51
|
Bai M, Zhao X, Sahara K, Ohte Y, Hirano Y, Kaneko T, Yashiroda H, Murata S. In-depth Analysis of the Lid Subunits Assembly Mechanism in Mammals. Biomolecules 2019; 9:biom9060213. [PMID: 31159305 PMCID: PMC6627463 DOI: 10.3390/biom9060213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 01/16/2023] Open
Abstract
The 26S proteasome is a key player in the degradation of ubiquitinated proteins, comprising a 20S core particle (CP) and a 19S regulatory particle (RP). The RP is further divided into base and lid subcomplexes, which are assembled independently from each other. We have previously demonstrated the assembly pathway of the CP and the base by observing assembly intermediates resulting from knockdowns of each proteasome subunit and the assembly chaperones. In this study, we examine the assembly pathway of the mammalian lid, which remains to be elucidated. We show that the lid assembly pathway is conserved between humans and yeast. The final step is the incorporation of Rpn12 into the assembly intermediate consisting of two modular complexes, Rpn3-7-15 and Rpn5-6-8-9-11, in both humans and yeast. Furthermore, we dissect the assembly pathways of the two modular complexes by the knockdown of each lid subunit.
Collapse
Affiliation(s)
- Minghui Bai
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Xian Zhao
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kazutaka Sahara
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yuki Ohte
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yuko Hirano
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Takeumi Kaneko
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hideki Yashiroda
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
52
|
Wendler P, Enenkel C. Nuclear Transport of Yeast Proteasomes. Front Mol Biosci 2019; 6:34. [PMID: 31157235 PMCID: PMC6532418 DOI: 10.3389/fmolb.2019.00034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/26/2019] [Indexed: 11/13/2022] Open
Abstract
Proteasomes are key proteases in regulating protein homeostasis. Their holo-enzymes are composed of 40 different subunits which are arranged in a proteolytic core (CP) flanked by one to two regulatory particles (RP). Proteasomal proteolysis is essential for the degradation of proteins which control time-sensitive processes like cell cycle progression and stress response. In dividing yeast and human cells, proteasomes are primarily nuclear suggesting that proteasomal proteolysis is mainly required in the nucleus during cell proliferation. In yeast, which have a closed mitosis, proteasomes are imported into the nucleus as immature precursors via the classical import pathway. During quiescence, the reversible absence of proliferation induced by nutrient depletion or growth factor deprivation, proteasomes move from the nucleus into the cytoplasm. In the cytoplasm of quiescent yeast, proteasomes are dissociated into CP and RP and stored in membrane-less cytoplasmic foci, named proteasome storage granules (PSGs). With the resumption of growth, PSGs clear and mature proteasomes are transported into the nucleus by Blm10, a conserved 240 kDa protein and proteasome-intrinsic import receptor. How proteasomes are exported from the nucleus into the cytoplasm is unknown.
Collapse
Affiliation(s)
- Petra Wendler
- Institut für Biochemie und Biologie, Universität Potsdam, Potsdam, Germany
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
53
|
Satoh T, Yagi-Utsumi M, Okamoto K, Kurimoto E, Tanaka K, Kato K. Molecular and Structural Basis of the Proteasome α Subunit Assembly Mechanism Mediated by the Proteasome-Assembling Chaperone PAC3-PAC4 Heterodimer. Int J Mol Sci 2019; 20:ijms20092231. [PMID: 31067643 PMCID: PMC6539346 DOI: 10.3390/ijms20092231] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/26/2019] [Accepted: 05/03/2019] [Indexed: 01/07/2023] Open
Abstract
The 26S proteasome is critical for the selective degradation of proteins in eukaryotic cells. This enzyme complex is composed of approximately 70 subunits, including the structurally homologous proteins α1–α7, which combine to form heptameric rings. The correct arrangement of these α subunits is essential for the function of the proteasome, but their assembly does not occur autonomously. Assembly of the α subunit is assisted by several chaperones, including the PAC3-PAC4 heterodimer. In this study we showed that the PAC3-PAC4 heterodimer functions as a molecular matchmaker, stabilizing the α4-α5-α6 subcomplex during the assembly of the α-ring. We solved a 0.96-Å atomic resolution crystal structure for a PAC3 homodimer which, in conjunction with nuclear magnetic resonance (NMR) data, highlighted the mobility of the loop comprised of residues 51 to 61. Based on these structural and dynamic data, we created a three-dimensional model of the PAC3-4/α4/α5/α6 quintet complex, and used this model to investigate the molecular and structural basis of the mechanism of proteasome α subunit assembly, as mediated by the PAC3-PAC4 heterodimeric chaperone. Our results provide a potential basis for the development of selective inhibitors against proteasome biogenesis.
Collapse
Affiliation(s)
- Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Maho Yagi-Utsumi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Kenta Okamoto
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Eiji Kurimoto
- Faculty of Pharmacy, Meijo University, Tempaku-ku, Nagoya 468-8503, Japan.
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
54
|
Novel proteasome assembly chaperone mutations in PSMG2/PAC2 cause the autoinflammatory interferonopathy CANDLE/PRAAS4. J Allergy Clin Immunol 2019; 143:1939-1943.e8. [PMID: 30664889 DOI: 10.1016/j.jaci.2018.12.1012] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/24/2022]
|
55
|
Abstract
Proteasomes are a class of protease that carry out the degradation of a specific set of cellular proteins. While essential for eukaryotic life, proteasomes are found only in a small subset of bacterial species. In this chapter, we present the current knowledge of bacterial proteasomes, detailing the structural features and catalytic activities required to achieve proteasomal proteolysis. We describe the known mechanisms by which substrates are doomed for degradation, and highlight potential non-degradative roles for components of bacterial proteasome systems. Additionally, we highlight several pathways of microbial physiology that rely on proteasome activity. Lastly, we explain the various gaps in our understanding of bacterial proteasome function and emphasize several opportunities for further study.
Collapse
Affiliation(s)
- Samuel H Becker
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, Room 312, New York, NY, 10016, USA
| | - Huilin Li
- Van Andel Research Institute, Cryo-EM Structural Biology Laboratory, 333 Bostwick Ave, NE, Grand Rapids, MI, 4950, USA
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, Room 312, New York, NY, 10016, USA.
| |
Collapse
|
56
|
Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature 2018; 561:268-272. [PMID: 30158700 PMCID: PMC6372068 DOI: 10.1038/s41586-018-0462-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
The folding of newly synthesized proteins to the native state is a major
challenge within the crowded cellular environment, as non-productive
interactions can lead to misfolding, aggregation and degradation1. Cells cope with this challenge by
coupling synthesis with polypeptide folding and by using molecular chaperones to
safeguard folding cotranslationally2.
However, although most of the cellular proteome forms oligomeric assemblies3, little is known about the final step of
folding: the assembly of polypeptides into complexes. In prokaryotes, a
proof-of-concept study showed that the assembly of heterodimeric luciferase is
an organized cotranslational process that is facilitated by spatially confined
translation of the subunits encoded on a polycistronic mRNA4. In eukaryotes, however, fundamental
differences—such as the rarity of polycistronic mRNAs and different
chaperone constellations—raise the question of whether assembly is also
coordinated with translation. Here we provide a systematic and mechanistic
analysis of the assembly of protein complexes in eukaryotes using ribosome
profiling. We determined the in vivo interactions of the
nascent subunits from twelve hetero-oligomeric protein complexes of
Saccharomyces cerevisiae at near-residue resolution. We
find nine complexes assemble cotranslationally; the three complexes that do not
show cotranslational interactions are regulated by dedicated assembly
chaperones5–7. Cotranslational assembly often occurs
uni-directionally, with one fully synthesized subunit engaging its nascent
partner subunit, thereby counteracting its propensity for aggregation. The onset
of cotranslational subunit association coincides directly with the full exposure
of the nascent interaction domain at the ribosomal tunnel exit. The
ribosome-associated Hsp70 chaperone Ssb8
is coordinated with assembly. Ssb transiently engages partially synthesized
interaction domains and then dissociates before the onset of partner subunit
association, presumably to prevent premature assembly interactions. Our study
shows that cotranslational subunit association is a prevalent mechanism for the
assembly of hetero-oligomers in yeast and indicates that translation, folding
and assembly of protein complexes are integrated processes in eukaryotes.
