51
|
A paralogue of the phosphomutase-like gene family in Candida glabrata, CgPmu2, gained broad-range phosphatase activity due to a small number of clustered substitutions. Biochem J 2015; 471:187-98. [PMID: 26268557 DOI: 10.1042/bj20150611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/12/2015] [Indexed: 11/17/2022]
Abstract
Inorganic phosphate is required for a range of cellular processes, such as DNA/RNA synthesis and intracellular signalling. The phosphate starvation-inducible phosphatase activity of Candida glabrata is encoded by the gene CgPMU2 (C. glabrata phosphomutase-like protein). CgPMU2 is part of a three-gene family (∼75% identical) created through gene duplication in the C. glabrata clade; only CgPmu2 is a PHO-regulated broad range acid phosphatase. We identified amino acids that confer broad range phosphatase activity on CgPmu2 by creating fusions of sections of CgPMU2 with CgPMU1, a paralogue with little broad range phosphatase activity. We used site-directed mutagenesis on various fusions to sequentially convert CgPmu1 to CgPmu2. Based on molecular modelling of the Pmu proteins on to a histidine phosphatase crystal structure, clusters of amino acids were found in two distinct regions that were able to confer phosphatase activity. Substitutions in these two regions together conferred broad phosphatase activity on CgPmu1. Interestingly, one change is a histidine adjacent to the active site histidine of CgPmu2 and it exhibits a novel ability to partially replace the conserved active site histidine in CgPmu2. Additionally, a second amino acid change was able to confer nt phosphatase activity to CgPmu1, suggesting single amino acid changes neofunctionalize CgPmu2.
Collapse
|
52
|
Liu Z, Koid AE, Terrado R, Campbell V, Caron DA, Heidelberg KB. Changes in gene expression of Prymnesium parvum induced by nitrogen and phosphorus limitation. Front Microbiol 2015; 6:631. [PMID: 26157435 PMCID: PMC4478897 DOI: 10.3389/fmicb.2015.00631] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/10/2015] [Indexed: 11/25/2022] Open
Abstract
Prymnesium parvum is a globally distributed prymnesiophyte alga commonly found in brackish water marine ecosystems and lakes. It possesses a suite of toxins with ichthyotoxic, cytotoxic and hemolytic effects which, along with its mixotrophic nutritional capabilities, allows it to form massive Ecosystem Disruptive Algal Blooms (EDABs). While blooms of high abundance coincide with high levels of nitrogen (N) and phosphorus (P), reports of field and laboratory studies have noted that P. parvum toxicity appears to be augmented at high N:P ratios or P-limiting conditions. Here we present the results of a comparative analysis of P. parvum RNA-Seq transcriptomes under nutrient replete conditions, and N or P deficiency to understand how this organism responds at the transcriptional level to varying nutrient conditions. In nutrient limited conditions we found diverse transcriptional responses for genes involved in nutrient uptake, protein synthesis and degradation, photosynthesis, and toxin production. As anticipated, when either N or P was limiting, transcription levels of genes encoding transporters for the respective nutrient were higher than those under replete condition. Ribosomal and lysosomal protein genes were expressed at higher levels under either nutrient-limited condition compared to the replete condition. Photosynthesis genes and polyketide synthase genes were more highly expressed under P-limitation but not under N-limitation. These results highlight the ability of P. parvum to mount a coordinated and varied cellular and physiological response to nutrient limitation. Results also provide potential marker genes for further evaluating the physiological response and toxin production of P. parvum populations during bloom formation or to changing environmental conditions.
Collapse
Affiliation(s)
- Zhenfeng Liu
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Amy E Koid
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Ramon Terrado
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Victoria Campbell
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - David A Caron
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Karla B Heidelberg
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
53
|
Jahn M, Günther S, Müller S. Non-random distribution of macromolecules as driving forces for phenotypic variation. Curr Opin Microbiol 2015; 25:49-55. [DOI: 10.1016/j.mib.2015.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/04/2015] [Accepted: 04/21/2015] [Indexed: 12/19/2022]
|
54
|
Bader DM, Wilkening S, Lin G, Tekkedil MM, Dietrich K, Steinmetz LM, Gagneur J. Negative feedback buffers effects of regulatory variants. Mol Syst Biol 2015; 11:785. [PMID: 25634765 PMCID: PMC4332157 DOI: 10.15252/msb.20145844] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mechanisms conferring robustness against regulatory variants have been controversial. Previous studies suggested widespread buffering of RNA misexpression on protein levels during translation. We do not find evidence that translational buffering is common. Instead, we find extensive buffering at the level of RNA expression, exerted through negative feedback regulation acting in trans, which reduces the effect of regulatory variants on gene expression. Our approach is based on a novel experimental design in which allelic differential expression in a yeast hybrid strain is compared to allelic differential expression in a pool of its spores. Allelic differential expression in the hybrid is due to cis-regulatory differences only. Instead, in the pool of spores allelic differential expression is not only due to cis-regulatory differences but also due to local trans effects that include negative feedback. We found that buffering through such local trans regulation is widespread, typically compensating for about 15% of cis-regulatory effects on individual genes. Negative feedback is stronger not only for essential genes, indicating its functional relevance, but also for genes with low to middle levels of expression, for which tight regulation matters most. We suggest that negative feedback is one mechanism of Waddington's canalization, facilitating the accumulation of genetic variants that might give selective advantage in different environments.
