51
|
Tarakhovsky A, Prinjha RK. Drawing on disorder: How viruses use histone mimicry to their advantage. J Exp Med 2018; 215:1777-1787. [PMID: 29934321 PMCID: PMC6028506 DOI: 10.1084/jem.20180099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/24/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
Humans carry trillions of viruses that thrive because of their ability to exploit the host. In this exploitation, viruses promote their own replication by suppressing the host antiviral response and by inducing changes in host biosynthetic processes, often with extremely small genomes of their own. In the review, we discuss the phenomenon of histone mimicry by viral proteins and how this mimicry allows the virus to dial in to the cell's transcriptional processes and establish a cell state that promotes infection. We suggest that histone mimicry is part of a broader viral strategy to use intrinsic protein disorder as a means to overcome the size limitations of its own genome and to maximize its impact on host protein networks. In particular, we discuss how intrinsic protein disorder may enable viral proteins to interfere with phase-separated host protein condensates, including those that contribute to chromatin-mediated control of gene expression.
Collapse
Affiliation(s)
- Alexander Tarakhovsky
- Laboratory of the Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY
| | - Rab K Prinjha
- Epigenetics DPU, Oncology and Immuno-inflammation TA Units, GlaxoSmithKline Medicines Research Centre, Stevenage, England, UK
| |
Collapse
|
52
|
Zylicz JJ, Borensztein M, Wong FC, Huang Y, Lee C, Dietmann S, Surani MA. G9a regulates temporal preimplantation developmental program and lineage segregation in blastocyst. eLife 2018; 7:33361. [PMID: 29745895 PMCID: PMC5959720 DOI: 10.7554/elife.33361] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/09/2018] [Indexed: 01/14/2023] Open
Abstract
Early mouse development is regulated and accompanied by dynamic changes in chromatin modifications, including G9a-mediated histone H3 lysine 9 dimethylation (H3K9me2). Previously, we provided insights into its role in post-implantation development (Zylicz et al., 2015). Here we explore the impact of depleting the maternally inherited G9a in oocytes on development shortly after fertilisation. We show that G9a accumulates typically at 4 to 8 cell stage to promote timely repression of a subset of 4 cell stage-specific genes. Loss of maternal inheritance of G9a disrupts the gene regulatory network resulting in developmental delay and destabilisation of inner cell mass lineages by the late blastocyst stage. Our results indicate a vital role of this maternally inherited epigenetic regulator in creating conducive conditions for developmental progression and on cell fate choices.
Collapse
Affiliation(s)
- Jan J Zylicz
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Maud Borensztein
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Frederick Ck Wong
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yun Huang
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Caroline Lee
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Sabine Dietmann
- Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - M Azim Surani
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
53
|
Saettone A, Garg J, Lambert JP, Nabeel-Shah S, Ponce M, Burtch A, Thuppu Mudalige C, Gingras AC, Pearlman RE, Fillingham J. The bromodomain-containing protein Ibd1 links multiple chromatin-related protein complexes to highly expressed genes in Tetrahymena thermophila. Epigenetics Chromatin 2018. [PMID: 29523178 PMCID: PMC5844071 DOI: 10.1186/s13072-018-0180-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background The chromatin remodelers of the SWI/SNF family are critical transcriptional regulators. Recognition of lysine acetylation through a bromodomain (BRD) component is key to SWI/SNF function; in most eukaryotes, this function is attributed to SNF2/Brg1. Results Using affinity purification coupled to mass spectrometry (AP–MS) we identified members of a SWI/SNF complex (SWI/SNFTt) in Tetrahymena thermophila. SWI/SNFTt is composed of 11 proteins, Snf5Tt, Swi1Tt, Swi3Tt, Snf12Tt, Brg1Tt, two proteins with potential chromatin-interacting domains and four proteins without orthologs to SWI/SNF proteins in yeast or mammals. SWI/SNFTt subunits localize exclusively to the transcriptionally active macronucleus during growth and development, consistent with a role in transcription. While Tetrahymena Brg1 does not contain a BRD, our AP–MS results identified a BRD-containing SWI/SNFTt component, Ibd1 that associates with SWI/SNFTt during growth but not development. AP–MS analysis of epitope-tagged Ibd1 revealed it to be a subunit of several additional protein complexes, including putative SWRTt, and SAGATt complexes as well as a putative H3K4-specific histone methyl transferase complex. Recombinant Ibd1 recognizes acetyl-lysine marks on histones correlated with active transcription. Consistent with our AP–MS and histone array data suggesting a role in regulation of gene expression, ChIP-Seq analysis of Ibd1 indicated that it primarily binds near promoters and within gene bodies of highly expressed genes during growth. Conclusions Our results suggest that through recognizing specific histones marks, Ibd1 targets active chromatin regions of highly expressed genes in Tetrahymena where it subsequently might coordinate the recruitment of several chromatin-remodeling complexes to regulate the transcriptional landscape of vegetatively growing Tetrahymena cells. Electronic supplementary material The online version of this article (10.1186/s13072-018-0180-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada
| | - Jyoti Garg
- Department of Biology, York University, 4700 Keele St., Toronto, M3J 1P3, Canada
| | - Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, Canada.,Department of Molecular Medicine, Université Laval, Quebec, Canada.,Centre Hospitalier Universitaire de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec, G1V 4G2, Canada
| | - Syed Nabeel-Shah
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Marcelo Ponce
- SciNet HPC Consortium, University of Toronto, 661 University Ave, Suite 1140, Toronto, M5G 1M1, Canada
| | - Alyson Burtch
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada
| | - Cristina Thuppu Mudalige
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele St., Toronto, M3J 1P3, Canada
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada.
| |
Collapse
|
54
|
Neuron-specific alternative splicing of transcriptional machineries: Implications for neurodevelopmental disorders. Mol Cell Neurosci 2017; 87:35-45. [PMID: 29254826 DOI: 10.1016/j.mcn.2017.10.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
The brain has long been known to display the most complex pattern of alternative splicing, thereby producing diverse protein isoforms compared to other tissues. Recent evidence indicates that many alternative exons are neuron-specific, evolutionarily conserved, and found in regulators of transcription including DNA-binding protein and histone modifying enzymes. This raises a possibility that neurons adopt unique mechanisms of transcription. Given that transcriptional machineries are frequently mutated in neurodevelopmental disorders with cognitive dysfunction, it is important to understand how neuron-specific alternative splicing contributes to proper transcriptional regulation in the brain. In this review, we summarize current knowledge regarding how neuron-specific splicing events alter the function of transcriptional regulators and shape unique gene expression patterns in the brain and the implications of neuronal splicing to the pathophysiology of neurodevelopmental disorders.
Collapse
|
55
|
Boehm D, Ott M. Host Methyltransferases and Demethylases: Potential New Epigenetic Targets for HIV Cure Strategies and Beyond. AIDS Res Hum Retroviruses 2017; 33:S8-S22. [PMID: 29140109 DOI: 10.1089/aid.2017.0180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A successful HIV cure strategy may require reversing HIV latency to purge hidden viral reservoirs or enhancing HIV latency to permanently silence HIV transcription. Epigenetic modifying agents show promise as antilatency therapeutics in vitro and ex vivo, but also affect other steps in the viral life cycle. In this review, we summarize what we know about cellular DNA and protein methyltransferases (PMTs) as well as demethylases involved in HIV infection. We describe the biology and function of DNA methyltransferases, and their controversial role in HIV infection. We further explain the biology of PMTs and their effects on lysine and arginine methylation of histone and nonhistone proteins. We end with a focus on protein demethylases, their unique modes of action and their emerging influence on HIV infection. An outlook on the use of methylation-modifying agents in investigational HIV cure strategies is provided.
Collapse
Affiliation(s)
- Daniela Boehm
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
56
|
Bhat J, Helmuth J, Chitadze G, Kouakanou L, Peters C, Vingron M, Ammerpohl O, Kabelitz D. Stochastics of Cellular Differentiation Explained by Epigenetics: The Case of T-Cell Differentiation and Functional Plasticity. Scand J Immunol 2017; 86:184-195. [PMID: 28799233 DOI: 10.1111/sji.12589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/06/2017] [Indexed: 12/19/2022]
Abstract
Epigenetic marks including histone modifications and DNA methylation are associated with the regulation of gene expression and activity. In addition, an increasing number of non-coding RNAs with regulatory activity on gene expression have been identified. Alongside, technological advancements allow for the analysis of these mechanisms with high resolution up to the single-cell level. For instance, the assay for transposase-accessible chromatin using sequencing (ATAC-seq) simultaneously probes for chromatin accessibility and nucleosome positioning. Thus, it provides information on two levels of epigenetic regulation. Development and differentiation of T cells into functional subset cells including memory T cells are dynamic processes driven by environmental signals. Here, we briefly review the current knowledge of how epigenetic regulation contributes to subset specification, differentiation and memory development in T cells. Specifically, we focus on epigenetic mechanisms differentially active in the two distinct T cell populations expressing αβ or γδ T cell receptors. We also discuss examples of epigenetic alterations of T cells in autoimmune diseases. DNA methylation and histone acetylation are subject to modification by several classes of 'epigenetic modifiers', some of which are in clinical use or in preclinical development. Therefore, we address the impact of some epigenetic modifiers on T-cell activation and differentiation, and discuss possible synergies with T cell-based immunotherapeutic strategies.
