular functions and molecular mechanisms of these new ProQ-dependent sRNAs are largely unknown. Here, we report in Salmonella Typhimurium the mode-of-action of RaiZ, a ProQ-dependent sRNA that is made from the 3' end of the mRNA encoding ribosome-inactivating protein RaiA. We show that RaiZ is a base-pairing sRNA that represses in trans the mRNA of histone-like protein HU-α. RaiZ forms an RNA duplex with the ribosome-binding site of hupA mRNA, facilitated by ProQ, to prevent 30S ribosome loading and protein synthesis of HU-α. Similarities and differences between ProQ- and Hfq-mediated regulation will be discussed.
Collapse
Affiliation(s)
- Alexandre Smirnov
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Chuan Wang
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lisa L Drewry
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany .,Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| |
Collapse
|
79
|
Berghoff BA, Hoekzema M, Aulbach L, Wagner EGH. Two regulatory RNA elements affect TisB-dependent depolarization and persister formation. Mol Microbiol 2017; 103:1020-1033. [PMID: 27997707 DOI: 10.1111/mmi.13607] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2016] [Indexed: 01/22/2023]
Abstract
Bacterial survival strategies involve phenotypic diversity which is generated by regulatory factors and noisy expression of effector proteins. The question of how bacteria exploit regulatory RNAs to make decisions between phenotypes is central to a general understanding of these universal regulators. We investigated the TisB/IstR-1 toxin-antitoxin system of Escherichia coli to appreciate the role of the RNA antitoxin IstR-1 in TisB-dependent depolarization of the inner membrane and persister formation. Persisters are phenotypic variants that have become transiently drug-tolerant by arresting growth. The RNA antitoxin IstR-1 sets a threshold for TisB-dependent depolarization under DNA-damaging conditions, resulting in two sub-populations: polarized and depolarized cells. Furthermore, our data indicate that an inhibitory 5' UTR structure in the tisB mRNA serves as a regulatory RNA element that delays TisB translation to avoid inappropriate depolarization when DNA damage is low. Investigation of the persister sub-population further revealed that both regulatory RNA elements affect persister levels as well as persistence time. This work provides an intriguing example of how bacteria exploit regulatory RNAs to control phenotypic heterogeneity.
Collapse
Affiliation(s)
- Bork A Berghoff
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, 75124, Sweden
| | - Mirthe Hoekzema
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, 75124, Sweden
| | - Lena Aulbach
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, 75124, Sweden
| | - E Gerhart H Wagner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, 75124, Sweden
| |
Collapse
|
80
|
Coray DS, Wheeler NE, Heinemann JA, Gardner PP. Why so narrow: Distribution of anti-sense regulated, type I toxin-antitoxin systems compared with type II and type III systems. RNA Biol 2017; 14:275-280. [PMID: 28067598 PMCID: PMC5367252 DOI: 10.1080/15476286.2016.1272747] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Toxin-antitoxin (TA) systems are gene modules that appear to be horizontally mobile across a wide range of prokaryotes. It has been proposed that type I TA systems, with an antisense RNA-antitoxin, are less mobile than other TAs that rely on direct toxin-antitoxin binding but no direct comparisons have been made. We searched for type I, II and III toxin families using iterative searches with profile hidden Markov models across phyla and replicons. The distribution of type I toxin families were comparatively narrow, but these patterns weakened with recently discovered families. We discuss how the function and phenotypes of TA systems as well as biases in our search methods may account for differences in their distribution.