Collapse
Affiliation(s)
- Daniel M Bader
- Computational Genomics, Gene Center, Ludwig Maximilians University, Munich, Germany
| | - Stefan Wilkening
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Gen Lin
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Manu M Tekkedil
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Kim Dietrich
- Computational Genomics, Gene Center, Ludwig Maximilians University, Munich, Germany
| | - Lars M Steinmetz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany Stanford Genome Technology Center, Palo Alto, CA, USA Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Julien Gagneur
- Computational Genomics, Gene Center, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
55
|
Abstract
In budding yeast, Saccharomyces cerevisiae, the phosphate signalling and response pathway, known as PHO pathway, monitors phosphate cytoplasmic levels by controlling genes involved in scavenging, uptake and utilization of phosphate. Recent attempts to understand the phosphate starvation response in other ascomycetes have suggested the existence of both common and novel components of the budding yeast PHO pathway in these ascomycetes. In this review, we discuss the components of PHO pathway, their roles in maintaining phosphate homeostasis in yeast and their conservation across ascomycetes. The role of high-affinity transporter, Pho84, in sensing and signalling of phosphate has also been discussed.
Collapse
Affiliation(s)
- Parul Tomar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India
| | | |
Collapse
|
56
|
Bouain N, Shahzad Z, Rouached A, Khan GA, Berthomieu P, Abdelly C, Poirier Y, Rouached H. Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5725-41. [PMID: 25080087 DOI: 10.1093/jxb/eru314] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Inorganic phosphate (Pi) and zinc (Zn) are two essential nutrients for plant growth. In soils, these two minerals are either present in low amounts or are poorly available to plants. Consequently, worldwide agriculture has become dependent on external sources of Pi and Zn fertilizers to increase crop yields. However, this strategy is neither economically nor ecologically sustainable in the long term, particularly for Pi, which is a non-renewable resource. To date, research has emphasized the analysis of mineral nutrition considering each nutrient individually, and showed that Pi and Zn homeostasis is highly regulated in a complex process. Interestingly, numerous observations point to an unexpected interconnection between the homeostasis of the two nutrients. Nevertheless, despite their fundamental importance, the molecular bases and biological significance of these interactions remain largely unknown. Such interconnections can account for shortcomings of current agronomic models that typically focus on improving the assimilation of individual elements. Here, current knowledge on the regulation of the transport and signalling of Pi and Zn individually is reviewed, and then insights are provided on the recent progress made towards a better understanding of the Zn-Pi homeostasis interaction in plants.
Collapse
Affiliation(s)
- Nadia Bouain
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France Laboratoire Des Plantes Extrêmophile, Centre de Biotechnologie de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Zaigham Shahzad
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France
| | - Aida Rouached
- Laboratoire Des Plantes Extrêmophile, Centre de Biotechnologie de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Ghazanfar Abbas Khan
- Département de Biologie Moléculaire Végétale, Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Pierre Berthomieu
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France
| | - Chedly Abdelly
- Laboratoire Des Plantes Extrêmophile, Centre de Biotechnologie de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Yves Poirier
- Département de Biologie Moléculaire Végétale, Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hatem Rouached
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France
| |
Collapse
|
57
|
Vardi N, Levy S, Gurvich Y, Polacheck T, Carmi M, Jaitin D, Amit I, Barkai N. Sequential Feedback Induction Stabilizes the Phosphate Starvation Response in Budding Yeast. Cell Rep 2014; 9:1122-34. [DOI: 10.1016/j.celrep.2014.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/02/2014] [Accepted: 09/29/2014] [Indexed: 12/14/2022] Open
|
58
|
Pimentel C, Caetano SM, Menezes R, Figueira I, Santos CN, Ferreira RB, Santos MA, Rodrigues-Pousada C. Yap1 mediates tolerance to cobalt toxicity in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2014; 1840:1977-86. [DOI: 10.1016/j.bbagen.2014.01.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/08/2014] [Accepted: 01/21/2014] [Indexed: 01/27/2023]
|
59
|
Dick CF, Dos-Santos ALA, Meyer-Fernandes JR. Inorganic phosphate uptake in unicellular eukaryotes. Biochim Biophys Acta Gen Subj 2014; 1840:2123-7. [PMID: 24674820 DOI: 10.1016/j.bbagen.2014.03.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/27/2014] [Accepted: 03/17/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane. SCOPE OF REVIEW Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum. MAJOR CONCLUSION Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms. GENERAL SIGNIFICANCE Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field.