Collapse
Affiliation(s)
- J Bhat
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - J Helmuth
- Otto-Warburg-Laboratories: Epigenomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - G Chitadze
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - L Kouakanou
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - C Peters
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - M Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - O Ammerpohl
- Institute of Human Genetics, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - D Kabelitz
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
57
|
Kostrhon S, Kontaxis G, Kaufmann T, Schirghuber E, Kubicek S, Konrat R, Slade D. A histone-mimicking interdomain linker in a multidomain protein modulates multivalent histone binding. J Biol Chem 2017; 292:17643-17657. [PMID: 28864776 PMCID: PMC5663869 DOI: 10.1074/jbc.m117.801464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/28/2017] [Indexed: 01/18/2023] Open
Abstract
N-terminal histone tails are subject to many posttranslational modifications that are recognized by and interact with designated reader domains in histone-binding proteins. BROMO domain adjacent to zinc finger 2B (BAZ2B) is a multidomain histone-binding protein that contains two histone reader modules, a plant homeodomain (PHD) and a bromodomain (BRD), linked by a largely disordered linker. Although previous studies have reported specificity of the PHD domain for the unmodified N terminus of histone H3 and of the BRD domain for H3 acetylated at Lys14 (H3K14ac), the exact mode of H3 binding by BAZ2B and its regulation are underexplored. Here, using isothermal titration calorimetry and NMR spectroscopy, we report that acidic residues in the BAZ2B PHD domain are essential for H3 binding and that BAZ2B PHD–BRD establishes a polyvalent interaction with H3K14ac. Furthermore, we provide evidence that the disordered interdomain linker modulates the histone-binding affinity by interacting with the PHD domain. In particular, lysine-rich stretches in the linker, which resemble the positively charged N terminus of histone H3, reduce the binding affinity of the PHD finger toward the histone substrate. Phosphorylation, acetylation, or poly(ADP-ribosyl)ation of the linker residues may therefore act as a cellular mechanism to transiently tune BAZ2B histone-binding affinity. Our findings further support the concept of interdomain linkers serving a dual role in substrate binding by appropriately positioning the adjacent domains and by electrostatically modulating substrate binding. Moreover, inhibition of histone binding by a histone-mimicking interdomain linker represents another example of regulation of protein–protein interactions by intramolecular mimicry.
Collapse
Affiliation(s)
- Sebastian Kostrhon
- From the Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Georg Kontaxis
- the Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Tanja Kaufmann
- From the Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Erika Schirghuber
- the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1030 Vienna, Austria, and.,the Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Stefan Kubicek
- the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1030 Vienna, Austria, and.,the Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Robert Konrat
- the Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Dea Slade
- From the Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria,
| |
Collapse
|
58
|
Liu Q, Cai X, Yang D, Chen Y, Wang Y, Shao L, Wang MW. Cycloalkane analogues of sinefungin as EHMT1/2 inhibitors. Bioorg Med Chem 2017; 25:4579-4594. [DOI: 10.1016/j.bmc.2017.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 01/26/2023]
|
59
|
Ferry L, Fournier A, Tsusaka T, Adelmant G, Shimazu T, Matano S, Kirsh O, Amouroux R, Dohmae N, Suzuki T, Filion GJ, Deng W, de Dieuleveult M, Fritsch L, Kudithipudi S, Jeltsch A, Leonhardt H, Hajkova P, Marto JA, Arita K, Shinkai Y, Defossez PA. Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to Replicating DNA and Regulates DNA Methylation. Mol Cell 2017; 67:550-565.e5. [PMID: 28803780 DOI: 10.1016/j.molcel.2017.07.012] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/24/2017] [Accepted: 07/10/2017] [Indexed: 01/02/2023]
Abstract
DNA methylation is an essential epigenetic mark in mammals that has to be re-established after each round of DNA replication. The protein UHRF1 is essential for this process; it has been proposed that the protein targets newly replicated DNA by cooperatively binding hemi-methylated DNA and H3K9me2/3, but this model leaves a number of questions unanswered. Here, we present evidence for a direct recruitment of UHRF1 by the replication machinery via DNA ligase 1 (LIG1). A histone H3K9-like mimic within LIG1 is methylated by G9a and GLP and, compared with H3K9me2/3, more avidly binds UHRF1. Interaction with methylated LIG1 promotes the recruitment of UHRF1 to DNA replication sites and is required for DNA methylation maintenance. These results further elucidate the function of UHRF1, identify a non-histone target of G9a and GLP, and provide an example of a histone mimic that coordinates DNA replication and DNA methylation maintenance.
Collapse
Affiliation(s)
- Laure Ferry
- Epigenetics and Cell Fate, University Paris Diderot, Sorbonne Paris Cité, UMR 7216 CNRS, 75013 Paris, France
| | - Alexandra Fournier
- Epigenetics and Cell Fate, University Paris Diderot, Sorbonne Paris Cité, UMR 7216 CNRS, 75013 Paris, France
| | - Takeshi Tsusaka
- Cellular Memory Laboratory, RIKEN Wako, Saitama 351-0198, Japan; Graduate School of Medicine, Diabetes, Endocrinology, and Nutrition, Kyoto University, Kyoto 606-8507, Japan
| | - Guillaume Adelmant
- The Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Shohei Matano
- Department of Medical Life Sciences, Yokohama City University, Yokohama 230-0045, Japan
| | - Olivier Kirsh
- Epigenetics and Cell Fate, University Paris Diderot, Sorbonne Paris Cité, UMR 7216 CNRS, 75013 Paris, France
| | - Rachel Amouroux
- MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK; Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Guillaume J Filion
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Wen Deng
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Maud de Dieuleveult
- Epigenetics and Cell Fate, University Paris Diderot, Sorbonne Paris Cité, UMR 7216 CNRS, 75013 Paris, France
| | - Lauriane Fritsch
- Epigenetics and Cell Fate, University Paris Diderot, Sorbonne Paris Cité, UMR 7216 CNRS, 75013 Paris, France
| | | | - Albert Jeltsch
- Institut für Biochemie, Stuttgart University, 70569 Stuttgart, Germany
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Petra Hajkova
- MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK; Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Jarrod A Marto
- The Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kyohei Arita
- Department of Medical Life Sciences, Yokohama City University, Yokohama 230-0045, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Wako, Saitama 351-0198, Japan.
| | - Pierre-Antoine Defossez
- Epigenetics and Cell Fate, University Paris Diderot, Sorbonne Paris Cité, UMR 7216 CNRS, 75013 Paris, France.
| |
Collapse
|
60
|
G9a coordinates with the RPA complex to promote DNA damage repair and cell survival. Proc Natl Acad Sci U S A 2017; 114:E6054-E6063. [PMID: 28698370 DOI: 10.1073/pnas.1700694114] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone methyltransferase G9a has critical roles in promoting cancer-cell growth and gene suppression, but whether it is also associated with the DNA damage response is rarely studied. Here, we report that loss of G9a impairs DNA damage repair and enhances the sensitivity of cancer cells to radiation and chemotherapeutics. In response to DNA double-strand breaks (DSBs), G9a is phosphorylated at serine 211 by casein kinase 2 (CK2) and recruited to chromatin. The chromatin-enriched G9a can then directly interact with replication protein A (RPA) and promote loading of the RPA and Rad51 recombinase to DSBs. This mechanism facilitates homologous recombination (HR) and cell survival. We confirmed the interaction between RPA and G9a to be critical for RPA foci formation and HR upon DNA damage. Collectively, our findings demonstrate a regulatory pathway based on CK2-G9a-RPA that permits HR in cancer cells and provide further rationale for the use of G9a inhibitors as a cancer therapeutic.
Collapse
|
61
|
Xiong Y, Li F, Babault N, Wu H, Dong A, Zeng H, Chen X, Arrowsmith CH, Brown PJ, Liu J, Vedadi M, Jin J. Structure-activity relationship studies of G9a-like protein (GLP) inhibitors. Bioorg Med Chem 2017; 25:4414-4423. [PMID: 28662962 DOI: 10.1016/j.bmc.2017.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/10/2017] [Accepted: 06/13/2017] [Indexed: 02/01/2023]
Abstract
Given the high homology between the protein lysine methyltransferases G9a-like protein (GLP) and G9a, it has been challenging to develop potent and selective inhibitors for either enzyme. Recently, we reported two quinazoline compounds, MS0124 and MS012, as GLP selective inhibitors. To further investigate the structure-activity relationships (SAR) of the quinazoline scaffold, we designed and synthesized a range of analogs bearing different 2-amino substitutions and evaluated their inhibition potencies against both GLP and G9a. These studies led to the identification of two new GLP selective inhibitors, 13 (MS3748) and 17 (MS3745), with 59- and 65-fold higher potency for GLP over G9a, which were confirmed by isothermal titration calorimetry (ITC). Crystal structures of GLP and G9a in complex with 13 and 17 provide insight into the interactions of the inhibitors with both proteins. In addition, we generated GLP selective inhibitors bearing a quinoline core instead of the quinazoline core.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Nicolas Babault
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Xin Chen
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jing Liu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Jian Jin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
62
|
Poulard C, Bittencourt D, Wu DY, Hu Y, Gerke DS, Stallcup MR. A post-translational modification switch controls coactivator function of histone methyltransferases G9a and GLP. EMBO Rep 2017; 18:1442-1459. [PMID: 28615290 DOI: 10.15252/embr.201744060] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/10/2017] [Accepted: 05/16/2017] [Indexed: 11/09/2022] Open
Abstract
Like many transcription regulators, histone methyltransferases G9a and G9a-like protein (GLP) can act gene-specifically as coregulators, but mechanisms controlling this specificity are mostly unknown. We show that adjacent post-translational methylation and phosphorylation regulate binding of G9a and GLP to heterochromatin protein 1 gamma (HP1γ), formation of a ternary complex with the glucocorticoid receptor (GR) on chromatin, and function of G9a and GLP as coactivators for a subset of GR target genes. HP1γ is recruited by G9a and GLP to GR binding sites associated with genes that require G9a, GLP, and HP1γ for glucocorticoid-stimulated transcription. At the physiological level, G9a and GLP coactivator function is required for glucocorticoid activation of genes that repress cell migration in A549 lung cancer cells. Thus, regulated methylation and phosphorylation serve as a switch controlling G9a and GLP coactivator function, suggesting that this mechanism may be a general paradigm for directing specific transcription factor and coregulator actions on different genes.