Collapse
Affiliation(s)
- Dorien S Coray
- a School of Biological Sciences, University of Canterbury, Canterbury , Christchurch , New Zealand
| | - Nicole E Wheeler
- a School of Biological Sciences, University of Canterbury, Canterbury , Christchurch , New Zealand
| | - Jack A Heinemann
- a School of Biological Sciences, University of Canterbury, Canterbury , Christchurch , New Zealand.,b Centre for Integrative Ecology, University of Canterbury, Canterbury , Christchurch , New Zealand
| | - Paul P Gardner
- a School of Biological Sciences, University of Canterbury, Canterbury , Christchurch , New Zealand.,c Biomolecular Interaction Centre, University of Canterbury, Canterbury , Christchurch , New Zealand
| |
Collapse
|
81
|
Kristiansen KI, Weel-Sneve R, Booth JA, Bjørås M. Mutually exclusive RNA secondary structures regulate translation initiation of DinQ in Escherichia coli. RNA (NEW YORK, N.Y.) 2016; 22:1739-1749. [PMID: 27651528 PMCID: PMC5066626 DOI: 10.1261/rna.058461.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/13/2016] [Indexed: 05/16/2023]
Abstract
Protein translation can be affected by changes in the secondary structure of mRNA. The dinQ gene in Escherichia coli encodes a primary transcript (+1) that is inert to translation. Ribonucleolytic removal of the 44 first nucleotides converts the +1 transcript into a translationally active form, but the mechanism behind this structural change is unknown. Here we present experimental evidence for a mechanism where alternative RNA secondary structures in the two dinQ mRNA variants affect translation initiation by mediating opening or closing of the ribosome binding sequence. This structural switch is determined by alternative interactions of four sequence elements within the dinQ mRNA and also by the agrB antisense RNA. Additionally, the structural conformation of +1 dinQ suggests a locking mechanism comprised of an RNA stem that both stabilizes and prevents translation initiation from the full-length dinQ transcript. BLAST search and multiple sequence alignments define a new family of dinQ-like genes widespread in Enterobacteriaceae with close RNA sequence similarities in their 5' untranslated regions. Thus, it appears that a whole new family of genes is regulated by the same mechanism of alternative secondary RNA structures.
Collapse
Affiliation(s)
- Knut I Kristiansen
- Department of Microbiology, University of Oslo and Oslo University Hospital, Rikshospitalet, N-0424 Oslo, Norway
| | - Ragnhild Weel-Sneve
- Department of Microbiology, University of Oslo and Oslo University Hospital, Rikshospitalet, N-0424 Oslo, Norway
| | - James A Booth
- Department of Microbiology, University of Oslo and Oslo University Hospital, Rikshospitalet, N-0424 Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, University of Oslo and Oslo University Hospital, Rikshospitalet, N-0424 Oslo, Norway
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
82
|
Fontaine F, Gasiorowski E, Gracia C, Ballouche M, Caillet J, Marchais A, Hajnsdorf E. The small RNA SraG participates in PNPase homeostasis. RNA (NEW YORK, N.Y.) 2016; 22:1560-1573. [PMID: 27495318 PMCID: PMC5029454 DOI: 10.1261/rna.055236.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
The rpsO-pnp operon encodes ribosomal protein S15 and polynucleotide phosphorylase, a major 3'-5' exoribonuclease involved in mRNA decay in Escherichia coli The gene for the SraG small RNA is located between the coding regions of the rpsO and pnp genes, and it is transcribed in the opposite direction relative to the two genes. No function has been assigned to SraG. Multiple levels of post-transcriptional regulation have been demonstrated for the rpsO-pnp operon. Here we show that SraG is a new factor affecting pnp expression. SraG overexpression results in a reduction of pnp expression and a destabilization of pnp mRNA; in contrast, inhibition of SraG transcription results in a higher level of the pnp transcript. Furthermore, in vitro experiments indicate that SraG inhibits translation initiation of pnp Together, these observations demonstrate that SraG participates in the post-transcriptional control of pnp by a direct antisense interaction between SraG and PNPase RNAs. Our data reveal a new level of regulation in the expression of this major exoribonuclease.