Collapse
|
57
|
Wu W, Sahara K, Hirayama S, Zhao X, Watanabe A, Hamazaki J, Yashiroda H, Murata S. PAC1-PAC2 proteasome assembly chaperone retains the core α4-α7 assembly intermediates in the cytoplasm. Genes Cells 2018; 23:839-848. [PMID: 30133132 DOI: 10.1111/gtc.12631] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 01/10/2023]
Abstract
The proteasome core particle (CP) is a cytoplasmic and nuclear protease complex and is comprised of two α-rings and two β-rings stacked in order of αββα. The assembly of CP proceeds by ordered recruitment of β-subunits on an α-ring with help of assembly chaperones PAC1-PAC2, PAC3-PAC4, and UMP1. However, the mechanism of α-ring formation remains unsolved. Here, we show that α4, α5, α6, and α7 form a core intermediate as the initial process of α-ring assembly, which requires PAC3-PAC4. α1 and α3 can be incorporated independently into the core α4-α7 intermediate, whereas α2 incorporation is dependent on preceding incorporation of α1. Through these processes, PAC1-PAC2 prevents nonproductive dimerization of α-ring assembly intermediates. We also found that PAC1-PAC2 overrides the effect of nuclear localization signals of α-subunits and retains α-ring assembly intermediates in the cytoplasm. Our results first show a detailed assembly pathway of proteasomal α-ring and explain the mechanism by which CP assembly occurs in the cytoplasm.
Collapse
Affiliation(s)
- Wei Wu
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Sahara
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Xian Zhao
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ayaka Watanabe
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideki Yashiroda
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
58
|
Mishra R, Upadhyay A, Prajapati VK, Mishra A. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Med Res Rev 2018; 38:1916-1973. [DOI: 10.1002/med.21502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Vijay Kumar Prajapati
- Department of Biochemistry; School of Life Sciences; Central University of Rajasthan; Rajasthan India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| |
Collapse
|
59
|
Structural insights on the dynamics of proteasome formation. Biophys Rev 2017; 10:597-604. [PMID: 29243089 DOI: 10.1007/s12551-017-0381-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
Abstract
Molecular organization in biological systems comprises elaborately programmed processes involving metastable complex formation of biomolecules. This is exemplified by the formation of the proteasome, which is one of the largest and most complicated biological supramolecular complexes. This biomolecular machinery comprises approximately 70 subunits, including structurally homologous, but functionally distinct, ones, thereby exerting versatile proteolytic functions. In eukaryotes, proteasome formation is non-autonomous and is assisted by assembly chaperones, which transiently associate with assembly intermediates, operating as molecular matchmakers and checkpoints for the correct assembly of proteasome subunits. Accumulated data also suggest that eukaryotic proteasome formation involves scrap-and-build mechanisms. However, unlike the eukaryotic proteasome subunits, the archaeal subunits show little structural divergence and spontaneously assemble into functional machinery. Nevertheless, the archaeal genomes encode homologs of eukaryotic proteasome assembly chaperones. Recent structural and functional studies of these proteins have advanced our understanding of the evolution of molecular mechanisms involved in proteasome biogenesis. This knowledge, in turn, provides a guiding principle in designing molecular machineries using protein engineering approaches and de novo synthesis of artificial molecular systems.
Collapse
|
60
|
Rippin M, Becker B, Holzinger A. Enhanced Desiccation Tolerance in Mature Cultures of the Streptophytic Green Alga Zygnema circumcarinatum Revealed by Transcriptomics. PLANT & CELL PHYSIOLOGY 2017; 58:2067-2084. [PMID: 29036673 PMCID: PMC5722205 DOI: 10.1093/pcp/pcx136] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
Desiccation tolerance is commonly regarded as one of the key features for the colonization of terrestrial habitats by green algae and the evolution of land plants. Extensive studies, focused mostly on physiology, have been carried out assessing the desiccation tolerance and resilience of the streptophytic genera Klebsormidium and Zygnema. Here we present transcriptomic analyses of Zygnema circumcarinatum exposed to desiccation stress. Cultures of Z. circumcarinatum grown in liquid medium or on agar plates were desiccated at ∼86% relative air humidity until the effective quantum yield of PSII [Y(II)] ceased. In general, the response to dehydration was much more pronounced in Z. circumcarinatum cultured in liquid medium for 1 month compared with filaments grown on agar plates for 7 and 12 months. Culture on solid medium enables the alga to acclimate to dehydration much better and an increase in desiccation tolerance was clearly correlated to increased culture age. Moreover, gene expression analysis revealed that photosynthesis was strongly repressed upon desiccation treatment in the liquid culture while only minor effects were detected in filaments cultured on agar plates for 7 months. Otherwise, both samples showed induction of stress protection mechanisms such as reactive oxygen species scavenging (early light-induced proteins, glutathione metabolism) and DNA repair as well as the expression of chaperones and aquaporins. Additionally, Z. circumcarinatum cultured in liquid medium upregulated sucrose-synthesizing enzymes and strongly induced membrane modifications in response to desiccation stress. These results corroborate the previously described hardening and associated desiccation tolerance in Zygnema in response to seasonal fluctuations in water availability.
Collapse
Affiliation(s)
- Martin Rippin
- University of Cologne, Cologne Biocentre, Botanical Institute, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Burkhard Becker
- University of Cologne, Cologne Biocentre, Botanical Institute, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Functional Plant Biology, Sternwartestrasse 15, 6020 Innsbruck, Austria
| |
Collapse
|
61
|
Coyne LP, Chen XJ. mPOS is a novel mitochondrial trigger of cell death - implications for neurodegeneration. FEBS Lett 2017; 592:759-775. [PMID: 29090463 DOI: 10.1002/1873-3468.12894] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/14/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022]
Abstract
In addition to its central role in energy metabolism, the mitochondrion has many other functions essential for cell survival. When stressed, the multifunctional mitochondria are expected to engender multifaceted cell stress with complex physiological consequences. Potential extra-mitochondrial proteostatic burdens imposed by inefficient protein import have been largely overlooked. Accumulating evidence suggests that a diverse range of pathogenic mitochondrial stressors, which do not directly target the core protein import machinery, can reduce cell fitness by disrupting the proteostatic network in the cytosol. The resulting stress, named mitochondrial precursor overaccumulation stress (mPOS), is characterized by the toxic accumulation of unimported mitochondrial proteins in the cytosol. Here, we review our current understanding of how mitochondrial dysfunction can impact the cytosolic proteome and proteostatic signaling. We also discuss the intriguing possibility that the mPOS model may help untangle the cause-effect relationship between mitochondrial dysfunction and cytosolic protein aggregation, which are probably the two most prominent molecular hallmarks of neurodegenerative disease.
Collapse
Affiliation(s)
- Liam P Coyne
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, USA.,Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
62
|
Affiliation(s)
- Esther Pilla
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Kim Schneider
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
63
|
Budenholzer L, Cheng CL, Li Y, Hochstrasser M. Proteasome Structure and Assembly. J Mol Biol 2017; 429:3500-3524. [PMID: 28583440 DOI: 10.1016/j.jmb.2017.05.027] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
The eukaryotic 26S proteasome is a large multisubunit complex that degrades the majority of proteins in the cell under normal conditions. The 26S proteasome can be divided into two subcomplexes: the 19S regulatory particle and the 20S core particle. Most substrates are first covalently modified by ubiquitin, which then directs them to the proteasome. The function of the regulatory particle is to recognize, unfold, deubiquitylate, and translocate substrates into the core particle, which contains the proteolytic sites of the proteasome. Given the abundance and subunit complexity of the proteasome, the assembly of this ~2.5MDa complex must be carefully orchestrated to ensure its correct formation. In recent years, significant progress has been made in the understanding of proteasome assembly, structure, and function. Technical advances in cryo-electron microscopy have resulted in a series of atomic cryo-electron microscopy structures of both human and yeast 26S proteasomes. These structures have illuminated new intricacies and dynamics of the proteasome. In this review, we focus on the mechanisms of proteasome assembly, particularly in light of recent structural information.
Collapse
Affiliation(s)
- Lauren Budenholzer
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Chin Leng Cheng
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Yanjie Li
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
64
|
Kurimoto E, Satoh T, Ito Y, Ishihara E, Okamoto K, Yagi‐Utsumi M, Tanaka K, Kato K. Crystal structure of human proteasome assembly chaperone PAC4 involved in proteasome formation. Protein Sci 2017; 26:1080-1085. [PMID: 28263418 PMCID: PMC5405420 DOI: 10.1002/pro.3153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 01/12/2023]
Abstract
The 26S proteasome is a large protein complex, responsible for degradation of ubiquinated proteins in eukaryotic cells. Eukaryotic proteasome formation is a highly ordered process that is assisted by several assembly chaperones. The assembly of its catalytic 20S core particle depends on at least five proteasome-specific chaperones, i.e., proteasome-assembling chaperons 1-4 (PAC1-4) and proteasome maturation protein (POMP). The orthologues of yeast assembly chaperones have been structurally characterized, whereas most mammalian assembly chaperones are not. In the present study, we determined a crystal structure of human PAC4 at 1.90-Å resolution. Our crystallographic data identify a hydrophobic surface that is surrounded by charged residues. The hydrophobic surface is complementary to that of its binding partner, PAC3. The surface also exhibits charge complementarity with the proteasomal α4-5 subunits. This will provide insights into human proteasome-assembling chaperones as potential anticancer drug targets.