Collapse
Affiliation(s)
- Coralie Poulard
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Danielle Bittencourt
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Dai-Ying Wu
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Yixin Hu
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Daniel S Gerke
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
63
|
Zhang J, Yao D, Jiang Y, Huang J, Yang S, Wang J. Synthesis and biological evaluation of benzimidazole derivatives as the G9a Histone Methyltransferase inhibitors that induce autophagy and apoptosis of breast cancer cells. Bioorg Chem 2017; 72:168-181. [PMID: 28460359 DOI: 10.1016/j.bioorg.2017.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/19/2017] [Accepted: 04/13/2017] [Indexed: 01/06/2023]
Abstract
G9a (also known as KMT1C or EHMT2) is initially identified as a H3K9 methyltransferase that specifically mono- and dimethylates 'Lys-9' of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. It is overexpressed in various human cancers and employed as a promising target in cancer therapy. We discovered a benzoxazole scaffold through virtual high-throughput screening, and designed, synthesized 24 derivatives and investigated for inhibition of G9a. After several rounds of kinase and anti-proliferative activity screening, we discovered a potent G9a antagonist (GA001) with an IC50 value of 1.32μM that could induce autophagy via AMPK in MCF7 cells. In addition, we found high concentration of GA001 could induce apoptosis via p21-Bim signal cascades in MCF7 cells. Our results highlight a new approach for the development of a novel drug targeting G9a with a potential to induce autophagy and apoptosis for future breast cancer therapy.
Collapse
Affiliation(s)
- Jin Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dahong Yao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingnan Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shilin Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jinhui Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
64
|
Scheer S, Zaph C. The Lysine Methyltransferase G9a in Immune Cell Differentiation and Function. Front Immunol 2017; 8:429. [PMID: 28443098 PMCID: PMC5387087 DOI: 10.3389/fimmu.2017.00429] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
G9a (KMT1C, EHMT2) is a lysine methyltransferase (KMT) whose primary function is to di-methylate lysine 9 of histone H3 (H3K9me2). G9a-dependent H3K9me2 is associated with gene silencing and acts primarily through the recruitment of H3K9me2-binding proteins that prevent transcriptional activation. Gene repression via G9a-dependent H3K9me2 is critically required in embryonic stem (ES) cells for the development of cellular lineages by repressing expression of pluripotency factors. In the immune system, lymphoid cells such as T cells and innate lymphoid cells (ILCs) can differentiate from a naïve state into one of several effector lineages that require both activating and repressive mechanisms to maintain the correct gene expression program. Furthermore, the long-term immunity to re-infection is mediated by memory T cells, which also require specific gene expression and repression to maintain a quiescent state. In this review, we examine the molecular machinery of G9a-dependent functions, address the role of G9a in lymphoid cell differentiation and function, and identify potential functions of T cells and ILCs that may be controlled by G9a. Together, this review will highlight the dynamic nature of G9a-dependent H3K9me2 in the immune system and shed light on the nature of repressive epigenetic modifications in cellular lineage choice.
Collapse
Affiliation(s)
- Sebastian Scheer
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Colby Zaph
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
65
|
Jung H, Chae YC, Kim JY, Jeong OS, Kook H, Seo SB. Regulatory role of G9a and LSD1 in the Transcription of Olfactory Receptors during Leukaemia Cell Differentiation. Sci Rep 2017; 7:46182. [PMID: 28387360 PMCID: PMC5384044 DOI: 10.1038/srep46182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/10/2017] [Indexed: 01/31/2023] Open
Abstract
Recent studies have reported the ectopic expression of olfactory receptors (ORs) in non-olfactory tissues, however, their physiological roles were not well elucidated. ORs are expressed in and function in different types of cancers. Here, we identified that the H3K9me2 levels of several OR promoters decreased during differentiation in the HL-60, human myeloid leukaemia cell line, by all-trans-retinoic acid (ATRA). We found that the differential OR promoters H3K9me2 levels were regulated by G9a and LSD1, resulting in the decrease of ORs transcription during HL-60 differentiation. G9a and LSD1 could regulate the expression of ORs in several non-olfactory cells via the methylation and demethylation of H3K9me2. In addition, we demonstrated that knockdown of OR significantly reduced cell proliferation. Therefore, the epigenetic regulation of ORs transcription is critical for carcinogenesis.
Collapse
Affiliation(s)
- Hyeonsoo Jung
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Yun-Cheol Chae
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Ji-Young Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Oh-Seok Jeong
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Hoon Kook
- Environmental Health Center for Childhood Leukaemia and Cancer, Department of Pediatrics, Chonnam National University Hwasun Hospital, Hwasun 519-809, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| |
Collapse
|
66
|
Xiong Y, Li F, Babault N, Dong A, Zeng H, Wu H, Chen X, Arrowsmith CH, Brown PJ, Liu J, Vedadi M, Jin J. Discovery of Potent and Selective Inhibitors for G9a-Like Protein (GLP) Lysine Methyltransferase. J Med Chem 2017; 60:1876-1891. [PMID: 28135087 DOI: 10.1021/acs.jmedchem.6b01645] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
G9a-like protein (GLP) and G9a are highly homologous protein lysine methyltransferases (PKMTs) sharing approximately 80% sequence identity in their catalytic domains. GLP and G9a form a heterodimer complex and catalyze mono- and dimethylation of histone H3 lysine 9 and nonhistone substrates. Although they are closely related, GLP and G9a possess distinct physiological and pathophysiological functions. Thus, GLP or G9a selective small-molecule inhibitors are useful tools to dissect their distinct biological functions. We previously reported potent and selective G9a/GLP dual inhibitors including UNC0638 and UNC0642. Here we report the discovery of potent and selective GLP inhibitors including 4 (MS0124) and 18 (MS012), which are >30-fold and 140-fold selective for GLP over G9a and other methyltransferases, respectively. The cocrystal structures of GLP and G9a in the complex with either 4 or 18 displayed virtually identical binding modes and interactions, highlighting the challenges in structure-based design of selective inhibitors for either enzyme.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Nicolas Babault
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Xin Chen
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto , Toronto, Ontario M5G 2M9, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Jing Liu
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Jian Jin
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
67
|
Geng P, Zhang Y, Liu X, Zhang N, Liu Y, Liu X, Lin C, Yan X, Li Z, Wang G, Li Y, Tan J, Liu DX, Huang B, Lu J. Automethylation of protein arginine methyltransferase 7 and its impact on breast cancer progression. FASEB J 2017; 31:2287-2300. [PMID: 28188177 DOI: 10.1096/fj.201601196r] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/23/2017] [Indexed: 12/16/2022]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze protein arginine methylation and are linked to carcinogenesis and metastasis. Some members of PRMTs have been found to undergo automethylation; however, the biologic significance of this self-modification is not entirely clear. In this report, we demonstrate that R531 of PRMT7 is self-methylated, both in vitro and in vivo Automethylation of PRMT7 plays a key role in inducing the epithelial-mesenchymal transition (EMT) program and in promoting the migratory and invasive behavior of breast cancer cells. We also prove in a nude mouse model that expression of wild-type PRMT7 in MCF7 breast cancer cells promotes metastasis in vivo, in contrast to the PRMT7 R531K mutant (a mimic of the unmethylated status). Moreover, our immunohistochemical data unravel a close link between PRMT7 automethylation and the clinical outcome of breast carcinomas. Mechanistically, we determine that loss of PRMT7 automethylation leads to the reduction of its recruitment to the E-cadherin promoter by YY1, which consequently derepresses the E-cadherin expression through decreasing the H4R3me2s level. The findings in this work define a novel post-translational modification of PRMT7 that has a promoting impact on breast cancer metastasis.-Geng, P., Zhang, Y., Liu, X., Zhang, N., Liu, Y., Liu, X., Lin, C., Yan, X., Li, Z., Wang, G., Li, Y., Tan, J., Liu, D.-X., Huang, B., Lu, J. Automethylation of protein arginine methyltransferase 7 and its impact on breast cancer progression.
Collapse
Affiliation(s)
- Pengyu Geng
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yu Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaoqing Liu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Na Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yingqi Liu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Xin Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Cong Lin
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Xu Yan
- Pathological Diagnostic Center, The First Hospital of Jilin University, Changchun, China
| | - Zhongwei Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Guannan Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China; and
| | - Yuxin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China; and
| | - Jiang Tan
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Dong-Xu Liu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Baiqu Huang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China;
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China;
| |
Collapse
|
68
|
Chi L, Ahmed A, Roy AR, Vuong S, Cahill LS, Caporiccio L, Sled JG, Caniggia I, Wilson MD, Delgado-Olguin P. Ehmt2/G9a controls placental vascular maturation by activating the Notch pathway. Development 2017; 144:1976-1987. [DOI: 10.1242/dev.148916] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
Abstract
Defective fetoplacental vascular maturation causes intrauterine growth restriction (IUGR). A transcriptional switch initiates placental maturation where blood vessels elongate. However, cellular mechanisms and regulatory pathways involved are unknown. We show that the histone methyltransferase Ehmt2, also known as G9a, activates the Notch pathway to promote placental vascular maturation. Placental vasculature from embryos with G9a-deficient endothelial progenitor cells failed to expand due to decreased endothelial cell proliferation and increased trophoblast proliferation. Moreover, G9a deficiency altered the transcriptional switch initiating placental maturation and caused downregulation of Notch pathway effectors including Rbpj. Importantly, Notch pathway activation in G9a-deficient endothelial progenitors extended embryonic life and rescued placental vascular expansion. Thus, G9a activates the Notch pathway to balance endothelial cell and trophoblast proliferation and coordinates the transcriptional switch controlling placental vascular maturation. Accordingly, G9A and RBPJ were downregulated in human placentae from IUGR-affected pregnancies, suggesting that G9a is an important regulator in placental diseases caused by defective vascular maturation.