Collapse
Affiliation(s)
- Fanette Fontaine
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Elise Gasiorowski
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Celine Gracia
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Mathieu Ballouche
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Joel Caillet
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Antonin Marchais
- Institut de Génétique et Microbiologie, CNRS/UMR 8621, Université Paris Sud, 91405 Orsay, France
| | - Eliane Hajnsdorf
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| |
Collapse
|
83
|
Mechanistic study of base-pairing small regulatory RNAs in bacteria. Methods 2016; 117:67-76. [PMID: 27693881 DOI: 10.1016/j.ymeth.2016.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/22/2016] [Indexed: 11/24/2022] Open
Abstract
In all three kingdoms of life, RNA is not only involved in the expression of genetic information, but also carries out extremely diverse cellular functions. This versatility is essentially due to the fact that RNA molecules can exploit the power of base pairing to allow them to fold into a wide variety of structures through which they can perform diverse roles, but also to selectively target and bind to other nucleic acids. This is true in particular for bacterial small regulatory RNAs that act by imperfect base-pairing with target mRNAs, and thereby control their expression through different mechanisms. Here we outline an overview of in vivo and in vitro approaches that are currently used to gain mechanistic insights into how these sRNAs control gene expression in bacteria.
Collapse
|
84
|
Sievers S, Lund A, Menendez-Gil P, Nielsen A, Storm Mollerup M, Lambert Nielsen S, Buch Larsson P, Borch-Jensen J, Johansson J, Kallipolitis BH. The multicopy sRNA LhrC controls expression of the oligopeptide-binding protein OppA in Listeria monocytogenes. RNA Biol 2016; 12:985-97. [PMID: 26176322 DOI: 10.1080/15476286.2015.1071011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Listeria monocytogenes is the causative agent of the foodborne disease listeriosis. During infection, L. monocytogenes produces an array of non-coding RNAs, including the multicopy sRNA LhrC. These five, nearly identical sRNAs are highly induced in response to cell envelope stress and target the virulence adhesin lapB at the post-transcriptional level. Here, we demonstrate that LhrC controls expression of additional genes encoding cell envelope-associated proteins with virulence function. Using transcriptomics and proteomics, we identified a set of genes affected by LhrC in response to cell envelope stress. Three targets were significantly down-regulated by LhrC at both the RNA and protein level: lmo2349, tcsA and oppA. All three genes encode membrane-associated proteins: A putative substrate binding protein of an amino acid ABC transporter (Lmo2349); the CD4+ T cell-stimulating antigen TcsA, and the oligopeptide binding protein OppA, of which the latter 2 are required for full virulence of L. monocytogenes. For OppA, we show that LhrC acts by direct base paring to the ribosome binding site of the oppA mRNA, leading to an impediment of its translation and a decreased mRNA level. The sRNA-mRNA interaction depends on 2 of 3 CU-rich regions in LhrC allowing binding of 2 oppA mRNAs to a single LhrC molecule. Finally, we found that LhrC contributes to infection in macrophage-like cells. These findings demonstrate a central role for LhrC in controlling the level of OppA and other virulence-associated cell envelope proteins in response to cell envelope stress.
Collapse
Affiliation(s)
- Susanne Sievers
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark.,b Institute for Microbiology; Ernst-Moritz-Arndt-University Greifswald ; Greifswald , Germany.,d These authors equally contributed to this work
| | - Anja Lund
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark.,d These authors equally contributed to this work
| | - Pilar Menendez-Gil
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Aaraby Nielsen
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Maria Storm Mollerup
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Stine Lambert Nielsen
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Pernille Buch Larsson
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Jonas Borch-Jensen
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Jörgen Johansson
- c Department of Molecular Biology ; Umeå University ; Umeå , Sweden
| | | |
Collapse
|
85
|