Collapse
Affiliation(s)
- Eiji Kurimoto
- Faculty of PharmacyMeijo UniversityTempaku‐kuNagoya468‐8503Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical SciencesNagoya City UniversityMizuho‐kuNagoya467‐8603Japan
- JST, PRESTOMizuho‐kuNagoya467‐8603Japan
| | - Yuri Ito
- Faculty of PharmacyMeijo UniversityTempaku‐kuNagoya468‐8503Japan
| | - Eri Ishihara
- Faculty of PharmacyMeijo UniversityTempaku‐kuNagoya468‐8503Japan
| | - Kenta Okamoto
- Graduate School of Pharmaceutical SciencesNagoya City UniversityMizuho‐kuNagoya467‐8603Japan
- Present address: The laboratory of Molecular Biophysics, Department of Cell and Molecular BiologyUppsala UniversityHusargatan 3Uppsala75123Sweden
| | - Maho Yagi‐Utsumi
- Graduate School of Pharmaceutical SciencesNagoya City UniversityMizuho‐kuNagoya467‐8603Japan
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural SciencesMyodaijiOkazakiAichi444‐8787Japan
| | - Keiji Tanaka
- Laboratory of Protein MetabolismTokyo Metropolitan Institute of Medical ScienceSetagaya‐kuTokyo156‐8506Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical SciencesNagoya City UniversityMizuho‐kuNagoya467‐8603Japan
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural SciencesMyodaijiOkazakiAichi444‐8787Japan
| |
Collapse
|
65
|
Structural Analysis of Mycobacterium tuberculosis Homologues of the Eukaryotic Proteasome Assembly Chaperone 2 (PAC2). J Bacteriol 2017; 199:JB.00846-16. [PMID: 28193903 DOI: 10.1128/jb.00846-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
A previous bioinformatics analysis identified the Mycobacterium tuberculosis proteins Rv2125 and Rv2714 as orthologs of the eukaryotic proteasome assembly chaperone 2 (PAC2). We set out to investigate whether Rv2125 or Rv2714 can function in proteasome assembly. We solved the crystal structure of Rv2125 at a resolution of 3.0 Å, which showed an overall fold similar to that of the PAC2 family proteins that include the archaeal PbaB and the yeast Pba1. However, Rv2125 and Rv2714 formed trimers, whereas PbaB forms tetramers and Pba1 dimerizes with Pba2. We also found that purified Rv2125 and Rv2714 could not bind to M. tuberculosis 20S core particles. Finally, proteomic analysis showed that the levels of known proteasome components and substrate proteins were not affected by disruption of Rv2125 in M. tuberculosis Our work suggests that Rv2125 does not participate in bacterial proteasome assembly or function.IMPORTANCE Although many bacteria do not encode proteasomes, M. tuberculosis not only uses proteasomes but also has evolved a posttranslational modification system called pupylation to deliver proteins to the proteasome. Proteasomes are essential for M. tuberculosis to cause lethal infections in animals; thus, determining how proteasomes are assembled may help identify new ways to combat tuberculosis. We solved the structure of a predicted proteasome assembly factor, Rv2125, and isolated a genetic Rv2125 mutant of M. tuberculosis Our structural, biochemical, and genetic studies indicate that Rv2125 and Rv2714 do not function as proteasome assembly chaperones and are unlikely to have roles in proteasome biology in mycobacteria.
Collapse
|
66
|
Hammack LJ, Firestone K, Chang W, Kusmierczyk AR. Molecular chaperones of the Hsp70 family assist in the assembly of 20S proteasomes. Biochem Biophys Res Commun 2017; 486:438-443. [PMID: 28322792 DOI: 10.1016/j.bbrc.2017.03.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
The eukaryotic 26S proteasome is a large protease comprised of two major sub assemblies, the 20S proteasome, or core particle (CP), and the 19S regulatory particle (RP). Assembly of the CP and RP is assisted by an expanding list of dedicated assembly factors. For the CP, this includes Ump1 and the heterodimeric Pba1-Pba2 and Pba3-Pba4 proteins. It is not known how many additional proteins that assist in proteasome biogenesis remain to be discovered. Here, we demonstrate that two members of the Hsp70 family in yeast, Ssa1 and Ssa2, play a direct role in CP assembly. Ssa1 and Ssa2 interact genetically and physically with proteasomal components. Specifically, they associate tightly with known CP assembly intermediates, but not with fully assembled CP, through an extensive purification protocol. And, in yeast lacking both Ssa1 and Ssa2, specific defects in CP assembly are observed.
Collapse
Affiliation(s)
- Lindsay J Hammack
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - Kyle Firestone
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - William Chang
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - Andrew R Kusmierczyk
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
67
|
Zhang H, Zhang X, Huang J, Fan X. Identification of key genes and pathways for peri-implantitis through the analysis of gene expression data. Exp Ther Med 2017; 13:1832-1840. [PMID: 28565775 PMCID: PMC5443169 DOI: 10.3892/etm.2017.4176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/25/2016] [Indexed: 12/11/2022] Open
Abstract
The present study attempted to identify potential key genes and pathways of peri-implantitis, and to investigate the possible mechanisms associated with it. An array data of GSE57631 was downloaded, including six samples of peri-implantitis tissue and two samples of normal tissue from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in the peri-implantitis samples compared with normal ones were analyzed with the limma package. Moreover, Gene Ontology annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses for DEGs were performed by DAVID. A protein-protein interaction (PPI) network was established using Cytoscape software, and significant modules were analyzed using Molecular Complex Detection. A total of 819 DEGs (759 upregulated and 60 downregulated) were identified in the peri-implantitis samples compared with normal ones. Moreover, the PPI network was constructed with 413 nodes and 1,114 protein pairs. Heat shock protein HSP90AA1 (90 kDa α, member 1), a hub node with higher node degrees in module 4, was significantly enriched in antigen processing, in the presentation pathway and nucleotide-binding oligomerization domain (NOD)-like receptor-signaling pathway. In addition, nuclear factor-κ-B1 (NFKB1) was enriched in the NOD-like receptor-signaling pathway in KEGG pathway enrichment analysis for upregulated genes. The proteasome is the most significant pathway in module 1 with the highest P-value. Therefore, the results of the present study suggested that HSP90AA1 and NFKB1 may be potential key genes, and the NOD-like receptor signaling pathway and proteasome may be potential pathways associated with peri-implantitis development.
Collapse
Affiliation(s)
- Huang Zhang
- Department of Stomatology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiong Zhang
- Department of Stomatology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jie Huang
- Department of Stomatology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xusheng Fan
- Department of Stomatology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
68
|
Howell LA, Tomko RJ, Kusmierczyk AR. Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-017-1439-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
69
|
Marshall RS, Gemperline DC, Vierstra RD. Purification of 26S Proteasomes and Their Subcomplexes from Plants. Methods Mol Biol 2017; 1511:301-334. [PMID: 27730621 DOI: 10.1007/978-1-4939-6533-5_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The 26S proteasome is a highly dynamic, multisubunit, ATP-dependent protease that plays a central role in cellular housekeeping and many aspects of plant growth and development by degrading aberrant polypeptides and key cellular regulators that are first modified by ubiquitin. Although the 26S proteasome was originally enriched from plants over 30 years ago, only recently have significant advances been made in our ability to isolate and study the plant particle. Here, we describe two robust methods for purifying the 26S proteasome and its subcomplexes from Arabidopsis thaliana; one that involves conventional chromatography techniques to isolate the complex from wild-type plants, and another that employs the genetic replacement of individual subunits with epitope-tagged variants combined with affinity purification. In addition to these purification protocols, we describe methods commonly used to analyze the activity and composition of the complex.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, USA.,Department of Biology, Washington University in St Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA
| | - David C Gemperline
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, USA
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, USA. .,Department of Biology, Washington University in St Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA.
| |
Collapse
|
70
|
Thouvenot P, Fourrière L, Dardillac E, Ben Yamin B, Lescure A, Lejour V, Heiligenstein X, Boulé JB, Romao M, Raposo-Benedetti G, Lopez BS, Nicolas A, Millot GA. Yeast cells reveal the misfolding and the cellular mislocalization of the human BRCA1 protein. J Cell Sci 2016; 129:4366-4378. [PMID: 27802165 DOI: 10.1242/jcs.192880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/12/2016] [Indexed: 01/01/2023] Open
Abstract
Understanding the effect of an ever-growing number of human variants detected by genome sequencing is a medical challenge. The yeast Saccharomyces cerevisiae model has held attention for its capacity to monitor the functional impact of missense mutations found in human genes, including the BRCA1 breast and ovarian cancer susceptibility gene. When expressed in yeast, the wild-type full-length BRCA1 protein forms a single nuclear aggregate and induces a growth inhibition. Both events are modified by pathogenic mutations of BRCA1. However, the biological processes behind these events in yeast remain to be determined. Here, we show that the BRCA1 nuclear aggregation and the growth inhibition are sensitive to misfolding effects induced by missense mutations. Moreover, misfolding mutations impair the nuclear targeting of BRCA1 in yeast cells and in a human cell line. In conclusion, we establish a connection between misfolding and nuclear transport impairment, and we illustrate that yeast is a suitable model to decipher the effect of misfolding mutations.