Collapse
Affiliation(s)
- Lijun Chi
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
| | - Abdalla Ahmed
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Anna R. Roy
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sandra Vuong
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lindsay S. Cahill
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Laura Caporiccio
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
| | - John G. Sled
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michael D. Wilson
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Paul Delgado-Olguin
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Heart & Stroke Richard Lewar Centre of Excellence, Toronto, ON, Canada
| |
Collapse
|
69
|
Sun L, Fang J. Epigenetic regulation of epithelial-mesenchymal transition. Cell Mol Life Sci 2016; 73:4493-4515. [PMID: 27392607 PMCID: PMC5459373 DOI: 10.1007/s00018-016-2303-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/10/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an essential process for morphogenesis and organ development which reversibly enables polarized epithelial cells to lose their epithelial characteristics and to acquire mesenchymal properties. It is now evident that the aberrant activation of EMT is also a critical mechanism to endow epithelial cancer cells with migratory and invasive capabilities associated with metastatic competence. This dedifferentiation program is mediated by a small cohort of pleiotropic transcription factors which orchestrate a complex array of epigenetic mechanisms for the wide-spread changes in gene expression. Here, we review major epigenetic mechanisms with an emphasis on histone modifications and discuss their implications in EMT and tumor progression. We also highlight mechanisms underlying transcription regulation concerted by various chromatin-modifying proteins and EMT-inducing transcription factors at different molecular layers. Owing to the reversible nature of epigenetic modifications, a thorough understanding of their functions in EMT will not only provide new insights into our knowledge of cancer progression and metastasis, but also facilitate the development of diagnostic and therapeutic strategies for human malignancy.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jia Fang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
70
|
Liang L, Gu X, Zhao JY, Wu S, Miao X, Xiao J, Mo K, Zhang J, Lutz BM, Bekker A, Tao YX. G9a participates in nerve injury-induced Kcna2 downregulation in primary sensory neurons. Sci Rep 2016; 6:37704. [PMID: 27874088 PMCID: PMC5118693 DOI: 10.1038/srep37704] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/01/2016] [Indexed: 12/25/2022] Open
Abstract
Nerve injury-induced downregulation of voltage-gated potassium channel subunit Kcna2 in the dorsal root ganglion (DRG) is critical for DRG neuronal excitability and neuropathic pain genesis. However, how nerve injury causes this downregulation is still elusive. Euchromatic histone-lysine N-methyltransferase 2, also known as G9a, methylates histone H3 on lysine residue 9 to predominantly produce a dynamic histone dimethylation, resulting in condensed chromatin and gene transcriptional repression. We showed here that blocking nerve injury-induced increase in G9a rescued Kcna2 mRNA and protein expression in the axotomized DRG and attenuated the development of nerve injury-induced pain hypersensitivity. Mimicking this increase decreased Kcna2 mRNA and protein expression, reduced Kv current, and increased excitability in the DRG neurons and led to spinal cord central sensitization and neuropathic pain-like symptoms. G9a mRNA is co-localized with Kcna2 mRNA in the DRG neurons. These findings indicate that G9a contributes to neuropathic pain development through epigenetic silencing of Kcna2 in the axotomized DRG.
Collapse
Affiliation(s)
- Lingli Liang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Xiyao Gu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Jian-Yuan Zhao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Xuerong Miao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Jifang Xiao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Kai Mo
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Jun Zhang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Brianna Marie Lutz
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.,Departments of Cell Biology &Molecular Medicine and Physiology, Pharmacology &Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
71
|
Carlson SM, Gozani O. Nonhistone Lysine Methylation in the Regulation of Cancer Pathways. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026435. [PMID: 27580749 DOI: 10.1101/cshperspect.a026435] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Proteins are regulated by an incredible array of posttranslational modifications (PTMs). Methylation of lysine residues on histone proteins is a PTM with well-established roles in regulating chromatin and epigenetic processes. The recent discovery that hundreds and likely thousands of nonhistone proteins are also methylated at lysine has opened a tremendous new area of research. Major cellular pathways involved in cancer, such as growth signaling and the DNA damage response, are regulated by lysine methylation. Although the field has developed quickly in recent years many fundamental questions remain to be addressed. We review the history and molecular functions of lysine methylation. We then discuss the enzymes that catalyze methylation of lysine residues, the enzymes that remove lysine methylation, and the cancer pathways known to be regulated by lysine methylation. The rest of the article focuses on two open questions that we suggest as a roadmap for future research. First is understanding the large number of candidate methyltransferase and demethylation enzymes whose enzymatic activity is not yet defined and which are potentially associated with cancer through genetic studies. Second is investigating the biological processes and cancer mechanisms potentially regulated by the multitude of lysine methylation sites that have been recently discovered.
Collapse
Affiliation(s)
- Scott M Carlson
- Department of Biology, Stanford University, Stanford, California 94305
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
72
|
Ubiquitination of Lysine 867 of the Human SETDB1 Protein Upregulates Its Histone H3 Lysine 9 (H3K9) Methyltransferase Activity. PLoS One 2016; 11:e0165766. [PMID: 27798683 PMCID: PMC5087952 DOI: 10.1371/journal.pone.0165766] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 10/17/2016] [Indexed: 11/22/2022] Open
Abstract
Posttranslational modifications (PTMs) of proteins play a crucial role in regulating protein-protein interactions, enzyme activity, subcellular localization, and stability of the protein. SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that regulates the methylation of histone H3 on lysine 9 (H3K9), gene silencing, and transcriptional repression. The C-terminal region of SETDB1 is a key site for PTMs, and is essential for its enzyme activity in mammalian and insect cells. In this study, we aimed to evaluate more precisely the effect of PTMs on the H3K9 methyltransferase activity of SETDB1. Using mass spectrometry analysis, we show that the C-terminal region of human SETDB1 purified from insect cells is ubiquitinated. We also demonstrate that the ubiquitination of lysine 867 of the human SETDB1 is necessary for full H3K9 methyltransferase activity in mammalian cells. Finally, we show that SETDB1 ubiquitination regulates the expression of its target gene, serpin peptidase inhibitor, clade E, member 1 (SERPINE1) by methylating H3K9. These results suggest that the ubiquitination of SETDB1 at lysine 867 controls the expression of its target gene by activating its H3K9 methyltransferase activity.
Collapse
|
73
|
Liu Q, Wang MW. Histone lysine methyltransferases as anti-cancer targets for drug discovery. Acta Pharmacol Sin 2016; 37:1273-1280. [PMID: 27397541 DOI: 10.1038/aps.2016.64] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Post-translational epigenetic modification of histones is controlled by a number of histone-modifying enzymes. Such modification regulates the accessibility of DNA and the subsequent expression or silencing of a gene. Human histone methyltransferases (HMTs)constitute a large family that includes histone lysine methyltransferases (HKMTs) and histone/protein arginine methyltransferases (PRMTs). There is increasing evidence showing a correlation between HKMTs and cancer pathogenesis. Here, we present an overview of representative HKMTs, including their biological and biochemical properties as well as the profiles of small molecule inhibitors for a comprehensive understanding of HKMTs in drug discovery.
Collapse
|
74
|
Abstract
Over the past 20 years, breakthrough discoveries of chromatin-modifying enzymes and associated mechanisms that alter chromatin in response to physiological or pathological signals have transformed our knowledge of epigenetics from a collection of curious biological phenomena to a functionally dissected research field. Here, we provide a personal perspective on the development of epigenetics, from its historical origins to what we define as 'the modern era of epigenetic research'. We primarily highlight key molecular mechanisms of and conceptual advances in epigenetic control that have changed our understanding of normal and perturbed development.
Collapse
Affiliation(s)
- C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York 10065, New York, USA
| | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, Freiburg D-79108, Germany
| |
Collapse
|
75
|
Zhang RH, Judson RN, Liu DY, Kast J, Rossi FMV. The lysine methyltransferase Ehmt2/G9a is dispensable for skeletal muscle development and regeneration. Skelet Muscle 2016; 6:22. [PMID: 27239264 PMCID: PMC4882833 DOI: 10.1186/s13395-016-0093-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022] Open
Abstract
Background Euchromatic histone-lysine N-methyltransferase 2 (G9a/Ehmt2) is the main enzyme responsible for the apposition of H3K9 di-methylation on histones. Due to its dual role as an epigenetic regulator and in the regulation of non-histone proteins through direct methylation, G9a has been implicated in a number of biological processes relevant to cell fate control. Recent reports employing in vitro cell lines indicate that Ehmt2 methylates MyoD to repress its transcriptional activity and therefore its ability to induce differentiation of activated myogenic cells. Methods To further investigate the importance of G9a in modulating myogenic regeneration in vivo, we crossed Ehmt2floxed mice to animals expressing Cre recombinase from the Myod locus, resulting in efficient knockout in the entire skeletal muscle lineage (Ehmt2ΔmyoD). Results Surprisingly, despite a dramatic drop in the global levels of H3K9me2, knockout animals did not show any developmental phenotype in muscle size and appearance. Consistent with this finding, purified Ehmt2ΔmyoD satellite cells had rates of activation and proliferation similar to wild-type controls. When induced to differentiate in vitro, Ehmt2 knockout cells differentiated with kinetics similar to those of control cells and demonstrated normal capacity to form myotubes. After acute muscle injury, knockout mice regenerated as efficiently as wildtype. To exclude possible compensatory mechanisms elicited by the loss of G9a during development, we restricted the knockout within adult satellite cells by crossing Ehmt2floxed mice to Pax7CreERT2 and also found normal muscle regeneration capacity. Conclusions Thus, Ehmt2 and H3K9me2 do not play significant roles in skeletal muscle development and regeneration in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0093-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Regan-Heng Zhang
- The Biomedical Research Centre, The University of British Columbia, Vancouver, Canada
| | - Robert N Judson
- The Biomedical Research Centre, The University of British Columbia, Vancouver, Canada
| | - David Y Liu
- The Biomedical Research Centre, The University of British Columbia, Vancouver, Canada
| | - Jürgen Kast
- The Biomedical Research Centre, The University of British Columbia, Vancouver, Canada
| | - Fabio M V Rossi
- The Biomedical Research Centre, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
76
|
Patel DJ. A Structural Perspective on Readout of Epigenetic Histone and DNA Methylation Marks. Cold Spring Harb Perspect Biol 2016; 8:a018754. [PMID: 26931326 DOI: 10.1101/cshperspect.a018754] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article outlines the protein modules that target methylated lysine histone marks and 5mC DNA marks, and the molecular principles underlying recognition. The article focuses on the structural basis underlying readout of isolated marks by single reader molecules, as well as multivalent readout of multiple marks by linked reader cassettes at the histone tail and nucleosome level. Additional topics addressed include the role of histone mimics, cross talk between histone marks, technological developments at the genome-wide level, advances using chemical biology approaches, the linkage between histone and DNA methylation, the role for regulatory lncRNAs, and the promise of chromatin-based therapeutic modalities.