Garcia-Mazcorro JF, Barcenas-Walls JR. Thinking beside the box: Should we care about the non-coding strand of the 16S rRNA gene? FEMS Microbiol Lett 2016; 363:fnw171. [DOI: 10.1093/femsle/fnw171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 12/22/2022] Open
|
86
|
Fröhlich KS, Papenfort K. Interplay of regulatory RNAs and mobile genetic elements in enteric pathogens. Mol Microbiol 2016; 101:701-13. [DOI: 10.1111/mmi.13428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Kathrin S. Fröhlich
- Department of Biology I, Microbiology; Ludwig-Maximilians-University Munich; 82152 Martinsried Germany
| | - Kai Papenfort
- Department of Biology I, Microbiology; Ludwig-Maximilians-University Munich; 82152 Martinsried Germany
| |
Collapse
|
87
|
Meyer MM. The role of mRNA structure in bacterial translational regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27301829 DOI: 10.1002/wrna.1370] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 01/08/2023]
Abstract
The characteristics of bacterial messenger RNAs (mRNAs) that influence translation efficiency provide many convenient handles for regulation of gene expression, especially when coupled with the processes of transcription termination and mRNA degradation. An mRNA's structure, especially near the site of initiation, has profound consequences for how readily it is translated. This property allows bacterial gene expression to be altered by changes to mRNA structure induced by temperature, or interactions with a wide variety of cellular components including small molecules, other RNAs (such as sRNAs and tRNAs), and RNA-binding proteins. This review discusses the links between mRNA structure and translation efficiency, and how mRNA structure is manipulated by conditions and signals within the cell to regulate gene expression. The range of RNA regulators discussed follows a continuum from very complex tertiary structures such as riboswitch aptamers and ribosomal protein-binding sites to thermosensors and mRNA:sRNA interactions that involve only base-pairing interactions. Furthermore, the high degrees of diversity observed for both mRNA structures and the mechanisms by which inhibition of translation occur have significant consequences for understanding the evolution of bacterial translational regulation. WIREs RNA 2017, 8:e1370. doi: 10.1002/wrna.1370 For further resources related to this article, please visit the WIREs website.
Collapse
|
88
|
Abstract
Over the last decade, small (often noncoding) RNA molecules have been discovered as important regulators influencing myriad aspects of bacterial physiology and virulence. In particular, small RNAs (sRNAs) have been implicated in control of both primary and secondary metabolic pathways in many bacterial species. This chapter describes characteristics of the major classes of sRNA regulators, and highlights what is known regarding their mechanisms of action. Specific examples of sRNAs that regulate metabolism in gram-negative bacteria are discussed, with a focus on those that regulate gene expression by base pairing with mRNA targets to control their translation and stability.
Collapse
|
89
|
Brielle R, Pinel-Marie ML, Felden B. Linking bacterial type I toxins with their actions. Curr Opin Microbiol 2016; 30:114-121. [PMID: 26874964 DOI: 10.1016/j.mib.2016.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 01/12/2023]
Abstract
Bacterial type I toxin-antitoxin systems consist of stable toxin-encoding mRNAs whose expression is counteracted by unstable RNA antitoxins. Accumulating evidence suggests that these players belong to broad regulatory networks influencing overall bacterial physiology. The majority of known transmembrane type I toxic peptides have conserved structural characteristics. However, recent studies demonstrated that their mechanisms of toxicity are diverse and complex. To better assess the current state of the art, type I toxins can be grouped into two classes according to their location and mechanisms of action: membrane-associated toxins acting by pore formation and/or by nucleoid condensation; and cytosolic toxins inducing nucleic acid cleavage. This classification will evolve as a result of future investigations.
Collapse
Affiliation(s)
- Régine Brielle
- Inserm U835-Upres EA2311, Pharmaceutical Biochemistry Lab, University of Rennes 1, 2 av. du Prof. Léon Bernard, 35000 Rennes, France
| | - Marie-Laure Pinel-Marie
- Inserm U835-Upres EA2311, Pharmaceutical Biochemistry Lab, University of Rennes 1, 2 av. du Prof. Léon Bernard, 35000 Rennes, France.
| | - Brice Felden
- Inserm U835-Upres EA2311, Pharmaceutical Biochemistry Lab, University of Rennes 1, 2 av. du Prof. Léon Bernard, 35000 Rennes, France.