Collapse
Affiliation(s)
- Pierre Thouvenot
- Institut Curie, PSL Research University, CNRS, UMR3244, 26 rue d'Ulm, Paris F-75005, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3244, Paris F-75005, France
| | - Lou Fourrière
- Institut Curie, PSL Research University, CNRS, UMR3244, 26 rue d'Ulm, Paris F-75005, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3244, Paris F-75005, France
| | - Elodie Dardillac
- CNRS UMR 8200, Institut de Cancerologie Gustave-Roussy, Université Paris-Saclay, 114 Rue Edouard Vaillant, Villejuif 94805, France
| | - Barbara Ben Yamin
- Institut Curie, PSL Research University, CNRS, UMR3244, 26 rue d'Ulm, Paris F-75005, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3244, Paris F-75005, France
| | - Aurianne Lescure
- Institut Curie, PSL Research University, CNRS, UMR3244, 26 rue d'Ulm, Paris F-75005, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3244, Paris F-75005, France
| | - Vincent Lejour
- Institut Curie, PSL Research University, CNRS, UMR3244, 26 rue d'Ulm, Paris F-75005, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3244, Paris F-75005, France
| | - Xavier Heiligenstein
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3244, Paris F-75005, France.,Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, Paris F-75005, France
| | - Jean-Baptiste Boulé
- Institut Curie, PSL Research University, CNRS, UMR3244, 26 rue d'Ulm, Paris F-75005, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3244, Paris F-75005, France
| | - Maryse Romao
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3244, Paris F-75005, France.,Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, Paris F-75005, France
| | - Graça Raposo-Benedetti
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3244, Paris F-75005, France.,Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, Paris F-75005, France
| | - Bernard S Lopez
- CNRS UMR 8200, Institut de Cancerologie Gustave-Roussy, Université Paris-Saclay, 114 Rue Edouard Vaillant, Villejuif 94805, France
| | - Alain Nicolas
- Institut Curie, PSL Research University, CNRS, UMR3244, 26 rue d'Ulm, Paris F-75005, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3244, Paris F-75005, France
| | - Gaël A Millot
- Institut Curie, PSL Research University, CNRS, UMR3244, 26 rue d'Ulm, Paris F-75005, France .,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3244, Paris F-75005, France
| |
Collapse
|
71
|
Yedidi RS, Fatehi AK, Enenkel C. Proteasome dynamics between proliferation and quiescence stages of Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol 2016; 51:497-512. [PMID: 27677933 DOI: 10.1080/10409238.2016.1230087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a critical role in cellular protein homeostasis and is required for the turnover of short-lived and unwanted proteins, which are targeted by poly-ubiquitination for degradation. Proteasome is the key protease of UPS and consists of multiple subunits, which are organized into a catalytic core particle (CP) and a regulatory particle (RP). In Saccharomyces cerevisiae, proteasome holo-enzymes are engaged in degrading poly-ubiquitinated substrates and are mostly localized in the nucleus during cell proliferation. While in quiescence, the RP and CP are sequestered into motile and reversible storage granules in the cytoplasm, called proteasome storage granules (PSGs). The reversible nature of PSGs allows the proteasomes to be transported back into the nucleus upon exit from quiescence. Nuclear import of RP and CP through nuclear pores occurs via the canonical pathway that includes the importin-αβ heterodimer and takes advantage of the Ran-GTP gradient across the nuclear membrane. Dependent on the growth stage, either inactive precursor complexes or mature holo-enzymes are imported into the nucleus. The present review discusses the dynamics of proteasomes including their assembly, nucleo-cytoplasmic transport during proliferation and the sequestration of proteasomes into PSGs during quiescence. [Formula: see text].
Collapse
Affiliation(s)
| | | | - Cordula Enenkel
- a Department of Biochemistry , University of Toronto , Toronto , Canada
| |
Collapse
|
72
|
Rousseau A, Bertolotti A. An evolutionarily conserved pathway controls proteasome homeostasis. Nature 2016; 536:184-9. [PMID: 27462806 PMCID: PMC4990136 DOI: 10.1038/nature18943] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/20/2016] [Indexed: 01/01/2023]
Abstract
The proteasome is essential for the selective degradation of most cellular proteins, but how cells maintain adequate amounts of proteasome is unclear. Here we show that there is an evolutionarily conserved signalling pathway controlling proteasome homeostasis. Central to this pathway is TORC1, the inhibition of which induced all known yeast 19S regulatory particle assembly-chaperones (RACs), as well as proteasome subunits. Downstream of TORC1 inhibition, the yeast mitogen-activated protein kinase, Mpk1, acts to increase the supply of RACs and proteasome subunits under challenging conditions in order to maintain proteasomal degradation and cell viability. This adaptive pathway was evolutionarily conserved, with mTOR and ERK5 controlling the levels of the four mammalian RACs and proteasome abundance. Thus, the central growth and stress controllers, TORC1 and Mpk1/ERK5, endow cells with a rapid and vital adaptive response to adjust proteasome abundance in response to the rising needs of cells. Enhancing this pathway may be a useful therapeutic approach for diseases resulting from impaired proteasomal degradation.
Collapse
|
73
|
Padmanabhan A, Vuong SAT, Hochstrasser M. Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells. Cell Rep 2016; 14:2962-74. [PMID: 26997268 DOI: 10.1016/j.celrep.2016.02.068] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/25/2016] [Accepted: 02/16/2016] [Indexed: 11/17/2022] Open
Abstract
Targeted intracellular protein degradation in eukaryotes is largely mediated by the proteasome. Here, we report the formation of an alternative proteasome isoform in human cells, previously found only in budding yeast, that bears an altered subunit arrangement in the outer ring of the proteasome core particle. These proteasomes result from incorporation of an additional α4 (PSMA7) subunit in the position normally occupied by α3 (PSMA4). Assembly of "α4-α4" proteasomes depends on the relative cellular levels of α4 and α3 and on the proteasome assembly chaperone PAC3. The oncogenic tyrosine kinases ABL and ARG and the tumor suppressor BRCA1 regulate cellular α4 levels and formation of α4-α4 proteasomes. Cells primed to assemble α4-α4 proteasomes exhibit enhanced resistance to toxic metal ions. Taken together, our results establish the existence of an alternative mammalian proteasome isoform and suggest a potential role in enabling cells to adapt to environmental stresses.
Collapse
Affiliation(s)
- Achuth Padmanabhan
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Simone Anh-Thu Vuong
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
74
|
Grigoreva TA, Tribulovich VG, Garabadzhiu AV, Melino G, Barlev NA. The 26S proteasome is a multifaceted target for anti-cancer therapies. Oncotarget 2015; 6:24733-49. [PMID: 26295307 PMCID: PMC4694792 DOI: 10.18632/oncotarget.4619] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/10/2015] [Indexed: 12/30/2022] Open
Abstract
Proteasomes play a critical role in the fate of proteins that are involved in major cellular processes, including signal transduction, gene expression, cell cycle, replication, differentiation, immune response, cellular response to stress, etc. In contrast to non-specific degradation by lysosomes, proteasomes are highly selective and destroy only the proteins that are covalently labelled with small proteins, called ubiquitins. Importantly, many diseases, including neurodegenerative diseases and cancers, are intimately connected to the activity of proteasomes making them an important pharmacological target. Currently, the vast majority of inhibitors are aimed at blunting the proteolytic activities of proteasomes. However, recent achievements in solving structures of proteasomes at very high resolution provided opportunities to design new classes of small molecules that target other physiologically-important enzymatic activities of proteasomes, including the de-ubiquitinating one. This review attempts to catalog the information available to date about novel classes of proteasome inhibitors that may have important pharmacological ramifications.