Collapse
Affiliation(s)
- Dinshaw J Patel
- Structural Biology Department, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
77
|
Velez G, Lin M, Christensen T, Faubion WA, Lomberk G, Urrutia R. Evidence supporting a critical contribution of intrinsically disordered regions to the biochemical behavior of full-length human HP1γ. J Mol Model 2015; 22:12. [PMID: 26680990 PMCID: PMC4683166 DOI: 10.1007/s00894-015-2874-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 11/22/2015] [Indexed: 12/16/2022]
Abstract
HP1γ, a non-histone chromatin protein, has elicited significant attention because of its role in gene silencing, elongation, splicing, DNA repair, cell growth, differentiation, and many other cancer-associated processes, including therapy resistance. These characteristics make it an ideal target for developing small drugs for both mechanistic experimentation and potential therapies. While high-resolution structures of the two globular regions of HP1γ, the chromo- and chromoshadow domains, have been solved, little is currently known about the conformational behavior of the full-length protein. Consequently, in the current study, we use threading, homology-based molecular modeling, molecular mechanics calculations, and molecular dynamics simulations to develop models that allow us to infer properties of full-length HP1γ at an atomic resolution level. HP1γ appears as an elongated molecule in which three Intrinsically Disordered Regions (IDRs, 1, 2, and 3) endow this protein with dynamic flexibility, intermolecular recognition properties, and the ability to integrate signals from various intracellular pathways. Our modeling also suggests that the dynamic flexibility imparted to HP1γ by the three IDRs is important for linking nucleosomes with PXVXL motif-containing proteins, in a chromatin environment. The importance of the IDRs in intermolecular recognition is illustrated by the building and study of both IDR2 HP1γ−importin-α and IDR1 and IDR2 HP1γ−DNA complexes. The ability of the three IDRs for integrating cell signals is demonstrated by combined linear motif analyses and molecular dynamics simulations showing that posttranslational modifications can generate a histone mimetic sequence within the IDR2 of HP1γ, which when bound by the chromodomain can lead to an autoinhibited state. Combined, these data underscore the importance of IDRs 1, 2, and 3 in defining the structural and dynamic properties of HP1γ, discoveries that have both mechanistic and potentially biomedical relevance.
Collapse
Affiliation(s)
- Gabriel Velez
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Guggenheim 10, Rochester, MN, 55905, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biophysics, Mayo Clinic, Rochester, MN, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Marisa Lin
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Guggenheim 10, Rochester, MN, 55905, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biophysics, Mayo Clinic, Rochester, MN, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Trace Christensen
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Guggenheim 10, Rochester, MN, 55905, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biophysics, Mayo Clinic, Rochester, MN, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - William A Faubion
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Guggenheim 10, Rochester, MN, 55905, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biophysics, Mayo Clinic, Rochester, MN, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gwen Lomberk
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Guggenheim 10, Rochester, MN, 55905, USA. .,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biophysics, Mayo Clinic, Rochester, MN, USA. .,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Raul Urrutia
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Guggenheim 10, Rochester, MN, 55905, USA. .,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biophysics, Mayo Clinic, Rochester, MN, USA. .,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
78
|
Irving-Hooper BK, Binda O. A Phosphotyrosine Switch Controls the Association of Histone Mark Readers with Methylated Proteins. Biochemistry 2015; 55:1631-4. [PMID: 26562627 DOI: 10.1021/acs.biochem.5b01223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although histone post-translational modifications play a paramount role in controlling access to genetic information, our understanding of the precise mechanisms regulating chromatin signaling remains superficial. For instance, histone H3 trimethylated on lysine 9 (H3K9(me3)) favors the association of chromodomain proteins such as heterochromatin protein 1α (HP1α) with chromatin. However, HP1α and other such chromatin proteins are not covering all specific histone marks at all times. Thus, how are these reader-histone interactions regulated? We propose tyrosine phosphorylation within the aromatic cage of histone mark readers as a molecular switch that can either turn ON or OFF and even alter the specificity of reader-histone interactions. We have identified tyrosine phosphorylation events on the chromatin proteins HP1α and M-phase phosphoprotein 8 that regulate their association with methylated histones in vitro (synthetic peptides, calf thymus purified histones, and nucleosomes), but also in cells, thus controlling access to genetic information.
Collapse
Affiliation(s)
- Bronwyn Kate Irving-Hooper
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University , Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne, England NE2 4HH
| | - Olivier Binda
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University , Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne, England NE2 4HH
| |
Collapse
|
79
|
Zylicz JJ, Dietmann S, Günesdogan U, Hackett JA, Cougot D, Lee C, Surani MA. Chromatin dynamics and the role of G9a in gene regulation and enhancer silencing during early mouse development. eLife 2015; 4:e09571. [PMID: 26551560 PMCID: PMC4729692 DOI: 10.7554/elife.09571] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023] Open
Abstract
Early mouse development is accompanied by dynamic changes in chromatin modifications, including G9a-mediated histone H3 lysine 9 dimethylation (H3K9me2), which is essential for embryonic development. Here we show that genome-wide accumulation of H3K9me2 is crucial for postimplantation development, and coincides with redistribution of enhancer of zeste homolog 2 (EZH2)-dependent histone H3 lysine 27 trimethylation (H3K27me3). Loss of G9a or EZH2 results in upregulation of distinct gene sets involved in cell cycle regulation, germline development and embryogenesis. Notably, the H3K9me2 modification extends to active enhancer elements where it promotes developmentally-linked gene silencing and directly marks promoters and gene bodies. This epigenetic mechanism is important for priming gene regulatory networks for critical cell fate decisions in rapidly proliferating postimplantation epiblast cells.
Collapse
Affiliation(s)
- Jan J Zylicz
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Sabine Dietmann
- Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ufuk Günesdogan
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jamie A Hackett
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Delphine Cougot
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Caroline Lee
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - M Azim Surani
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
80
|
Zhang X, Huang Y, Shi X. Emerging roles of lysine methylation on non-histone proteins. Cell Mol Life Sci 2015; 72:4257-72. [PMID: 26227335 PMCID: PMC11114002 DOI: 10.1007/s00018-015-2001-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/27/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
Lysine methylation is a common posttranslational modification (PTM) of histones that is important for the epigenetic regulation of transcription and chromatin in eukaryotes. Increasing evidence demonstrates that in addition to histones, lysine methylation also occurs on various non-histone proteins, especially transcription- and chromatin-regulating proteins. In this review, we will briefly describe the histone lysine methyltransferases (KMTs) that have a broad spectrum of non-histone substrates. We will use p53 and nuclear receptors, especially estrogen receptor alpha, as examples to discuss the dynamic nature of non-histone protein lysine methylation, the writers, erasers, and readers of these modifications, and the crosstalk between lysine methylation and other PTMs in regulating the functions of the modified proteins. Understanding the roles of lysine methylation in normal cells and during development will shed light on the complex biology of diseases associated with the dysregulation of lysine methylation on both histones and non-histone proteins.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yaling Huang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The Genes and Development and the Epigenetics and Molecular Carcinogenesis Graduate Programs, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
81
|
Shi J, Cao J, Zhou BP. Twist-BRD4 complex: potential drug target for basal-like breast cancer. Curr Pharm Des 2015; 21:1256-61. [PMID: 25506891 DOI: 10.2174/1381612821666141211153853] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 12/05/2014] [Indexed: 01/02/2023]
Abstract
As an important basic helix-loop-helix (bHLH) transcription factor, Twist associates with several physiological processes such as mesodermal development, and pathological processes such as Saethre-Chotzen syndrome. During cancer progression, Twist induces epithelial-mesenchymal transition (EMT), potentiating cancer cell invasion and metastasis. Although many studies have revealed its multiple biological roles, it remained unclear how Twist transcriptionally activates targeted genes. Recently we discovered tip60-mediated Twist di-acetylation in the ''histone H4-mimic'' GK-X-GK motif. The di-acetylated Twist recruits BRD4 and related transcriptional components to super-enhancer of its targeted genes during progression of basal-like breast cancer (BLBC). Here, we review this new advance of regulation and functional mechanism of Twist.