| |
Collapse
|
90
|
Ellis MJ, Haniford DB. Riboregulation of bacterial and archaeal transposition. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:382-98. [DOI: 10.1002/wrna.1341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Michael J. Ellis
- Department of Biochemistry; University of Western Ontario; London Canada
| | - David B. Haniford
- Department of Biochemistry; University of Western Ontario; London Canada
| |
Collapse
|
91
|
Balbontín R, Villagra N, Pardos de la Gándara M, Mora G, Figueroa-Bossi N, Bossi L. Expression of IroN, the salmochelin siderophore receptor, requires mRNA activation by RyhB small RNA homologues. Mol Microbiol 2016; 100:139-55. [PMID: 26710935 DOI: 10.1111/mmi.13307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
The iroN gene of Salmonella enterica and uropathogenic Escherichia coli encodes the outer membrane receptor of Fe(3+) -bound salmochelin, a siderophore tailored to evade capture by the host's immune system. The iroN gene is under negative control of the Fur repressor and transcribed under iron limiting conditions. We show here that transcriptional de-repression is not sufficient to allow iroN expression, as this also requires activation by either of two partially homologous small RNAs (sRNAs), RyhB1 and RyhB2. The two sRNAs target the same sequence segment approximately in the middle of the 94-nucleotide 5' untranslated region (UTR) of iroN mRNA. Several lines of evidence suggest that base pair interaction stimulates iroN mRNA translation. Activation does not result from the disruption of a secondary structure masking the ribosome binding site; rather it involves sequences at the 5' end of iroN 5' UTR. In vitro 'toeprint' assays revealed that this upstream site binds the 30S ribosomal subunit provided that RyhB1 is paired with the mRNA. Altogether, our data suggest that RyhB1, and to lesser extent RyhB2, activate iroN mRNA translation by promoting entry of the ribosome at an upstream 'standby' site. These findings add yet an additional nuance to the polychromatic landscape of sRNA-mediated regulation.
Collapse
Affiliation(s)
- Roberto Balbontín
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Nicolás Villagra
- Laboratorio de Patogénesis Molecular y Antimicrobianos, Facultad de Medicina, Universidad Andres Bello, Echaurren 183, Santiago, Chile
| | - Maria Pardos de la Gándara
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Guido Mora
- Laboratorio de Patogénesis Molecular y Antimicrobianos, Facultad de Medicina, Universidad Andres Bello, Echaurren 183, Santiago, Chile
| | - Nara Figueroa-Bossi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Lionello Bossi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
92
|
Chang H, Replogle JM, Vather N, Tsao-Wu M, Mistry R, Liu JM. A cis-regulatory antisense RNA represses translation in Vibrio cholerae through extensive complementarity and proximity to the target locus. RNA Biol 2015; 12:136-48. [PMID: 25826566 PMCID: PMC4615234 DOI: 10.1080/15476286.2015.1017203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
As with all facultative pathogens, Vibrio cholerae must optimize its cellular processes to adapt to different environments with varying carbon sources and to environmental stresses. More specifically, in order to metabolize mannitol, V. cholerae must regulate the synthesis of MtlA, a mannitol transporter protein produced exclusively in the presence of mannitol. We previously showed that a cis-acting small RNA (sRNA) expressed by V. cholerae, MtlS, appears to post-transcriptionally downregulate the expression of mtlA and is produced in the absence of mannitol. We hypothesized that since it is complementary to the 5′ untranslated region (UTR) of mtlA mRNA, MtlS may affect synthesis of MtlA by forming an mtlA-MtlS complex that blocks translation of the mRNA through occlusion of its ribosome binding site. To test this hypothesis, we used in vitro translation assays in order to examine the role MtlS plays in mtlA regulation and found that MtlS is sufficient to suppress translation of transcripts harboring the 5′ UTR of mtlA. However, in a cellular context, the 5′ UTR of mtlA is not sufficient for targeted repression by endogenous MtlS; additional segments from the coding region of mtlA play a role in the ability of the sRNA to regulate translation of mtlA mRNA. Additionally, proximity of transcription sites between the sRNA and mRNA significantly affects the efficacy of MtlS.