Collapse
Affiliation(s)
- Tatyana A Grigoreva
- St. Petersburg State Technological Institute (Technical University), St. Petersburng, Russia
| | | | | | - Gerry Melino
- St. Petersburg State Technological Institute (Technical University), St. Petersburng, Russia
- University of Rome Tor Vergata, Roma, Italy
| | | |
Collapse
|
75
|
Alpha-ring Independent Assembly of the 20S Proteasome. Sci Rep 2015; 5:13130. [PMID: 26286114 PMCID: PMC4541365 DOI: 10.1038/srep13130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/20/2015] [Indexed: 12/17/2022] Open
Abstract
Archaeal proteasomes share many features with their eukaryotic counterparts and serve as important models for assembly. Proteasomes are also found in certain bacterial lineages yet their assembly mechanism is thought to be fundamentally different. Here we investigate α-ring formation using recombinant proteasomes from the archaeon Methanococcus maripaludis. Through an engineered disulfide cross-linking strategy, we demonstrate that double α-rings are structurally analogous to half-proteasomes and can form independently of single α-rings. More importantly, via targeted mutagenesis, we show that single α-rings are not required for the efficient assembly of 20S proteasomes. Our data support updating the currently held "α-ring first" view of assembly, initially proposed in studies of archaeal proteasomes, and present a way to reconcile the seemingly separate bacterial assembly mechanism with the rest of the proteasome realm. We suggest that a common assembly network underpins the absolutely conserved architecture of proteasomes across all domains of life.
Collapse
|
76
|
Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature 2015; 524:485-8. [DOI: 10.1038/nature14951] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 07/17/2015] [Indexed: 01/25/2023]
|
77
|
|
78
|
Abstract
The ubiquitin-proteasome system is the major degradation pathway for short-lived proteins in eukaryotic cells. Targets of the ubiquitin-proteasome-system are proteins regulating a broad range of cellular processes including cell cycle progression, gene expression, the quality control of proteostasis and the response to geno- and proteotoxic stress. Prior to degradation, the proteasomal substrate is marked with a poly-ubiquitin chain. The key protease of the ubiquitin system is the proteasome. In dividing cells, proteasomes exist as holo-enzymes composed of regulatory and core particles. The regulatory complex confers ubiquitin-recognition and ATP dependence on proteasomal protein degradation. The catalytic sites are located in the proteasome core particle. Proteasome holo-enzymes are predominantly nuclear suggesting a major requirement for proteasomal proteolysis in the nucleus. In cell cycle arrested mammalian or quiescent yeast cells, proteasomes deplete from the nucleus and accumulate in granules at the nuclear envelope (NE) / endoplasmic reticulum ( ER) membranes. In prolonged quiescence, proteasome granules drop off the nuclear envelopeNE / ER membranes and migrate as droplet-like entitiesstable organelles throughout the cytoplasm, as thoroughly investigated in yeast. When quiescence yeast cells are allowed to resume growth, proteasome granules clear and proteasomes are rapidly imported into the nucleus. Here, we summarize our knowledge about the enigmatic structure of proteasome storage granules and the trafficking of proteasomes and their substrates between the cyto- and nucleoplasm. Most of our current knowledge is based on studies in yeast. Their translation to mammalian cells promises to provide keen insight into protein degradation in non-dividing cells, which comprise the majority of our body’s cells.
Collapse
Affiliation(s)
- Maisha Chowdhury
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
79
|
Abstract
The ubiquitin-proteasome system is the major degradation pathway for short-lived proteins in eukaryotic cells. Targets of the ubiquitin-proteasome-system are proteins regulating a broad range of cellular processes including cell cycle progression, gene expression, the quality control of proteostasis and the response to geno- and proteotoxic stress. Prior to degradation, the proteasomal substrate is marked with a poly-ubiquitin chain. The key protease of the ubiquitin system is the proteasome. In dividing cells, proteasomes exist as holo-enzymes composed of regulatory and core particles. The regulatory complex confers ubiquitin-recognition and ATP dependence on proteasomal protein degradation. The catalytic sites are located in the proteasome core particle. Proteasome holo-enzymes are predominantly nuclear suggesting a major requirement for proteasomal proteolysis in the nucleus. In cell cycle arrested mammalian or quiescent yeast cells, proteasomes deplete from the nucleus and accumulate in granules at the nuclear envelope (NE) / endoplasmic reticulum ( ER) membranes. In prolonged quiescence, proteasome granules drop off the nuclear envelopeNE / ER membranes and migrate as droplet-like entitiesstable organelles throughout the cytoplasm, as thoroughly investigated in yeast. When quiescence yeast cells are allowed to resume growth, proteasome granules clear and proteasomes are rapidly imported into the nucleus. Here, we summarize our knowledge about the enigmatic structure of proteasome storage granules and the trafficking of proteasomes and their substrates between the cyto- and nucleoplasm. Most of our current knowledge is based on studies in yeast. Their translation to mammalian cells promises to provide keen insight into protein degradation in non-dividing cells, which comprise the majority of our body's cells.
Collapse
Affiliation(s)
- Maisha Chowdhury
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
80
|
iRhom1 regulates proteasome activity via PAC1/2 under ER stress. Sci Rep 2015; 5:11559. [PMID: 26109405 PMCID: PMC4479803 DOI: 10.1038/srep11559] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/20/2015] [Indexed: 11/16/2022] Open
Abstract
Proteasome is a protein degradation complex that plays a major role in maintaining cellular homeostasis. Despite extensive efforts to identify protein substrates that are degraded through ubiquitination, the regulation of proteasome activity itself under diverse signals is poorly understood. In this study, we have isolated iRhom1 as a stimulator of proteasome activity from genome-wide functional screening using cDNA expression and an unstable GFP-degron. Downregulation of iRhom1 reduced enzymatic activity of proteasome complexes and overexpression of iRhom1 enhanced it. Native-gel and fractionation analyses revealed that knockdown of iRhom1 expression impaired the assembly of the proteasome complexes. The expression of iRhom1 was increased by endoplasmic reticulum (ER) stressors, such as thapsigargin and tunicamycin, leading to the enhancement of proteasome activity, especially in ER-containing microsomes. iRhom1 interacted with the 20S proteasome assembly chaperones PAC1 and PAC2, affecting their protein stability. Moreover, knockdown of iRhom1 expression impaired the dimerization of PAC1 and PAC2 under ER stress. In addition, iRhom1 deficiency in D. melanogaster accelerated the rough-eye phenotype of mutant Huntingtin, while transgenic flies expressing either human iRhom1 or Drosophila iRhom showed rescue of the rough-eye phenotype. Together, these results identify a novel regulator of proteasome activity, iRhom1, which functions via PAC1/2 under ER stress.
Collapse
|
81
|
Wani PS, Rowland MA, Ondracek A, Deeds EJ, Roelofs J. Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association. Nat Commun 2015; 6:6384. [PMID: 25812915 PMCID: PMC4380239 DOI: 10.1038/ncomms7384] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 01/25/2015] [Indexed: 01/09/2023] Open
Abstract
Proteasome assembly is a complex process, requiring 66 subunits distributed over several subcomplexes to associate in a coordinated fashion. Ten proteasome-specific chaperones have been identified that assist in this process. For two of these, the Pba1-Pba2 dimer, it is well established that they only bind immature core particles (CP) in vivo. In contrast, the regulatory particle (RP) utilizes the same binding surface but only interacts with the mature CP in vivo. It is unclear how these binding events are regulated. Here, we show that Pba1-Pba2 binds tightly to immature CP, preventing RP binding. Changes in the CP that occur upon maturation significantly reduce its affinity for Pba1-Pba2, enabling the RP to displace the chaperone. Mathematical modeling indicates that this “affinity switch” mechanism has likely evolved to improve assembly efficiency by preventing the accumulation of stable, non-productive intermediates. Our work thus provides mechanistic insights into a crucial step in proteasome biogenesis.