Collapse
|
82
|
Simon JM, Parker JS, Liu F, Rothbart SB, Ait-Si-Ali S, Strahl BD, Jin J, Davis IJ, Mosley AL, Pattenden SG. A Role for Widely Interspaced Zinc Finger (WIZ) in Retention of the G9a Methyltransferase on Chromatin. J Biol Chem 2015; 290:26088-102. [PMID: 26338712 PMCID: PMC4646261 DOI: 10.1074/jbc.m115.654459] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/23/2015] [Indexed: 11/06/2022] Open
Abstract
G9a and GLP lysine methyltransferases form a heterodimeric complex that is responsible for the majority of histone H3 lysine 9 mono- and di-methylation (H3K9me1/me2). Widely interspaced zinc finger (WIZ) associates with the G9a-GLP protein complex, but its role in mediating lysine methylation is poorly defined. Here, we show that WIZ regulates global H3K9me2 levels by facilitating the interaction of G9a with chromatin. Disrupting the association of G9a-GLP with chromatin by depleting WIZ resulted in altered gene expression and protein-protein interactions that were distinguishable from that of small molecule-based inhibition of G9a/GLP, supporting discrete functions of the G9a-GLP-WIZ chromatin complex in addition to H3K9me2 methylation.
Collapse
Affiliation(s)
- Jeremy M Simon
- From the Carolina Institute for Developmental Disabilities, Department of Cell Biology and Physiology, and the Department of Genetics, Curriculum in Bioinformatics and Computational Biology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joel S Parker
- the Department of Genetics and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Feng Liu
- the Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599
| | - Scott B Rothbart
- the Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Slimane Ait-Si-Ali
- the Laboratoire Epigénétique et Destin Cellulaire, UMR7216, CNRS, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Brian D Strahl
- the Lineberger Comprehensive Cancer Center, the Curriculum in Genetics and Molecular Biology, and the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jian Jin
- the Department of Structural and Chemical Biology, the Department of Oncological Sciences, and the Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ian J Davis
- the Department of Genetics, the Lineberger Comprehensive Cancer Center, the Department of Pediatrics, and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and
| | - Amber L Mosley
- the Department of Biochemistry and Molecular Biology and the Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Samantha G Pattenden
- the Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599,
| |
Collapse
|
83
|
Sound of silence: the properties and functions of repressive Lys methyltransferases. Nat Rev Mol Cell Biol 2015. [PMID: 26204160 DOI: 10.1038/nrm4029] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The methylation of histone Lys residues by Lys methyltransferases (KMTs) regulates chromatin organization and either activates or represses gene expression, depending on the residue that is targeted. KMTs are emerging as key components in several cellular processes, and their deregulation is often associated with pathogenesis. Here, we review the current knowledge on the main KMTs that are associated with gene silencing: namely, those responsible for methylating histone H3 Lys 9 (H3K9), H3K27 and H4K20. We discuss their biochemical properties and the various mechanisms by which they are targeted to the chromatin and regulate gene expression, as well as new data on the interplay between them and other chromatin modifiers.
Collapse
|
84
|
Kramer JM. Regulation of cell differentiation and function by the euchromatin histone methyltranserfases G9a and GLP. Biochem Cell Biol 2015. [PMID: 26198080 DOI: 10.1139/bcb-2015-0017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The euchromatin histone methyltransferases (EHMTs) are an evolutionarily conserved protein family that are known for their ability to dimethylate histone 3 at lysine 9 in euchromatic regions of the genome. In mammals there are two EHMT proteins, G9a, encoded by EHMT2, and GLP, encoded by EHMT1. EHMTs have diverse roles in the differentiation of different tissues and cell types and are involved in adult-specific processes like memory, drug addiction, and immune response. This review discusses recent findings from rodent and Drosophila models that are beginning to reveal the broad biological role and complex mechanistic functioning of EHMT proteins.
Collapse
Affiliation(s)
- Jamie M Kramer
- Department of Physiology and Pharmacology, Department of Biology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
85
|
Mozzetta C, Pontis J, Ait-Si-Ali S. Functional Crosstalk Between Lysine Methyltransferases on Histone Substrates: The Case of G9A/GLP and Polycomb Repressive Complex 2. Antioxid Redox Signal 2015; 22:1365-81. [PMID: 25365549 PMCID: PMC4432786 DOI: 10.1089/ars.2014.6116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Methylation of histone H3 on lysine 9 and 27 (H3K9 and H3K27) are two epigenetic modifications that have been linked to several crucial biological processes, among which are transcriptional silencing and cell differentiation. RECENT ADVANCES Deposition of these marks is catalyzed by H3K9 lysine methyltransferases (KMTs) and polycomb repressive complex 2, respectively. Increasing evidence is emerging in favor of a functional crosstalk between these two major KMT families. CRITICAL ISSUES Here, we review the current knowledge on the mechanisms of action and function of these enzymes, with particular emphasis on their interplay in the regulation of chromatin states and biological processes. We outline their crucial roles played in tissue homeostasis, by controlling the fate of embryonic and tissue-specific stem cells, highlighting how their deregulation is often linked to the emergence of a number of malignancies and neurological disorders. FUTURE DIRECTIONS Histone methyltransferases are starting to be tested as drug targets. A new generation of highly selective chemical inhibitors is starting to emerge. These hold great promise for a rapid translation of targeting epigenetic drugs into clinical practice for a number of aggressive cancers and neurological disorders.
Collapse
Affiliation(s)
- Chiara Mozzetta
- Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, Université Paris Diderot , Sorbonne Paris Cité, Paris, France
| | | | | |
Collapse
|
86
|
Treviño LS, Wang Q, Walker CL. Phosphorylation of epigenetic "readers, writers and erasers": Implications for developmental reprogramming and the epigenetic basis for health and disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:8-13. [PMID: 25841987 DOI: 10.1016/j.pbiomolbio.2015.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/23/2015] [Indexed: 02/06/2023]
Abstract
Epigenetic reprogramming that occurs during critical periods of development can increase the susceptibility to many diseases in adulthood. Programming of the epigenome during development occurs via the activity of a variety of epigenetic modifiers, including "readers, writers and erasers" of histone methyl marks. Posttranslational modification of these programmers can alter their activity, resulting in global or gene-specific changes in histone methylation and gene transcription. This review summarizes what is currently known about phosphorylation of histone methyltransferases ("writers"), demethylases ("erasers") and effector proteins ("readers) that program the epigenome, and the impact of this posttranslational modification on their activity. Understanding how the activity of these epigenetic programmers is perturbed by environmental exposures via changes in phosphorylation is key to understanding mechanisms of developmental reprogramming and the epigenetic basis of health and disease.
Collapse
Affiliation(s)
- Lindsey S Treviño
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Quan Wang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Cheryl L Walker
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA.
| |
Collapse
|
87
|
Affiliation(s)
- Manuel M. Müller
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
88
|
Kim KB, Son HJ, Choi S, Hahm JY, Jung H, Baek HJ, Kook H, Hahn Y, Kook H, Seo SB. H3K9 methyltransferase G9a negatively regulates UHRF1 transcription during leukemia cell differentiation. Nucleic Acids Res 2015; 43:3509-23. [PMID: 25765655 PMCID: PMC4402520 DOI: 10.1093/nar/gkv183] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/23/2015] [Indexed: 01/03/2023] Open
Abstract
Histone H3K9 methyltransferase (HMTase) G9a-mediated transcriptional repression is a major epigenetic silencing mechanism. UHRF1 (ubiquitin-like with PHD and ring finger domains 1) binds to hemimethylated DNA and plays an essential role in the maintenance of DNA methylation. Here, we provide evidence that UHRF1 is transcriptionally downregulated by H3K9 HMTase G9a. We found that increased expression of G9a along with transcription factor YY1 specifically represses UHRF1 transcription during TPA-mediated leukemia cell differentiation. Using ChIP analysis, we found that UHRF1 was among the transcriptionally silenced genes during leukemia cell differentiation. Using a DNA methylation profiling array, we discovered that the UHRF1 promoter was hypomethylated in samples from leukemia patients, further supporting its overexpression and oncogenic activity. Finally, we showed that G9a regulates UHRF1-mediated H3K23 ubiquitination and proper DNA replication maintenance. Therefore, we propose that H3K9 HMTase G9a is a specific epigenetic regulator of UHRF1.
Collapse
Affiliation(s)
- Kee-Beom Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756
| | - Hye-Ju Son
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756
| | - Sulji Choi
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756
| | - Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756
| | - Hyeonsoo Jung
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756
| | - Hee Jo Baek
- Environmental Health Center for Childhood Leukemia and Cancer, Department of Pediatrics, Chonnam National University Hwasun Hospital, Hwasun 519-809
| | - Hoon Kook
- Environmental Health Center for Childhood Leukemia and Cancer, Department of Pediatrics, Chonnam National University Hwasun Hospital, Hwasun 519-809
| | - Yoonsoo Hahn
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756
| | - Hyun Kook
- Medical Research Center for Gene Regulation and Department of Pharmacology, Chonnam National University, Gwangju 501-746, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756
| |
Collapse
|
89
|
Maganti AV, Maier B, Tersey SA, Sampley ML, Mosley AL, Özcan S, Pachaiyappan B, Woster PM, Hunter CS, Stein R, Mirmira RG. Transcriptional activity of the islet β cell factor Pdx1 is augmented by lysine methylation catalyzed by the methyltransferase Set7/9. J Biol Chem 2015; 290:9812-22. [PMID: 25713082 DOI: 10.1074/jbc.m114.616219] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/21/2022] Open
Abstract
The transcription factor Pdx1 is crucial to islet β cell function and regulates target genes in part through interaction with coregulatory factors. Set7/9 is a Lys methyltransferase that interacts with Pdx1. Here we tested the hypothesis that Lys methylation of Pdx1 by Set7/9 augments Pdx1 transcriptional activity. Using mass spectrometry and mutational analysis of purified proteins, we found that Set7/9 methylates the N-terminal residues Lys-123 and Lys-131 of Pdx1. Methylation of these residues occurred only in the context of intact, full-length Pdx1, suggesting a specific requirement of secondary and/or tertiary structural elements for catalysis by Set7/9. Immunoprecipitation assays and mass spectrometric analysis using β cells verified Lys methylation of endogenous Pdx1. Cell-based luciferase reporter assays using wild-type and mutant transgenes revealed a requirement of Pdx1 residue Lys-131, but not Lys-123, for transcriptional augmentation by Set7/9. Lys-131 was not required for high-affinity interactions with DNA in vitro, suggesting that its methylation likely enhances post-DNA binding events. To define the role of Set7/9 in β cell function, we generated mutant mice in which the gene encoding Set7/9 was conditionally deleted in β cells (Set(Δ)β). Set(Δ)β mice exhibited glucose intolerance similar to Pdx1-deficient mice, and their isolated islets showed impaired glucose-stimulated insulin secretion with reductions in expression of Pdx1 target genes. Our results suggest a previously unappreciated role for Set7/9-mediated methylation in the maintenance of Pdx1 activity and β cell function.