Collapse
Affiliation(s)
- Claudia F Dick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - André L A Dos-Santos
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - José R Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
60
|
A novel protein, Pho92, has a conserved YTH domain and regulates phosphate metabolism by decreasing the mRNA stability of PHO4 in Saccharomyces cerevisiae. Biochem J 2014; 457:391-400. [PMID: 24206186 DOI: 10.1042/bj20130862] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The homologue of human YTHDF2, Ydr374c (Pho92), is the only protein that has a YTH (YT521-B homology) domain in Saccharomyces cerevisiae. Based on microarray analysis, genes involved in the phosphate signal transduction (PHO) pathway were up-regulated in the Δpho92 strain, as were genes regulated by Pho4, which is an important transcription factor in the PHO pathway. To identify the exact mechanism of Pho92 action with respect to phosphate metabolism, we investigated the effect of Pho92 on PHO4 expression. The half-life of PHO4 mRNA was increased in the Δpho92 strain; this phenotype was also observed in the deletion mutants UPF1 and POP2, which are components of the NMD (nonsense-mediated decay) pathway and the Pop2-Ccr4-Not deadenylase complex respectively. Pho92 interacts physically with Pop2 of the Pop2-Ccr4-Not deadenylase complex. Furthermore, Pho92 binding to the 3'-UTR of PHO4 was dependent on the phosphate concentration. Deletion of the PHO4 3'-UTR resulted in PHO4 mRNA resistance to Pho92-dependent degradation. The results of the present study indicate that Pho92 regulates Pho4 expression at the post-transcriptional level via the regulation of mRNA stability. Taken together, Pho92 participates in cellular phosphate metabolism, specifically via the regulation of PHO4 mRNA stability by binding to the 3'-UTR in a phosphate-dependent manner.
Collapse
|
61
|
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:254-99. [PMID: 24483210 PMCID: PMC4238866 DOI: 10.1111/1574-6976.12065] [Citation(s) in RCA: 453] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Marta Rubio-Texeira
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| |
Collapse
|
62
|
Vardi N, Levy S, Assaf M, Carmi M, Barkai N. Budding Yeast Escape Commitment to the Phosphate Starvation Program Using Gene Expression Noise. Curr Biol 2013; 23:2051-7. [DOI: 10.1016/j.cub.2013.08.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 07/09/2013] [Accepted: 08/14/2013] [Indexed: 12/30/2022]
|
63
|
Heritable change caused by transient transcription errors. PLoS Genet 2013; 9:e1003595. [PMID: 23825966 PMCID: PMC3694819 DOI: 10.1371/journal.pgen.1003595] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/13/2013] [Indexed: 01/01/2023] Open
Abstract
Transmission of cellular identity relies on the faithful transfer of information from the mother to the daughter cell. This process includes accurate replication of the DNA, but also the correct propagation of regulatory programs responsible for cellular identity. Errors in DNA replication (mutations) and protein conformation (prions) can trigger stable phenotypic changes and cause human disease, yet the ability of transient transcriptional errors to produce heritable phenotypic change ('epimutations') remains an open question. Here, we demonstrate that transcriptional errors made specifically in the mRNA encoding a transcription factor can promote heritable phenotypic change by reprogramming a transcriptional network, without altering DNA. We have harnessed the classical bistable switch in the lac operon, a memory-module, to capture the consequences of transient transcription errors in living Escherichia coli cells. We engineered an error-prone transcription sequence (A9 run) in the gene encoding the lac repressor and show that this 'slippery' sequence directly increases epigenetic switching, not mutation in the cell population. Therefore, one altered transcript within a multi-generational series of many error-free transcripts can cause long-term phenotypic consequences. Thus, like DNA mutations, transcriptional epimutations can instigate heritable changes that increase phenotypic diversity, which drives both evolution and disease.