Collapse
Affiliation(s)
- Prashant S Wani
- Graduate Biochemistry Group, Department of Biochemistry and Molecular Biophysics, Kansas State University, 336 Ackert Hall, Manhattan, Kansas 66506, USA
| | - Michael A Rowland
- Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | - Alex Ondracek
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, Kansas 66506, USA
| | - Eric J Deeds
- 1] Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA [2] Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, USA [3] Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| | - Jeroen Roelofs
- 1] Graduate Biochemistry Group, Department of Biochemistry and Molecular Biophysics, Kansas State University, 336 Ackert Hall, Manhattan, Kansas 66506, USA [2] Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, Kansas 66506, USA
| |
Collapse
|
82
|
PAB is an assembly chaperone that functions downstream of chaperonin 60 in the assembly of chloroplast ATP synthase coupling factor 1. Proc Natl Acad Sci U S A 2015; 112:4152-7. [PMID: 25775508 DOI: 10.1073/pnas.1413392111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chloroplast ATP synthase, a multisubunit complex in the thylakoid membrane, catalyzes the light-driven synthesis of ATP, thereby supplying the energy for carbon fixation during photosynthesis. The chloroplast ATP synthase is composed of both nucleus- and chloroplast-encoded proteins that have required the evolution of novel mechanisms to coordinate the biosynthesis and assembly of chloroplast ATP synthase subunits temporally and spatially. Here we have elucidated the assembly mechanism of the α3β3γ core complex of the chloroplast ATP synthase by identification and functional characterization of a key assembly factor, PAB (protein in chloroplast atpase biogenesis). PAB directly interacts with the nucleus-encoded γ subunit and functions downstream of chaperonin 60 (Cpn60)-mediated CF1γ subunit folding to promote its assembly into the catalytic core. PAB does not have any recognizable motifs or domains but is conserved in photosynthetic eukaryotes. It is likely that PAB evolved together with the transfer of chloroplast genes into the nucleus to assist nucleus-encoded CF1γ assembly into the CF1 core. Such coordination might represent an evolutionarily conserved mechanism for folding and assembly of nucleus-encoded proteins to ensure proper assembly of multiprotein photosynthetic complexes.
Collapse
|
83
|
Li D, Dong Q, Tao Q, Gu J, Cui Y, Jiang X, Yuan J, Li W, Xu R, Jin Y, Li P, Weaver D, Ma Q, Liu X, Cao C. c-Abl Regulates Proteasome Abundance by Controlling the Ubiquitin-Proteasomal Degradation of PSMA7 Subunit. Cell Rep 2015; 10:484-96. [DOI: 10.1016/j.celrep.2014.12.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/03/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022] Open
|
84
|
Proteasome assembly from 15S precursors involves major conformational changes and recycling of the Pba1-Pba2 chaperone. Nat Commun 2015; 6:6123. [PMID: 25609009 DOI: 10.1038/ncomms7123] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 12/15/2014] [Indexed: 01/26/2023] Open
Abstract
The chaperones Ump1 and Pba1-Pba2 promote efficient biogenesis of 20S proteasome core particles from its subunits via 15S intermediates containing alpha and beta subunits, except beta7. Here we elucidate the structural role of these chaperones in late steps of core particle biogenesis using biochemical, electron microscopy, cross-linking and mass spectrometry analyses. In 15S precursor complexes, Ump1 is largely unstructured, lining the inner cavity of the complex along the interface between alpha and beta subunits. The alpha and beta subunits form loosely packed rings with a wider alpha ring opening than in the 20S core particle, allowing for the Pba1-Pba2 heterodimer to be partially embedded in the central alpha ring cavity. During biogenesis, the heterodimer is expelled from the alpha ring by a restructuring event that organizes the beta ring and leads to tightening of the alpha ring opening. In this way, the Pba1-Pba2 chaperone is recycled for a new round of proteasome assembly.
Collapse
|
85
|
Shibuya A, Margulis N, Christiano R, Walther TC, Barlowe C. The Erv41-Erv46 complex serves as a retrograde receptor to retrieve escaped ER proteins. ACTA ACUST UNITED AC 2015; 208:197-209. [PMID: 25583996 PMCID: PMC4298680 DOI: 10.1083/jcb.201408024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signal-dependent sorting of proteins in the early secretory pathway is required for dynamic retention of endoplasmic reticulum (ER) and Golgi components. In this study, we identify the Erv41-Erv46 complex as a new retrograde receptor for retrieval of non-HDEL-bearing ER resident proteins. In cells lacking Erv41-Erv46 function, the ER enzyme glucosidase I (Gls1) was mislocalized and degraded in the vacuole. Biochemical experiments demonstrated that the luminal domain of Gls1 bound to the Erv41-Erv46 complex in a pH-dependent manner. Moreover, in vivo disturbance of the pH gradient across membranes by bafilomycin A1 treatment caused Gls1 mislocalization. Whole cell proteomic analyses of deletion strains using stable isotope labeling by amino acids in culture identified other ER resident proteins that depended on the Erv41-Erv46 complex for efficient localization. Our results support a model in which pH-dependent receptor binding of specific cargo by the Erv41-Erv46 complex in Golgi compartments identifies escaped ER resident proteins for retrieval to the ER in coat protein complex I-formed transport carriers.
Collapse
Affiliation(s)
- Aya Shibuya
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Neil Margulis
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Romain Christiano
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Tobias C Walther
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Charles Barlowe
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
86
|
Gu ZC, Enenkel C. Proteasome assembly. Cell Mol Life Sci 2014; 71:4729-45. [PMID: 25107634 PMCID: PMC11113775 DOI: 10.1007/s00018-014-1699-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
In eukaryotic cells, proteasomes are highly conserved protease complexes and eliminate unwanted proteins which are marked by poly-ubiquitin chains for degradation. The 26S proteasome consists of the proteolytic core particle, the 20S proteasome, and the 19S regulatory particle, which are composed of 14 and 19 different subunits, respectively. Proteasomes are the second-most abundant protein complexes and are continuously assembled from inactive precursor complexes in proliferating cells. The modular concept of proteasome assembly was recognized in prokaryotic ancestors and applies to eukaryotic successors. The efficiency and fidelity of eukaryotic proteasome assembly is achieved by several proteasome-dedicated chaperones that initiate subunit incorporation and control the quality of proteasome assemblies by transiently interacting with proteasome precursors. It is important to understand the mechanism of proteasome assembly as the proteasome has key functions in the turnover of short-lived proteins regulating diverse biological processes.
Collapse
Affiliation(s)
- Zhu Chao Gu
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
87
|
The amazing ubiquitin-proteasome system: structural components and implication in aging. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:171-237. [PMID: 25619718 DOI: 10.1016/bs.ircmb.2014.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteome quality control (PQC) is critical for the maintenance of cellular functionality and it is assured by the curating activity of the proteostasis network (PN). PN is constituted of several complex protein machines that under conditions of proteome instability aim to, firstly identify, and then, either rescue or degrade nonnative polypeptides. Central to the PN functionality is the ubiquitin-proteasome system (UPS) which is composed from the ubiquitin-conjugating enzymes and the proteasome; the latter is a sophisticated multi-subunit molecular machine that functions in a bimodal way as it degrades both short-lived ubiquitinated normal proteins and nonfunctional polypeptides. UPS is also involved in PQC of the nucleus, the endoplasmic reticulum and the mitochondria and it also interacts with the other main cellular degradation axis, namely the autophagy-lysosome system. UPS functionality is optimum in the young organism but it is gradually compromised during aging resulting in increasing proteotoxic stress; these effects correlate not only with aging but also with most age-related diseases. Herein, we present a synopsis of the UPS components and of their functional alterations during cellular senescence or in vivo aging. We propose that mild UPS activation in the young organism will, likely, promote antiaging effects and/or suppress age-related diseases.
Collapse
|
88
|
Meurisse J, Bacquin A, Richet N, Charbonnier JB, Ochsenbein F, Peyroche A. Hug1 is an intrinsically disordered protein that inhibits ribonucleotide reductase activity by directly binding Rnr2 subunit. Nucleic Acids Res 2014; 42:13174-85. [PMID: 25378334 PMCID: PMC4245953 DOI: 10.1093/nar/gku1095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rad53 is a conserved protein kinase with a central role in DNA damage response and nucleotide metabolism. We observed that the expression of a dominant-lethal form of RAD53 leads to significant expression changes for at least 16 genes, including the RNR3 and the HUG1 genes, both of which are involved in the control of nucleotide metabolism. We established by multiple biophysical and biochemical approaches that Hug1 is an intrinsically disordered protein that directly binds to the small RNR subunit Rnr2. We characterized the surface of interaction involved in Hug1 binding to Rnr2, and we thus defined a new binding region to Rnr2. Moreover, we show that Hug1 is deleterious to cell growth in the context of reduced RNR activity. This inhibitory effect of Hug1 on RNR activity depends on the binding of Hug1 to Rnr2. We propose a model in which Hug1 modulates Rnr2-Rnr1 association by binding Rnr2. We show that Hug1 accumulates under various physiological conditions of high RNR induction. Hence, both the regulation and the mode of action of Hug1 are different from those of the small protein inhibitors Dif1 and Sml1, and Hug1 can be considered as a regulator for fine-tuning of RNR activity.