Collapse
Affiliation(s)
| | - Bernhard Maier
- Department of Pediatrics and the Herman B. Wells Center for Pediatric Research
| | - Sarah A Tersey
- Department of Pediatrics and the Herman B. Wells Center for Pediatric Research
| | - Megan L Sampley
- the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | | | - Sabire Özcan
- the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Boobalan Pachaiyappan
- the Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, and
| | - Patrick M Woster
- the Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, and
| | - Chad S Hunter
- the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Roland Stein
- the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Raghavendra G Mirmira
- From the Department of Cellular and Integrative Physiology, Department of Pediatrics and the Herman B. Wells Center for Pediatric Research, Department of Biochemistry and Molecular Biology, and Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202,
| |
Collapse
|
90
|
Liu N, Zhang Z, Wu H, Jiang Y, Meng L, Xiong J, Zhao Z, Zhou X, Li J, Li H, Zheng Y, Chen S, Cai T, Gao S, Zhu B. Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. Genes Dev 2015; 29:379-93. [PMID: 25637356 PMCID: PMC4335294 DOI: 10.1101/gad.254425.114] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
GLP and G9a are major H3K9 dimethylases essential for mouse early embryonic development. Here, Liu et al. report that the histone methyltransferase activities of GLP and G9a are stimulated by neighboring nucleosomes that are premethylated at H3K9. In mouse embryonic stem cells harboring a mutant GLP that lacks H3K9me1-binding activity, critical pluripotent genes displayed inefficient establishment of H3K9me2 and delayed gene silencing during differentiation. Mice carrying the H3K9me1-binding mutant form of GLP displayed embryonic growth retardation and defects in calvaria bone formation. GLP and G9a are major H3K9 dimethylases and are essential for mouse early embryonic development. GLP and G9a both harbor ankyrin repeat domains that are capable of binding H3K9 methylation. However, the functional significance of their recognition of H3K9 methylation is unknown. Here, we report that the histone methyltransferase activities of GLP and G9a are stimulated by neighboring nucleosomes that are premethylated at H3K9. These stimulation events function in cis and are dependent on the H3K9 methylation binding activities of ankyrin repeat domains of GLP and G9a. Disruption of the H3K9 methylation-binding activity of GLP in mice causes growth retardation of embryos, ossification defects of calvaria, and postnatal lethality due to starvation of the pups. In mouse embryonic stem cells (ESCs) harboring a mutant GLP that lacks H3K9me1-binding activity, critical pluripotent genes, including Oct4 and Nanog, display inefficient establishment of H3K9me2 and delayed gene silencing during differentiation. Collectively, our study reveals a new activation mechanism for GLP and G9a that plays an important role in ESC differentiation and mouse viability.
Collapse
Affiliation(s)
- Nan Liu
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province 130012, China;
| | - Yonghua Jiang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lingjun Meng
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jun Xiong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zuodong Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaohua Zhou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jia Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hong Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yong Zheng
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shaorong Gao
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Bing Zhu
- National Institute of Biological Sciences, Beijing 102206, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
91
|
Di Giacomo M, Comazzetto S, Sampath SC, Sampath SC, O'Carroll D. G9a co-suppresses LINE1 elements in spermatogonia. Epigenetics Chromatin 2014; 7:24. [PMID: 25276231 PMCID: PMC4177377 DOI: 10.1186/1756-8935-7-24] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/26/2014] [Indexed: 01/15/2023] Open
Abstract
Background Repression of retrotransposons is essential for genome integrity and the development of germ cells. Among retrotransposons, the establishment of CpG DNA methylation and epigenetic silencing of LINE1 (L1) elements and the intracisternal A particle (IAP) endogenous retrovirus (ERV) is dependent upon the piRNA pathway during embryonic germ cell reprogramming. Furthermore, the Piwi protein Mili, guided by piRNAs, cleaves expressed L1 transcripts to post-transcriptionally enforce L1 silencing in meiotic cells. The loss of both DNA methylation and the Mili piRNA pathway does not affect L1 silencing in the mitotic spermatogonia where histone H3 lysine 9 dimethylation (H3K9me2) is postulated to co-repress these elements. Results Here we show that the histone H3 lysine 9 dimethyltransferase G9a co-suppresses L1 elements in spermatogonia. In the absence of both a functional piRNA pathway and L1 DNA methylation, G9a is both essential and sufficient to silence L1 elements. In contrast, H3K9me2 alone is insufficient to maintain IAP silencing in spermatogonia. The loss of all three repressive mechanisms has a major impact on spermatogonial populations inclusive of spermatogonial stem cells, with the loss of all germ cells observed in a high portion of seminiferous tubules. Conclusions Our study identifies G9a-mediated H3K9me2 as a novel and important L1 repressive mechanism in the germ line. We also demonstrate fundamental differences in the requirements for the maintenance of L1 and IAP silencing during adult spermatogenesis, where H3K9me2 is sufficient to maintain L1 but not IAP silencing. Finally, we demonstrate that repression of retrotransposon activation in spermatogonia is important for the survival of this population and testicular homeostasis.
Collapse
Affiliation(s)
- Monica Di Giacomo
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Via Ramarini 32, Monterotondo Scalo 00015, Italy
| | - Stefano Comazzetto
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Via Ramarini 32, Monterotondo Scalo 00015, Italy
| | - Srihari C Sampath
- Genetics Department, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Srinath C Sampath
- Genetics Department, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Dónal O'Carroll
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Via Ramarini 32, Monterotondo Scalo 00015, Italy
| |
Collapse
|
92
|
Abstract
Post-translational modifications provide a fine-tuned control of protein function(s) in the cell. The well-known tumour suppressor p53 is subject to many post-translational modifications, which alter its activity, localization and stability, thus ultimately modulating its response to various forms of genotoxic stress. In this review, we focus on the role of recently discovered lysine-specific modifications of p53, methylation and acetylation in particular, and their effects on p53 activity in damaged cells. We also discuss a possibility of mutual influence of covalent modifications in the p53 and histone proteins located in the vicinity of p53 binding sites in chromatin and propose important ramifications stemming from this hypothesis.
Collapse
|
93
|
Busslinger M, Tarakhovsky A. Epigenetic control of immunity. Cold Spring Harb Perspect Biol 2014; 6:6/6/a019307. [PMID: 24890513 DOI: 10.1101/cshperspect.a019307] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immunity relies on the heterogeneity of immune cells and their ability to respond to pathogen challenges. In the adaptive immune system, lymphocytes display a highly diverse antigen receptor repertoire that matches the vast diversity of pathogens. In the innate immune system, the cell's heterogeneity and phenotypic plasticity enable flexible responses to changes in tissue homeostasis caused by infection or damage. The immune responses are calibrated by the graded activity of immune cells that can vary from yeast-like proliferation to lifetime dormancy. This article describes key epigenetic processes that contribute to the function of immune cells during health and disease.
Collapse
Affiliation(s)
- Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, A-1030 Vienna, Austria
| | - Alexander Tarakhovsky
- Laboratory of Lymphocyte Signaling, The Rockefeller University, New York, New York 10021
| |
Collapse
|
94
|
Emerging technologies to map the protein methylome. J Mol Biol 2014; 426:3350-62. [PMID: 24805349 DOI: 10.1016/j.jmb.2014.04.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 01/26/2023]
Abstract
Protein methylation plays an integral role in cellular signaling, most notably by modulating proteins bound at chromatin and increasingly through regulation of non-histone proteins. One central challenge in understanding how methylation acts in signaling is identifying and measuring protein methylation. This includes locus-specific modification of histones, on individual non-histone proteins, and globally across the proteome. Protein methylation has been studied traditionally using candidate approaches such as methylation-specific antibodies, mapping of post-translational modifications by mass spectrometry, and radioactive labeling to characterize methylation on target proteins. Recent developments have provided new approaches to identify methylated proteins, measure methylation levels, identify substrates of methyltransferase enzymes, and match methylated proteins to methyl-specific reader domains. Methyl-binding protein domains and improved antibodies with broad specificity for methylated proteins are being used to characterize the "protein methylome". They also have the potential to be used in high-throughput assays for inhibitor screens and drug development. These tools are often coupled to improvements in mass spectrometry to quickly identify methylated residues, as well as to protein microarrays, where they can be used to screen for methylated proteins. Finally, new chemical biology strategies are being used to probe the function of methyltransferases, demethylases, and methyl-binding "reader" domains. These tools create a "system-level" understanding of protein methylation and integrate protein methylation into broader signaling processes.
Collapse
|
95
|
Schaefer U, Ho JSY, Prinjha RK, Tarakhovsky A. The "histone mimicry" by pathogens. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2014; 78:81-90. [PMID: 24733380 DOI: 10.1101/sqb.2013.78.020339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the defining characteristics of human and animal viruses is their ability to suppress host antiviral responses. Viruses express proteins that impair the detection of viral nucleic acids by host pattern-recognition receptors, block signaling pathways that lead to the synthesis of type I interferons and other cytokines, or prevent the activation of virus-induced genes. We have identified a novel mechanism of virus-mediated suppression of antiviral gene expression that relies on the presence of histone-like sequences (histone mimics) in viral proteins. We describe how viral histone mimics can interfere with key regulators of gene expression and contribute to the suppression of antiviral responses. We also describe how viral histone mimics can facilitate the identification of novel mechanisms of antiviral gene regulation and lead to the development of drugs that use histone mimicry for interference with gene expression during diseases.