Collapse
|
64
|
Hwang SY, Hur KY, Kim JR, Cho KH, Kim SH, Yoo JY. Biphasic RLR-IFN-β response controls the balance between antiviral immunity and cell damage. THE JOURNAL OF IMMUNOLOGY 2013; 190:1192-200. [PMID: 23284052 DOI: 10.4049/jimmunol.1202326] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In RNA virus-infected cells, retinoic acid-inducible gene-I-like receptors (RLRs) sense foreign RNAs and activate signaling cascades to produce IFN-α/β. However, not every infected cell produces IFN-α/β that exhibits cellular heterogeneity in antiviral immune responses. Using the IFN-β-GFP reporter system, we observed bimodal IFN-β production in the uniformly stimulated cell population with intracellular dsRNA. Mathematical simulation proposed the strength of autocrine loop via RLR as one of the contributing factor for biphasic IFN-β expression. Bimodal IFN-β production with intracellular dsRNA was disturbed by blockage of IFN-α/β secretion or by silencing of the IFN-α/β receptor. Amplification of RLRs was critical in the generation of bimodality of IFN-β production, because IFN-β(high) population expressed more RLRs than IFN-β(low) population. In addition, bimodality in IFN-β production results in biphasic cellular response against infection, because IFN-β(high) population was more prone to apoptosis than IFN-β(low) population. These results suggest that RLR-mediated biphasic cellular response may act to restrict the number of cells expressing IFN-β and undergoing apoptosis in the infected population.
Collapse
Affiliation(s)
- Sun-Young Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
65
|
Kerwin CL, Wykoff DD. De novogeneration of a phosphate starvation-regulated promoter inCandida glabrata. FEMS Yeast Res 2012; 12:980-9. [DOI: 10.1111/1567-1364.12000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/22/2012] [Accepted: 08/26/2012] [Indexed: 11/29/2022] Open
|
66
|
Wang C, Huang W, Ying Y, Li S, Secco D, Tyerman S, Whelan J, Shou H. Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. THE NEW PHYTOLOGIST 2012; 196:139-148. [PMID: 22803610 DOI: 10.1111/j.1469-8137.2012.04227.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• Proteins possessing the SPX domain are found in several proteins involved in inorganic phosphate (Pi) transport and signalling in yeast and plants. Although the functions of several SPX-domain protein subfamilies have recently been uncovered, the role of the SPX-MFS subfamily is still unclear. • Using quantitative RT-PCR analysis, we studied the regulation of SPX-MFS gene expression by the central regulator, OsPHR2 and Pi starvation. The function of OsSPX-MFS1 in Pi homeostasis was analysed using an OsSPX-MFS1 mutant (mfs1) and osa-miR827 overexpression line (miR827-Oe). Finally, heterologous complementation of a yeast mutant impaired in Pi transporter was used to assess the capacity of OsSPX-MFS1 to transport Pi. • Transcript analyses revealed that members of the SPX-MFS family were mainly expressed in the shoots, with OsSPX-MFS1 and OsSPX-MFS3 being suppressed by Pi deficiency, while OsSPX-MFS2 was induced. Mutation in OsSPX-MFS1 (mfs1) and overexpression of the upstream miR827 (miR827-Oe) plants impaired Pi homeostasis in the leaves. In addition, studies in yeast revealed that OsSPX-MFS1 may be involved in Pi transport. • The results suggest that OsSPX-MFS1 is a key player in maintaining Pi homeostasis in the leaves, potentially acting as a Pi transporter.
Collapse
Affiliation(s)
- Chuang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Joint Research Laboratory in Genomics and Nutriomics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yinghui Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuai Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - David Secco
- Joint Research Laboratory in Genomics and Nutriomics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, WA, Australia
| | - Steve Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - James Whelan
- Joint Research Laboratory in Genomics and Nutriomics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, WA, Australia
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Joint Research Laboratory in Genomics and Nutriomics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
67
|
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 2012; 190:885-929. [PMID: 22419079 DOI: 10.1534/genetics.111.133306] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear.