Collapse
Affiliation(s)
- Howard Chang
- a Department of Chemistry; Pomona College ; Claremont , CA USA
| | | | | | | | | | | |
Collapse
|
93
|
Wessner F, Lacoux C, Goeders N, Fouquier d'Hérouel A, Matos R, Serror P, Van Melderen L, Repoila F. Regulatory crosstalk between type I and type II toxin-antitoxin systems in the human pathogen Enterococcus faecalis. RNA Biol 2015; 12:1099-108. [PMID: 26305399 DOI: 10.1080/15476286.2015.1084465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We discovered a chromosomal locus containing 2 toxin-antitoxin modules (TAs) with an antisense transcriptional organization in the E. faecalis clinical isolate V583. These TAs are homologous to the type I txpA-ratA system and the type II mazEF, respectively. We have shown that the putative MazF is toxic for E. coli and triggers RNA degradation, and its cognate antitoxin MazE counteracts toxicity. The second module, adjacent to mazEF, expresses a toxin predicted to belong to the TxpA type I family found in Firmicutes, and the antisense RNA antidote, RatA. Genomic analysis indicates that the cis-association of mazEF and txpA-ratA modules has been favored during evolution, suggesting a selective advantage for this TA organization in the E. faecalis species. We showed regulatory interplays between the 2 modules, involving transcription control and RNA stability. Remarkably, our data reveal that MazE and MazEF have a dual transcriptional activity: they act as autorepressors and activate ratA transcription, most likely in a direct manner. RatA controls txpA RNA levels through stability. Our data suggest a pivotal role of MazEF in the coordinated expression of mazEF and txpA-ratA modules in V583. To our knowledge, this is the first report describing a crosstalk between type I and II TAs.
Collapse
Affiliation(s)
- Françoise Wessner
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Caroline Lacoux
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Nathalie Goeders
- c Université Libre de Bruxelles, Faculté des Sciences, Institut de Biologie et Médecine Moléculaire ; Gosselies , Belgium
| | | | - Renata Matos
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Pascale Serror
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Laurence Van Melderen
- c Université Libre de Bruxelles, Faculté des Sciences, Institut de Biologie et Médecine Moléculaire ; Gosselies , Belgium
| | - Francis Repoila
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| |
Collapse
|
94
|
Small RNA Transcriptome of the Oral Microbiome during Periodontitis Progression. Appl Environ Microbiol 2015; 81:6688-99. [PMID: 26187962 DOI: 10.1128/aem.01782-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/12/2015] [Indexed: 02/06/2023] Open
Abstract
The oral microbiome is one of the most complex microbial communities in the human body, and due to circumstances not completely understood, the healthy microbial community becomes dysbiotic, giving rise to periodontitis, a polymicrobial inflammatory disease. We previously reported the results of community-wide gene expression changes in the oral microbiome during periodontitis progression and identified signatures associated with increasing severity of the disease. Small noncoding RNAs (sRNAs) are key players in posttranscriptional regulation, especially in fast-changing environments such as the oral cavity. Here, we expanded our analysis to the study of the sRNA metatranscriptome during periodontitis progression on the same samples for which mRNA expression changes were analyzed. We observed differential expression of 12,097 sRNAs, identifying a total of 20 Rfam sRNA families as being overrepresented in progression and 23 at baseline. Gene ontology activities regulated by the differentially expressed (DE) sRNAs included amino acid metabolism, ethanolamine catabolism, signal recognition particle-dependent cotranslational protein targeting to membrane, intron splicing, carbohydrate metabolism, control of plasmid copy number, and response to stress. In integrating patterns of expression of protein coding transcripts and sRNAs, we found that functional activities of genes that correlated positively with profiles of expression of DE sRNAs were involved in pathogenesis, proteolysis, ferrous iron transport, and oligopeptide transport. These findings represent the first integrated sequencing analysis of the community-wide sRNA transcriptome of the oral microbiome during periodontitis progression and show that sRNAs are key regulatory elements of the dysbiotic process leading to disease.