Collapse
Affiliation(s)
- Julie Meurisse
- CEA, iBiTecS, SBIGeM, Gif-sur-Yvette, F-91191, France CNRS-Université Paris Sud, FRE 3377, Gif-sur-Yvette, F-91191, France
| | - Agathe Bacquin
- CEA, iBiTecS, SBIGeM, Gif-sur-Yvette, F-91191, France CNRS-Université Paris Sud, FRE 3377, Gif-sur-Yvette, F-91191, France
| | - Nicolas Richet
- CEA, iBiTecS, SBSM, Laboratoire de Biologie Structurale et Radiobiologie, Gif-sur-Yvette, F-91191, France CNRS, UMR8221, Gif-sur-Yvette, F-91191, France
| | - Jean-Baptiste Charbonnier
- CEA, iBiTecS, SBSM, Laboratoire de Biologie Structurale et Radiobiologie, Gif-sur-Yvette, F-91191, France CNRS, UMR8221, Gif-sur-Yvette, F-91191, France
| | - Françoise Ochsenbein
- CEA, iBiTecS, SBSM, Laboratoire de Biologie Structurale et Radiobiologie, Gif-sur-Yvette, F-91191, France CNRS, UMR8221, Gif-sur-Yvette, F-91191, France
| | - Anne Peyroche
- CEA, iBiTecS, SBIGeM, Gif-sur-Yvette, F-91191, France CNRS-Université Paris Sud, FRE 3377, Gif-sur-Yvette, F-91191, France
| |
Collapse
|
89
|
N-terminal α7 deletion of the proteasome 20S core particle substitutes for yeast PI31 function. Mol Cell Biol 2014; 35:141-52. [PMID: 25332237 DOI: 10.1128/mcb.00582-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The proteasome core particle (CP) is a conserved protease complex that is formed by the stacking of two outer α-rings and two inner β-rings. The α-ring is a heteroheptameric ring of subunits α1 to α7 and acts as a gate that restricts entry of substrate proteins into the catalytic cavity formed by the two abutting β-rings. The 31-kDa proteasome inhibitor (PI31) was originally identified as a protein that binds to the CP and inhibits CP activity in vitro, but accumulating evidence indicates that PI31 is required for physiological proteasome activity. To clarify the in vivo role of PI31, we examined the Saccharomyces cerevisiae PI31 ortholog Fub1. Fub1 was essential in a situation where the CP assembly chaperone Pba4 was deleted. The lethality of Δfub1 Δpba4 was suppressed by deletion of the N terminus of α7 (α7ΔN), which led to the partial activation of the CP. However, deletion of the N terminus of α3, which activates the CP more efficiently than α7ΔN by gate opening, did not suppress Δfub1 Δpba4 lethality. These results suggest that the α7 N terminus has a role in CP activation different from that of the α3 N terminus and that the role of Fub1 antagonizes a specific function of the α7 N terminus.
Collapse
|
90
|
Enenkel C. Nuclear transport of yeast proteasomes. Biomolecules 2014; 4:940-55. [PMID: 25333764 PMCID: PMC4279164 DOI: 10.3390/biom4040940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/18/2014] [Accepted: 09/26/2014] [Indexed: 12/25/2022] Open
Abstract
Proteasomes are conserved protease complexes enriched in the nuclei of dividing yeast cells, a major site for protein degradation. If yeast cells do not proliferate and transit to quiescence, metabolic changes result in the dissociation of proteasomes into proteolytic core and regulatory complexes and their sequestration into motile cytosolic proteasome storage granuli. These granuli rapidly clear with the resumption of growth, releasing the stored proteasomes, which relocalize back to the nucleus to promote cell cycle progression. Here, I report on three models of how proteasomes are transported from the cytoplasm into the nucleus of yeast cells. The first model applies for dividing yeast and is based on the canonical pathway using classical nuclear localization sequences of proteasomal subcomplexes and the classical import receptor importin/karyopherin αβ. The second model applies for quiescent yeast cells, which resume growth and use Blm10, a HEAT-like repeat protein structurally related to karyopherin β, for nuclear import of proteasome core particles. In the third model, the fully-assembled proteasome is imported into the nucleus. Our still marginal knowledge about proteasome dynamics will inspire the discussion on how protein degradation by proteasomes may be regulated in different cellular compartments of dividing and quiescent eukaryotic cells.
Collapse
Affiliation(s)
- Cordula Enenkel
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
91
|
Bai M, Zhao X, Sahara K, Ohte Y, Hirano Y, Kaneko T, Yashiroda H, Murata S. Assembly mechanisms of specialized core particles of the proteasome. Biomolecules 2014; 4:662-77. [PMID: 25033340 PMCID: PMC4192667 DOI: 10.3390/biom4030662] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/30/2014] [Accepted: 06/22/2014] [Indexed: 11/16/2022] Open
Abstract
The 26S proteasome has a highly complicated structure comprising the 20S core particle (CP) and the 19S regulatory particle (RP). Along with the standard CP in all eukaryotes, vertebrates have two more subtypes of CP called the immunoproteasome and the thymoproteasome. The immunoproteasome has catalytic subunits β1i, β2i, and β5i replacing β1, β2, and β5 and enhances production of major histocompatibility complex I ligands. The thymoproteasome contains thymus-specific subunit β5t in place of β5 or β5i and plays a pivotal role in positive selection of CD8+ T cells. Here we investigate the assembly pathways of the specialized CPs and show that β1i and β2i are incorporated ahead of all the other β-subunits and that both β5i and β5t can be incorporated immediately after the assembly of β3 in the absence of β4, distinct from the assembly of the standard CP in which β-subunits are incorporated in the order of β2, β3, β4, β5, β6, β1, and β7. The propeptide of β5t is a key factor for this earlier incorporation, whereas the body sequence seems to be important for the earlier incorporation of β5i. This unique feature of β5t and β5i may account for preferential assembly of the immunoproteasome and the thymoproteasome over the standard type even when both the standard and specialized subunits are co-expressed.
Collapse
Affiliation(s)
- Minghui Bai
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Xian Zhao
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kazutaka Sahara
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yuki Ohte
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yuko Hirano
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Takeumi Kaneko
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hideki Yashiroda
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
92
|
Andreani J, Guerois R. Evolution of protein interactions: From interactomes to interfaces. Arch Biochem Biophys 2014; 554:65-75. [DOI: 10.1016/j.abb.2014.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/28/2014] [Accepted: 05/12/2014] [Indexed: 12/16/2022]
|
93
|
Fabre B, Lambour T, Garrigues L, Ducoux-Petit M, Amalric F, Monsarrat B, Burlet-Schiltz O, Bousquet-Dubouch MP. Label-Free Quantitative Proteomics Reveals the Dynamics of Proteasome Complexes Composition and Stoichiometry in a Wide Range of Human Cell Lines. J Proteome Res 2014; 13:3027-37. [DOI: 10.1021/pr500193k] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bertrand Fabre
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Thomas Lambour
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Luc Garrigues
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Manuelle Ducoux-Petit
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - François Amalric
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Bernard Monsarrat
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Odile Burlet-Schiltz
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Marie-Pierre Bousquet-Dubouch
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| |
Collapse
|
94
|
Abstract
The 26S proteasome is responsible for most regulated protein turnover and for the degradation of aberrant proteins in eukaryotes. The assembly of this ~2.5 MDa multicatalytic protease requires several dedicated chaperones and, once assembled, substrate selectivity is mediated by ubiquitin conjugation. After modification with ubiquitin, substrates are escorted to the proteasome by myriad factors, including Cdc48 (cell-division cycle 48). Cdc48 also associates with numerous cofactors, but, to date, it is unclear whether each cofactor facilitates proteasome delivery. We discovered that yeast lacking a conserved Cdc48 cofactor, Vms1 [VCP (valosin-containing protein)/Cdc48-associated mitochondrial stress-responsive], accumulate proteasome-targeted ubiquitinated proteins. Vms1 mutant cells also contain elevated levels of unassembled 20S proteasome core particles and select 19S cap subunits. In addition, we found that the ability of Vms1 to support 26S proteasome assembly requires Cdc48 interaction, and that the loss of Vms1 reduced 26S proteasome levels and cell viability after prolonged culture in the stationary phase. The results of the present study highlight an unexpected link between the Cdc48-Vms1 complex and the preservation of proteasome architecture, and indicate how perturbed proteasome assembly affects the turnover of ubiquitinated proteins and maintains viability in aging cells.