Collapse
|
68
|
Remy E, Cabrito TR, Batista RA, Teixeira MC, Sá-Correia I, Duque P. The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. THE NEW PHYTOLOGIST 2012; 195:356-371. [PMID: 22578268 DOI: 10.1111/j.1469-8137.2012.04167.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• The activation of high-affinity root transport systems is the best-conserved strategy employed by plants to cope with low inorganic phosphate (Pi) availability, a role traditionally assigned to Pi transporters of the Pht1 family, whose respective contributions to Pi acquisition remain unclear. • To characterize the Arabidopsis thaliana Pht1;9 transporter, we combined heterologous functional expression in yeast with expression/subcellular localization studies and reverse genetics approaches in planta. Double Pht1;9/Pht1;8 silencing lines were also generated to gain insight into the role of the closest Pht1;9 homolog. • Pht1;9 encodes a functional plasma membrane-localized transporter that mediates high-affinity Pi/H⁺ symport activity in yeast and is highly induced in Pi-starved Arabidopsis roots. Null pht1;9 alleles exhibit exacerbated responses to prolonged Pi limitation and enhanced tolerance to arsenate exposure, whereas Pht1;9 overexpression induces the opposite phenotypes. Strikingly, Pht1;9/Pht1;8 silencing lines display more pronounced defects than the pht1;9 mutants. • Pi and arsenic plant content analyses confirmed a role of Pht1;9 in Pi acquisition during Pi starvation and arsenate uptake at the root-soil interface. Although not affecting plant internal Pi repartition, Pht1;9 activity influences the overall Arabidopsis Pi status. Finally, our results indicate that both the Pht1;9 and Pht1;8 transporters function in sustaining plant Pi supply on environmental Pi depletion.
Collapse
Affiliation(s)
- E Remy
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - T R Cabrito
- Institute for Biotechnology and BioEngineering (IBB), Center for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - R A Batista
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - M C Teixeira
- Institute for Biotechnology and BioEngineering (IBB), Center for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - I Sá-Correia
- Institute for Biotechnology and BioEngineering (IBB), Center for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - P Duque
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
69
|
Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins. FEBS Lett 2012; 586:289-95. [PMID: 22285489 DOI: 10.1016/j.febslet.2012.01.036] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 12/27/2022]
Abstract
In the yeast Saccharomyces cerevisiae, a working model for nutrient homeostasis in eukaryotes, inorganic phosphate (Pi) homeostasis is regulated by the PHO pathway, a set of phosphate starvation induced genes, acting to optimize Pi uptake and utilization. Among these, a subset of proteins containing the SPX domain has been shown to be key regulators of Pi homeostasis. In this review, we summarize the recent progresses in elucidating the mechanisms controlling Pi homeostasis in yeast, focusing on the key roles of the SPX domain-containing proteins in these processes, as well as describing the future challenges and opportunities in this fast-moving field.
Collapse
|
70
|
Levy S, Kafri M, Carmi M, Barkai N. The competitive advantage of a dual-transporter system. Science 2012; 334:1408-12. [PMID: 22158820 DOI: 10.1126/science.1207154] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cells use transporters of different affinities to regulate nutrient influx. When nutrients are depleted, low-affinity transporters are replaced by high-affinity ones. High-affinity transporters are helpful when concentrations of nutrients are low, but the advantage of reducing their abundance when nutrients are abundant is less clear. When we eliminated such reduced production of the Saccharomyces cerevisiae high-affinity transporters for phosphate and zinc, the elapsed time from the initiation of the starvation program until the lack of nutrients limited growth was shortened, and recovery from starvation was delayed. The latter phenotype was rescued by constitutive activation of the starvation program. Dual-transporter systems appear to prolong preparation for starvation and to facilitate subsequent recovery, which may optimize sensing of nutrient depletion by integrating internal and external information about nutrient availability.
Collapse
Affiliation(s)
- Sagi Levy
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
71
|
Rosenfeld L, Culotta VC. Phosphate disruption and metal toxicity in Saccharomyces cerevisiae: effects of RAD23 and the histone chaperone HPC2. Biochem Biophys Res Commun 2012; 418:414-9. [PMID: 22281500 DOI: 10.1016/j.bbrc.2012.01.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 01/10/2012] [Indexed: 11/26/2022]
Abstract
In cells, there exists a delicate balance between accumulation of charged metal cations and abundant anionic complexes such as phosphate. When phosphate metabolism is disrupted, cell-wide spread disturbances in metal homeostasis may ensue. The best example is a yeast pho80 mutant that hyperaccumulates phosphate and as result, also hyperaccumulates metal cations from the environment and shows exquisite sensitive to toxicity from metals such as manganese. In this study, we sought to identify genes that when over-expressed would suppress the manganese toxicity of pho80 mutants. Two classes of suppressors were isolated, including the histone chaperones SPT16 and HPC2, and RAD23, a well-conserved protein involved in DNA repair and proteosomal degradation. The histone chaperone gene HPC2 reversed the elevated manganese and phosphate of pho80 mutants by specifically repressing PHO84, encoding a metal-phosphate transporter. RAD23 also reduced manganese toxicity by lowering manganese levels, but RAD23 did not alter phosphate nor repress PHO84. We observed that the RAD23-reversal of manganese toxicity reflected its role in protein quality control, not DNA repair. Our studies are consistent with a model in which Rad23p partners with the deglycosylating enzyme Png1p to reduce manganese toxicity through proteosomal degradation of glycosylated substrate(s).