Collapse
|
95
|
Ellis MJ, Trussler RS, Haniford DB. A cis-encoded sRNA, Hfq and mRNA secondary structure act independently to suppress IS200 transposition. Nucleic Acids Res 2015; 43:6511-27. [PMID: 26044710 PMCID: PMC4513863 DOI: 10.1093/nar/gkv584] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022] Open
Abstract
IS200 is found throughout Enterobacteriaceae and transposes at a notoriously low frequency. In addition to the transposase protein (TnpA), IS200 encodes an uncharacterized Hfq-binding sRNA that is encoded opposite to the tnpA 5'UTR. In the current work we asked if this sRNA represses tnpA expression. We show here that the IS200 sRNA (named art200 for antisense regulator of transposase IS200) basepairs with tnpA to inhibit translation initiation. Unexpectedly, art200-tnpA pairing is limited to 40 bp, despite 90 nt of perfect complementarity. Additionally, we show that Hfq and RNA secondary structure in the tnpA 5'UTR each repress tnpA expression in an art200-independent manner. Finally, we show that disrupting translational control of tnpA expression leads to increased IS200 transposition in E. coli. The current work provides new mechanistic insight into why IS200 transposition is so strongly suppressed. The possibility of art200 acting in trans to regulate a yet-unidentified target is discussed as well as potential applications of the IS200 system for designing novel riboregulators.
Collapse
Affiliation(s)
- Michael J Ellis
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Ryan S Trussler
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - David B Haniford
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| |
Collapse
|
96
|
Brantl S, Jahn N. sRNAs in bacterial type I and type III toxin-antitoxin systems. FEMS Microbiol Rev 2015; 39:413-27. [PMID: 25808661 DOI: 10.1093/femsre/fuv003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 01/17/2023] Open
Abstract
Toxin-antitoxin (TA) loci consist of two genes: a stable toxin whose overexpression kills the cell or causes growth stasis and an unstable antitoxin that neutralizes the toxin action. Currently, five TA systems are known. Here, we review type I and type III systems in which the antitoxins are regulatory RNAs. Type I antitoxins act by a base-pairing mechanism on toxin mRNAs. By contrast, type III antitoxins are RNA pseudoknots that bind their cognate toxins directly in an RNA-protein interaction. Whereas for a number of plasmid-encoded systems detailed information on structural requirements, kinetics of interaction with their targets and regulatory mechanisms employed by the antitoxin RNAs is available, the investigation of chromosomal systems is still in its infancy. Here, we summarize our current knowledge on that topic. Furthermore, we compare factors and conditions that induce antitoxins or toxins and different mechanisms of toxin action. Finally, we discuss biological roles for chromosome-encoded TA systems.
Collapse
Affiliation(s)
- Sabine Brantl
- AG Bakteriengenetik, Lehrstuhl für Genetik, Friedrich-Schiller-Universität Jena, Philosophenweg 12, D-07743 Jena, Germany
| | - Natalie Jahn
- AG Bakteriengenetik, Lehrstuhl für Genetik, Friedrich-Schiller-Universität Jena, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
97
|
Duval M, Simonetti A, Caldelari I, Marzi S. Multiple ways to regulate translation initiation in bacteria: Mechanisms, regulatory circuits, dynamics. Biochimie 2015; 114:18-29. [PMID: 25792421 DOI: 10.1016/j.biochi.2015.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/08/2015] [Indexed: 11/15/2022]
Abstract
To adapt their metabolism rapidly and constantly in response to environmental variations, bacteria often target the translation initiation process, during which the ribosome assembles on the mRNA. Here, we review different mechanisms of regulation mediated by cis-acting elements, sRNAs and proteins, showing, when possible, their intimate connection with the translational apparatus. Indeed the ribosome itself could play a direct role in several regulatory mechanisms. Different features of the regulatory signals (sequences, structures and their positions on the mRNA) are contributing to the large variety of regulatory mechanisms. Ribosome heterogeneity, variation of individual cells responses and the spatial and temporal organization of the translation process add more layers of complexity. This hampers to define manageable set of rules for bacterial translation initiation control.