Collapse
|
95
|
Akahane T, Sahara K, Yashiroda H, Tanaka K, Murata S. Involvement of Bag6 and the TRC pathway in proteasome assembly. Nat Commun 2014; 4:2234. [PMID: 23900548 DOI: 10.1038/ncomms3234] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/03/2013] [Indexed: 01/29/2023] Open
Abstract
The 26S proteasome has an elaborate structure, consisting of 33 different subunits that form the 20S core particle capped by the 19S regulatory particle on either end. Several chaperones that are dedicated to the accurate assembly of this protease complex have been identified, but the mechanisms underlying proteasome biogenesis remain unexplored so far. Here we report that core particle assembly becomes less efficient if the TRC pathway, which mediates insertion of tail-anchored proteins, is defective. We demonstrate that Bag6, a protein in the TRC pathway that is also responsible for the degradation of mislocalized proteins, is not only involved in core particle assembly but also has a key role in efficient regulatory particle assembly by directly associating with precursor regulatory particles. These findings indicate that proteasome assembly is not solely mediated by dedicated chaperones but also depends on general chaperones that preserve protein homeostasis.
Collapse
Affiliation(s)
- Takashi Akahane
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
96
|
Manasanch EE, Korde N, Zingone A, Tageja N, Fernandez de Larrea C, Bhutani M, Wu P, Roschewski M, Landgren O. The proteasome: mechanisms of biology and markers of activity and response to treatment in multiple myeloma. Leuk Lymphoma 2014; 55:1707-14. [PMID: 24261677 DOI: 10.3109/10428194.2013.828351] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Since the early 1990s, the synthesis and subsequent clinical application of small molecule inhibitors of the ubiquitin proteasome pathway (UPP) has revolutionized the treatment and prognosis of multiple myeloma. In this review, we summarize important aspects of the biology of the UPP with a focus on its structure and key upstream/downstream regulatory components. We then review current knowledge of plasma cell sensitivity to proteasome inhibition and highlight new proteasome inhibitors that have recently entered clinical development. Lastly, we address the putative role of circulating proteasomes as a novel biomarker in multiple myeloma and provide guidance for future clinical trials using proteasome inhibitors.
Collapse
Affiliation(s)
- Elisabet E Manasanch
- Multiple Myeloma Section, Metabolism Branch, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Tomko RJ, Hochstrasser M. The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis. Mol Cell 2014; 53:433-43. [PMID: 24412063 DOI: 10.1016/j.molcel.2013.12.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/19/2013] [Accepted: 12/05/2013] [Indexed: 11/27/2022]
Abstract
The intrinsically disordered yeast protein Sem1 (DSS1 in mammals) participates in multiple protein complexes, including the proteasome, but its role(s) within these complexes is uncertain. We report that Sem1 enforces the ordered incorporation of subunits Rpn3 and Rpn7 into the assembling proteasome lid. Sem1 uses conserved acidic segments separated by a flexible linker to grasp Rpn3 and Rpn7. The same segments are used for protein binding in other complexes, but in the proteasome lid they are uniquely deployed for recognizing separate polypeptides. We engineered TEV protease-cleavage sites into Sem1 to show that the tethering function of Sem1 is important for the biogenesis and integrity of the Rpn3-Sem1-Rpn7 ternary complex but becomes dispensable once the ternary complex incorporates into larger lid precursors. Thus, although Sem1 is a stoichiometric component of the mature proteasome, it has a distinct, chaperone-like function specific to early stages of proteasome assembly.
Collapse
Affiliation(s)
- Robert J Tomko
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA.
| |
Collapse
|
98
|
Sahara K, Kogleck L, Yashiroda H, Murata S. The mechanism for molecular assembly of the proteasome. Adv Biol Regul 2014; 54:51-8. [PMID: 24145026 DOI: 10.1016/j.jbior.2013.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 05/23/2023]
Abstract
In eukaryotic cells, the ubiquitin proteasome system plays important roles in diverse cellular processes. The 26S proteasome is a large enzyme complex that degrades ubiquitinated proteins. It consists of 33 different subunits that form two subcomplexes, the 20S core particle and the 19S regulatory particle. Recently, several chaperones dedicated to the accurate assembly of this protease complex have been identified, but the complete mechanism of the 26S proteasome assembly is still unclear. In this review, we summarize what is known about the assembly of proteasome to date and present our group's recent findings on the role of the GET pathway in the assembly of the 26S proteasome, in addition to its role in mediating the insertion of tail-anchored (TA) proteins into the ER membrane.
Collapse
Affiliation(s)
- Kazutaka Sahara
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Larissa Kogleck
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideki Yashiroda
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
99
|
Doi T, Yoshida M, Ohsawa K, Shin-ya K, Takagi M, Uekusa Y, Yamaguchi T, Kato K, Hirokawa T, Natsume T. Total synthesis and characterization of thielocin B1 as a protein–protein interaction inhibitor of PAC3 homodimer. Chem Sci 2014. [DOI: 10.1039/c3sc53237b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have characterized the inhibition of the protein–protein interaction of the homodimer of proteasome assembling chaperone (PAC) 3 with thielocin B1.
Collapse
Affiliation(s)
- Takayuki Doi
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578, Japan
| | - Masahito Yoshida
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578, Japan
| | - Kosuke Ohsawa
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578, Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tokyo 135-0064, Japan
| | - Motoki Takagi
- Biomedicinal Information Research Center (BIRC)
- Japan Biological Informatics Consortium (JBIC)
- Tokyo 135-0064, Japan
| | - Yoshinori Uekusa
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science
- National Institutes of Natural Sciences
- Okazaki, Japan
- Graduate School of Pharmaceutical Sciences
- Nagoya City University
| | - Takumi Yamaguchi
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science
- National Institutes of Natural Sciences
- Okazaki, Japan
- Graduate School of Pharmaceutical Sciences
- Nagoya City University
| | - Koichi Kato
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science
- National Institutes of Natural Sciences
- Okazaki, Japan
- Graduate School of Pharmaceutical Sciences
- Nagoya City University
| | - Takatsugu Hirokawa
- Computational Biology Research Center (CBRC)
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tokyo 135-0064, Japan
| | - Tohru Natsume
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tokyo 135-0064, Japan
| |
Collapse
|
100
|
Sá-Moura B, Simões AM, Fraga J, Fernandes H, Abreu IA, Botelho HM, Gomes CM, Marques AJ, Dohmen RJ, Ramos PC, Macedo-Ribeiro S. Biochemical and biophysical characterization of recombinant yeast proteasome maturation factor ump1. Comput Struct Biotechnol J 2013; 7:e201304006. [PMID: 24688736 PMCID: PMC3962104 DOI: 10.5936/csbj.201304006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 11/22/2022] Open
Abstract
Protein degradation is essential for maintaining cellular homeostasis. The proteasome is the central enzyme responsible for non-lysosomal protein degradation in eukaryotic cells. Although proteasome assembly is not yet completely understood, a number of cofactors required for proper assembly and maturation have been identified. Ump is a short-lived maturation factor required for the efficient biogenesis of the 20S proteasome. Upon the association of the two precursor complexes, Ump is encased and is rapidly degraded after the proteolytic sites in the interior of the nascent proteasome are activated. In order to further understand the mechanisms behind proteasomal maturation, we expressed and purified yeast Ump in E. coli for biophysical and structural analysis. We show that recombinant Ump is purified as a mixture of different oligomeric species and that oligomerization is mediated by intermolecular disulfide bond formation involving the only cysteine residue present in the protein. Furthermore, a combination of bioinformatic, biochemical and structural analysis revealed that Ump shows characteristics of an intrinsically disordered protein, which might become structured only upon interaction with the proteasome subunits.
Collapse
Affiliation(s)
- Bebiana Sá-Moura
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Ana Marisa Simões
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Joana Fraga
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Humberto Fernandes
- Centre for Molecular and Structural Biomedicine, CBME/IBB, LA, Portugal ; Current address: Biophysics Section, Department of Life Sciences, Imperial College, London, UK
| | - Isabel A Abreu
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal ; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal
| | - Hugo M Botelho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal ; Current address: BioFIG - Centre for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisboa, Campo Grande 1749-016 Lisboa, Portugal
| | - Cláudio M Gomes
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal
| | - António J Marques
- Centre for Molecular and Structural Biomedicine, CBME/IBB, LA, Portugal ; Current address: Immunodiagnostic Systems, Core Technology, 10 Didcot Way, Boldon, NE35 9PD, UK
| | - R Jürgen Dohmen
- Institute for Genetics, University of Cologne, Zülpicher Str. 47, D-50674 Cologne, Germany
| | - Paula C Ramos
- Centre for Molecular and Structural Biomedicine, CBME/IBB, LA, Portugal ; Institute for Genetics, University of Cologne, Zülpicher Str. 47, D-50674 Cologne, Germany
| | - Sandra Macedo-Ribeiro
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| |
Collapse
|