Collapse
Affiliation(s)
- Leah Rosenfeld
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | |
Collapse
|
72
|
Regulation of manganese antioxidants by nutrient sensing pathways in Saccharomyces cerevisiae. Genetics 2011; 189:1261-70. [PMID: 21926297 DOI: 10.1534/genetics.111.134007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In aerobic organisms, protection from oxidative damage involves the combined action of enzymatic and nonproteinaceous cellular factors that collectively remove harmful reactive oxygen species. One class of nonproteinaceous antioxidants includes small molecule complexes of manganese (Mn) that can scavenge superoxide anion radicals and provide a backup for superoxide dismutase enzymes. Such Mn antioxidants have been identified in diverse organisms; however, nothing regarding their physiology in the context of cellular adaptation to stress was known. Using a molecular genetic approach in Bakers' yeast, Saccharomyces cerevisiae, we report that the Mn antioxidants can fall under control of the same pathways used for nutrient sensing and stress responses. Specifically, a serine/threonine PAS-kinase, Rim15p, that is known to integrate phosphate, nitrogen, and carbon sensing, can also control Mn antioxidant activity in yeast. Rim15p is negatively regulated by the phosphate-sensing kinase complex Pho80p/Pho85p and by the nitrogen-sensing Akt/S6 kinase homolog, Sch9p. We observed that loss of either of these upstream kinase sensors dramatically inhibited the potency of Mn as an antioxidant. Downstream of Rim15p are transcription factors Gis1p and the redundant Msn2/Msn4p pair that typically respond to nutrient and stress signals. Both transcription factors were found to modulate the potency of the Mn antioxidant but in opposing fashions: loss of Gis1p was seen to enhance Mn antioxidant activity whereas loss of Msn2/4p greatly suppressed it. Our observed roles for nutrient and stress response kinases and transcription factors in regulating the Mn antioxidant underscore its physiological importance in aerobic fitness.
Collapse
|
73
|
Basheer S, Samyn D, Hedström M, Thakur MS, Persson BL, Mattiasson B. A membrane protein based biosensor: Use of a phosphate – H+ symporter membrane protein (Pho84) in the sensing of phosphate ions. Biosens Bioelectron 2011; 27:58-63. [DOI: 10.1016/j.bios.2011.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/29/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
|
74
|
Chen J, Liu Y, Ni J, Wang Y, Bai Y, Shi J, Gan J, Wu Z, Wu P. OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice. PLANT PHYSIOLOGY 2011; 157:269-78. [PMID: 21753117 PMCID: PMC3165875 DOI: 10.1104/pp.111.181669] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 07/13/2011] [Indexed: 05/18/2023]
Abstract
PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 (PHF1) is known to regulate the plasma membrane localization of PHT1;1, a high-affinity inorganic phosphate (Pi) transporter in Arabidopsis (Arabidopsis thaliana). OsPHF1, a rice (Oryza sativa) gene homologous to AtPHF1, was isolated and found to regulate the localization of both low- and high-affinity Pi transporters to the plasma membrane. Three OsPHF1 allelic mutants carrying one-point mutations at the fifth WD-repeat motif and two at the transmembrane helix, respectively, showed arsenate resistance and severely reduced Pi accumulation. The data indicate that mutation of OsPHF1 results in the endoplasmic reticulum retention of the low-affinity Pi transporter OsPT2 and high-affinity Pi transporter OsPT8. Mutation of OsPHF1 also reduced Pi accumulation in plants exhibiting excessive shoot Pi accumulation due to the overexpression of OsPHR2. However, the transcript level of OsPHF1 itself is not controlled by OsPHR2. Overexpression of OsPHF1 increased Pi accumulation in both roots and shoots in a solution culture with Pi-supplied condition. These results indicate that the role of OsPHF1 is unique in the localization of both low- and high-affinity Pi transporters on the plasma membrane in rice and determines Pi uptake and translocation in rice. The similar function of PHF1 required to facilitate PHT1 transit through the endoplasmic reticulum between Arabidopsis and rice provides an example of expectations from what one would deduce from sequence comparisons to extend knowledge from Arabidopsis to crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ping Wu
- Corresponding author; e-mail
| |
Collapse
|
75
|
Sambuk EV, Fizikova AY, Savinov VA, Padkina MV. Acid phosphatases of budding yeast as a model of choice for transcription regulation research. Enzyme Res 2011; 2011:356093. [PMID: 21785706 PMCID: PMC3137970 DOI: 10.4061/2011/356093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/26/2011] [Indexed: 11/20/2022] Open
Abstract
Acid phosphatases of budding yeast have been studied for more than forty years. This paper covers biochemical characteristics of acid phosphatases and different aspects in expression regulation of eukaryotic genes, which were researched using acid phosphatases model. A special focus is devoted to cyclin-dependent kinase Pho85p, a negative transcriptional regulator, and its role in maintaining mitochondrial genome stability and to pleiotropic effects of pho85 mutations.