Collapse
Affiliation(s)
- Uwe Schaefer
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, New York 10065
| | - Jessica S Y Ho
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, New York 10065 Laboratory of Methyltransferases in Development and Disease, Institute of Molecular and Cell Biology (IMCB), Singapore 138673
| | - Rab K Prinjha
- Epinova DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage SG1 2NY, United Kingdom
| | - Alexander Tarakhovsky
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, New York 10065
| |
Collapse
|
96
|
Lanouette S, Mongeon V, Figeys D, Couture JF. The functional diversity of protein lysine methylation. Mol Syst Biol 2014; 10:724. [PMID: 24714364 PMCID: PMC4023394 DOI: 10.1002/msb.134974] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Large‐scale characterization of post‐translational modifications (PTMs), such as phosphorylation, acetylation and ubiquitination, has highlighted their importance in the regulation of a myriad of signaling events. While high‐throughput technologies have tremendously helped cataloguing the proteins modified by these PTMs, the identification of lysine‐methylated proteins, a PTM involving the transfer of one, two or three methyl groups to the ε‐amine of a lysine side chain, has lagged behind. While the initial findings were focused on the methylation of histone proteins, several studies have recently identified novel non‐histone lysine‐methylated proteins. This review provides a compilation of all lysine methylation sites reported to date. We also present key examples showing the impact of lysine methylation and discuss the circuitries wired by this important PTM.
Collapse
Affiliation(s)
- Sylvain Lanouette
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | | | | | | |
Collapse
|
97
|
Liu Y, Liu K, Qin S, Xu C, Min J. Epigenetic targets and drug discovery: part 1: histone methylation. Pharmacol Ther 2014; 143:275-94. [PMID: 24704322 DOI: 10.1016/j.pharmthera.2014.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/24/2014] [Indexed: 01/10/2023]
Abstract
Dynamic chromatin structure is modulated by post-translational modifications on histones, such as acetylation, phosphorylation and methylation. Research on histone methylation has become the most flourishing area of epigenetics in the past fourteen years, and a large amount of data has been accumulated regarding its biology and disease implications. Correspondingly, a lot of efforts have been made to develop small molecule compounds that can specifically modulate histone methyltransferases and methylation reader proteins, aiming for potential therapeutic drugs. Here, we summarize recent progress in chemical probe and drug discovery of histone methyltransferases and methylation reader proteins. For each target, we will review their biological/biochemical functions first, and then focus on their disease implications and drug discovery. We can also see that structure-based compound design and optimization plays a critical role in facilitating the development of highly potent and selective chemical probes and inhibitors for these targets.
Collapse
Affiliation(s)
- Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Su Qin
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
98
|
Maze I, Chaudhury D, Dietz DM, Von Schimmelmann M, Kennedy PJ, Lobo MK, Daws SE, Miller ML, Bagot RC, Sun H, Turecki G, Neve RL, Hurd YL, Shen L, Han MH, Schaefer A, Nestler EJ. G9a influences neuronal subtype specification in striatum. Nat Neurosci 2014; 17:533-9. [PMID: 24584053 PMCID: PMC3972624 DOI: 10.1038/nn.3670] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 02/04/2014] [Indexed: 12/13/2022]
Abstract
Cocaine-mediated repression of the histone methyltransferase (HMT) G9a has recently been implicated in transcriptional, morphological and behavioral responses to chronic cocaine administration. Here, using a ribosomal affinity purification approach, we found that G9a repression by cocaine occurred in both Drd1-expressing (striatonigral) and Drd2-expressing (striatopallidal) medium spiny neurons. Conditional knockout and overexpression of G9a within these distinct cell types, however, revealed divergent behavioral phenotypes in response to repeated cocaine treatment. Our studies further indicated that such developmental deletion of G9a selectively in Drd2 neurons resulted in the unsilencing of transcriptional programs normally specific to striatonigral neurons and in the acquisition of Drd1-associated projection and electrophysiological properties. This partial striatopallidal to striatonigral 'switching' phenotype in mice indicates a new role for G9a in contributing to neuronal subtype identity and suggests a critical function for cell type-specific histone methylation patterns in the regulation of behavioral responses to environmental stimuli.
Collapse
Affiliation(s)
- Ian Maze
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller
University, New York, New York 10065, USA
| | - Dipesh Chaudhury
- Department of Pharmacology and Systems Therapeutics, Friedman Brain
Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
USA
| | - David M. Dietz
- Department of Pharmacology and Toxicology, University at Buffalo,
Buffalo, New York, 14214, USA
| | - Melanie Von Schimmelmann
- Fishberg Department of Neuroscience and Friedman Brain Institute,
Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Pamela J. Kennedy
- Department of Psychology, University of California, Los Angeles, Los
Angeles, California 90095, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland
School of Medicine, Baltimore, Maryland 21201, USA
| | - Stephanie E. Daws
- Fishberg Department of Neuroscience and Friedman Brain Institute,
Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai,
New York, New York 10029, USA
| | - Michael L. Miller
- Fishberg Department of Neuroscience and Friedman Brain Institute,
Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Rosemary C. Bagot
- Fishberg Department of Neuroscience and Friedman Brain Institute,
Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - HaoSheng Sun
- Fishberg Department of Neuroscience and Friedman Brain Institute,
Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Gustavo Turecki
- Depressive Disorders Program, Douglas Mental Health University and
McGill University, Montréal, Québec H4H 1R3, Canada
| | - Rachael L. Neve
- Department of Brain and Cognitive Science, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, USA
| | - Yasmin L. Hurd
- Department of Pharmacology and Systems Therapeutics, Friedman Brain
Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
USA
- Fishberg Department of Neuroscience and Friedman Brain Institute,
Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai,
New York, New York 10029, USA
| | - Li Shen
- Fishberg Department of Neuroscience and Friedman Brain Institute,
Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ming-Hu Han
- Department of Pharmacology and Systems Therapeutics, Friedman Brain
Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
USA
- Fishberg Department of Neuroscience and Friedman Brain Institute,
Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Anne Schaefer
- Fishberg Department of Neuroscience and Friedman Brain Institute,
Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Eric J. Nestler
- Department of Pharmacology and Systems Therapeutics, Friedman Brain
Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
USA
- Fishberg Department of Neuroscience and Friedman Brain Institute,
Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
99
|
Moore KE, Gozani O. An unexpected journey: lysine methylation across the proteome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1395-403. [PMID: 24561874 DOI: 10.1016/j.bbagrm.2014.02.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/11/2014] [Indexed: 12/17/2022]
Abstract
The dynamic modification of histone proteins by lysine methylation has emerged over the last decade as a key regulator of chromatin functions. In contrast, our understanding of the biological roles for lysine methylation of non-histone proteins has progressed more slowly. Though recently it has attracted less attention, ε-methyl-lysine in non-histone proteins was first observed over 50 years ago. In that time, it has become clear that, like the case for histones, non-histone methylation represents a key and common signaling process within the cell. Recent work suggests that non-histone methylation occurs on hundreds of proteins found in both the nucleus and the cytoplasm, and with important biomedical implications. Technological advances that allow us to identify lysine methylation on a proteomic scale are opening new avenues in the non-histone methylation field, which is poised for dramatic growth. Here, we review historical and recent findings in non-histone lysine methylation signaling, highlight new methods that are expanding opportunities in the field, and discuss outstanding questions and future challenges about the role of this fundamental post-translational modification (PTM).
Collapse
Affiliation(s)
- Kaitlyn E Moore
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
100
|
Mozzetta C, Pontis J, Fritsch L, Robin P, Portoso M, Proux C, Margueron R, Ait-Si-Ali S. The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing. Mol Cell 2014; 53:277-89. [PMID: 24389103 DOI: 10.1016/j.molcel.2013.12.005] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/12/2013] [Accepted: 11/26/2013] [Indexed: 12/13/2022]
Abstract
G9a/GLP and Polycomb Repressive Complex 2 (PRC2) are two major epigenetic silencing machineries, which in particular methylate histone H3 on lysines 9 and 27 (H3K9 and H3K27), respectively. Although evidence of a crosstalk between H3K9 and H3K27 methylations has started to emerge, their actual interplay remains elusive. Here, we show that PRC2 and G9a/GLP interact physically and functionally. Moreover, combining different genome-wide approaches, we demonstrate that Ezh2 and G9a/GLP share an important number of common genomic targets, encoding developmental and neuronal regulators. Furthermore, we show that G9a enzymatic activity modulates PRC2 genomic recruitment to a subset of its target genes. Taken together, our findings demonstrate an unanticipated interplay between two main histone lysine methylation mechanisms, which cooperate to maintain silencing of a subset of developmental genes.
Collapse
Affiliation(s)
- Chiara Mozzetta
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, 35 rue Hélène Brion, 75013 Paris, France.
| | - Julien Pontis
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, 35 rue Hélène Brion, 75013 Paris, France
| | - Lauriane Fritsch
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, 35 rue Hélène Brion, 75013 Paris, France
| | - Philippe Robin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, 35 rue Hélène Brion, 75013 Paris, France
| | - Manuela Portoso
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; UMR3215 CNRS, 26 rue d'Ulm, 75005 Paris, France; U934 INSERM, 26 rue d'Ulm, 75005 Paris, France
| | - Caroline Proux
- Institut Pasteur, PF2 Plate-forme Transcriptome et Epigénome, 28 rue du Dr Roux, Paris, 75015 France
| | - Raphaël Margueron
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; UMR3215 CNRS, 26 rue d'Ulm, 75005 Paris, France; U934 INSERM, 26 rue d'Ulm, 75005 Paris, France
| | - Slimane Ait-Si-Ali
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, 35 rue Hélène Brion, 75013 Paris, France.
| |
Collapse
|