Collapse
Affiliation(s)
- Mélodie Duval
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Angelita Simonetti
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| |
Collapse
|
98
|
A cluster of four homologous small RNAs modulates C1 metabolism and the pyruvate dehydrogenase complex in Rhodobacter sphaeroides under various stress conditions. J Bacteriol 2015; 197:1839-52. [PMID: 25777678 DOI: 10.1128/jb.02475-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/09/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In bacteria, regulatory RNAs play an important role in the regulation and balancing of many cellular processes and stress responses. Among these regulatory RNAs, trans-encoded small RNAs (sRNAs) are of particular interest since one sRNA can lead to the regulation of multiple target mRNAs. In the purple bacterium Rhodobacter sphaeroides, several sRNAs are induced by oxidative stress. In this study, we focused on the functional characterization of four homologous sRNAs that are cotranscribed with the gene for the conserved hypothetical protein RSP_6037, a genetic arrangement described for only a few sRNAs until now. Each of the four sRNAs is characterized by two stem-loops that carry CCUCCUCCC motifs in their loops. They are induced under oxidative stress, as well as by various other stress conditions, and were therefore renamed here sRNAs CcsR1 to CcsR4 (CcsR1-4) for conserved CCUCCUCCC motif stress-induced RNAs 1 to 4. Increased CcsR1-4 expression decreases the expression of genes involved in C1 metabolism or encoding components of the pyruvate dehydrogenase complex either directly by binding to their target mRNAs or indirectly. One of the CcsR1-4 target mRNAs encodes the transcriptional regulator FlhR, an activator of glutathione-dependent methanol/formaldehyde metabolism. Downregulation of this glutathione-dependent pathway increases the pool of glutathione, which helps to counteract oxidative stress. The FlhR-dependent downregulation of the pyruvate dehydrogenase complex reduces a primary target of reactive oxygen species and reduces aerobic electron transport, a main source of reactive oxygen species. Our findings reveal a previously unknown strategy used by bacteria to counteract oxidative stress. IMPORTANCE Phototrophic organisms have to cope with photo-oxidative stress due to the function of chlorophylls as photosensitizers for the formation of singlet oxygen. Our study assigns an important role in photo-oxidative stress resistance to a cluster of four homologous sRNAs in the anoxygenic phototrophic bacterium Rhodobacter sphaeroides. We reveal a function of these regulatory RNAs in the fine-tuning of C1 metabolism. A model that relates oxidative stress defense to C1 metabolism is presented.
Collapse
|
99
|
Małecka EM, Stróżecka J, Sobańska D, Olejniczak M. Structure of bacterial regulatory RNAs determines their performance in competition for the chaperone protein Hfq. Biochemistry 2015; 54:1157-70. [PMID: 25582129 DOI: 10.1021/bi500741d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial regulatory RNAs require the chaperone protein Hfq to enable their pairing to mRNAs. Recent data showed that there is a hierarchy among sRNAs in the competition for access to Hfq, which could be important for the tuning of sRNA-dependent translation regulation. Here, seven structurally different sRNAs were compared using filter-based competition assays. Moreover, chimeric sRNA constructs were designed to identify structure elements important for competition performance. The data showed that besides the 3'-terminal oligouridine sequences also the 5'-terminal structure elements of sRNAs were essential for their competition performance. When the binding of sRNAs to Hfq mutants was compared, the data showed the important role of the proximal and rim sites of Hfq for the binding of six out of seven sRNAs. However, ChiX sRNA, which was the most efficient competitor, bound Hfq in a unique way using the opposite-distal and proximal-faces of this ring-shaped protein. The data indicated that the simultaneous binding to the opposite faces of Hfq was enabled by separate adenosine-rich and uridine-rich sequences in the long, single-stranded region of ChiX. Overall, the results suggest that the individual structural composition of sRNAs serves to tune their performance to different levels resulting in a hierarchy of sRNAs in the competition for access to the Hfq protein.
Collapse
Affiliation(s)
- Ewelina M Małecka
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań , Umultowska 89, 61-614 Poznań, Poland
| | | | | | | |
Collapse
|
100
|
|