Collapse
Affiliation(s)
- Elena V Sambuk
- Genetics and Breeding Department, Biology and Soil Sciences Faculty, Saint Petersburg State University, Universitetskaya emb. 7-9, Saint Petersburg 199034, Russia
| | | | | | | |
Collapse
|
76
|
Antisense expression increases gene expression variability and locus interdependency. Mol Syst Biol 2011; 7:468. [PMID: 21326235 PMCID: PMC3063692 DOI: 10.1038/msb.2011.1] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/23/2010] [Indexed: 12/19/2022] Open
Abstract
The function of non-coding antisense RNAs in yeast remains to be fully understood. Steinmetz and colleagues provide evidence for a general regulatory effect of antisense expression on sense genes and for a role in spreading regulatory signals between neighboring genes. Inhibition by antisense expression specifically affects low levels of sense gene expression. This inhibition confers an on-off switch and contributes to higher variability of gene expression. Antisense expression initiated from bidirectional promoters allows the spreading of regulatory signals between neighbouring genes.
Antisense expression, the RNA expression on the opposite strand of coding genes, is widespread but its general role has remained elusive. By expression profiling yeast in different environments and genetic backgrounds, the authors observed that genes with antisense are more frequently switched-off and show higher expression variability. This effect is the outcome of repression that specifically acts on low levels of sense expression—a model that is experimentally validated for the SUR7 locus. Furthermore, antisense expression is shown to connect the regulation of neighbouring loci in a setting where the bidirectional promoter of a gene initiates expression antisense to an upstream gene. Together, these findings underline the regulatory potential of the downstream region of genes as promoters of antisense transcripts and indicate antisense expression as a regulatory mechanism to enhance switch-like expression for stress–response and condition-specific genes. Genome-wide transcription profiling has revealed extensive expression of non-coding RNAs antisense to genes, yet their functions, if any, remain to be understood. In this study, we perform a systematic analysis of sense–antisense expression in response to genetic and environmental changes in yeast. We find that antisense expression is associated with genes of larger expression variability. This is characterized by more ‘switching off' at low levels of expression for genes with antisense compared to genes without, yet similar expression at maximal induction. By disrupting antisense transcription, we demonstrate that antisense expression confers an on-off switch on gene regulation for the SUR7 gene. Consistent with this, genes that must respond in a switch-like manner, such as stress–response and environment-specific genes, are enriched for antisense expression. In addition, our data provide evidence that antisense expression initiated from bidirectional promoters enables the spreading of regulatory signals from one locus to neighbouring genes. These results indicate a general regulatory effect of antisense expression on sense genes and emphasize the importance of antisense-initiating regions downstream of genes in models of gene regulation.
Collapse
|
77
|
Tu WY, Huang YC, Liu LF, Chang LH, Tam MF. Rpl12p affects the transcription of the PHO pathway high-affinity inorganic phosphate transporters and repressible phosphatases. Yeast 2011; 28:481-93. [DOI: 10.1002/yea.1852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/22/2011] [Indexed: 11/08/2022] Open
|
78
|
Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in Saccharomyces cerevisiae. Biochem J 2011; 434:243-51. [DOI: 10.1042/bj20101118] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
When starved of Pi, yeast cells activate the PHO signalling pathway, wherein the Pho4 transcription factor mediates expression of genes involved in Pi acquisition, such as PHO84, encoding the high-affinity H+/Pi symporter. In contrast, transcription of PHO87 and PHO90, encoding the low-affinity H+/Pi transport system, is independent of phosphate status. In the present work, we reveal that, upon Pi starvation, these low-affinity Pi transporters are endocytosed and targeted to the vacuole. For Pho87, this process strictly depends on SPL2, another Pho4-dependent gene that encodes a protein known to interact with the N-terminal SPX domain of the transporter. In contrast, the vacuolar targeting of Pho90 upon Pi starvation is independent of both Pho4 and Spl2, although it still requires its SPX domain. Furthermore, both Pho87 and Pho90 are also targeted to the vacuole upon carbon-source starvation or upon treatment with rapamycin, which mimics nitrogen starvation, but although these responses are independent of PHO pathway signalling, they again require the N-terminal SPX domain of the transporters. These observations suggest that other SPX-interacting proteins must be involved. In addition, we show that Pho90 is the most important Pi transporter under high Pi conditions in the absence of a high-affinity Pi-transport system. Taken together, our results illustrate that Pho87 and Pho90 represent non-redundant Pi transporters, which are tuned by the integration of multiple nutrient signalling mechanisms in order to adjust Pi-transport capacity to the general nutritional status of the environment.
Collapse
|
79
|
Parts L, Stegle O, Winn J, Durbin R. Joint genetic analysis of gene expression data with inferred cellular phenotypes. PLoS Genet 2011; 7:e1001276. [PMID: 21283789 PMCID: PMC3024309 DOI: 10.1371/journal.pgen.1001276] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Accepted: 12/14/2010] [Indexed: 12/01/2022] Open
Abstract
Even within a defined cell type, the expression level of a gene differs in individual samples. The effects of genotype, measured factors such as environmental conditions, and their interactions have been explored in recent studies. Methods have also been developed to identify unmeasured intermediate factors that coherently influence transcript levels of multiple genes. Here, we show how to bring these two approaches together and analyse genetic effects in the context of inferred determinants of gene expression. We use a sparse factor analysis model to infer hidden factors, which we treat as intermediate cellular phenotypes that in turn affect gene expression in a yeast dataset. We find that the inferred phenotypes are associated with locus genotypes and environmental conditions and can explain genetic associations to genes in trans. For the first time, we consider and find interactions between genotype and intermediate phenotypes inferred from gene expression levels, complementing and extending established results. The first step in transmitting heritable information, expressing RNA molecules, is highly regulated and depends on activations of specific pathways and regulatory factors. The state of the cell is hard to measure, making it difficult to understand what drives the changes in the gene expression. To close this gap, we apply a statistical model to infer the state of the cell, such as activations of transcription factors and molecular pathways, from gene expression data. We demonstrate how the inferred state helps to explain the effects of variation in the DNA and environment on the expression trait via both direct regulatory effects and interactions with the genetic state. Such analysis, exploiting inferred intermediate phenotypes, will aid understanding effects of genetic variability on global traits and will help to interpret the data from existing and forthcoming large scale studies.
Collapse
Affiliation(s)
- Leopold Parts
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail: (LP); (RD)
| | | | - John Winn
- Microsoft Research, Cambridge, United Kingdom
| | - Richard Durbin
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail: (LP); (RD)
| |
Collapse
|
80
|
Rosenfeld L, Reddi AR, Leung E, Aranda K, Jensen LT, Culotta VC. The effect of phosphate accumulation on metal ion homeostasis in Saccharomyces cerevisiae. J Biol Inorg Chem 2010; 15:1051-62. [PMID: 20429018 PMCID: PMC3010241 DOI: 10.1007/s00775-010-0664-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
Abstract
Much of what is currently understood about the cell biology of metals involves their interactions with proteins. By comparison, little is known about interactions of metals with intracellular inorganic compounds such as phosphate. Here we examined the role of phosphate in metal metabolism in vivo by genetically perturbing the phosphate content of Saccharomyces cerevisiae cells. Yeast pho80 mutants cannot sense phosphate and have lost control of phosphate uptake, storage, and metabolism. We report here that pho80 mutants specifically elevate cytosolic and nonvacuolar levels of phosphate and this in turn causes a wide range of metal homeostasis defects. Intracellular levels of the hard-metal cations sodium and calcium increase dramatically, and cells become susceptible to toxicity from the transition metals manganese, cobalt, zinc, and copper. Disruptions in phosphate control also elicit an iron starvation response, as pho80 mutants were seen to upregulate iron transport genes. The iron-responsive transcription factor Aft1p appears activated in cells with high phosphate content in spite of normal intracellular iron levels. The high phosphate content of pho80 mutants can be lowered by mutating Pho4p, the transcription factor for phosphate uptake and storage genes. Such lowering of phosphate content by pho4 mutations reversed the high calcium and sodium content of pho80 mutants and prevented the iron starvation response. However, pho4 mutations only partially reversed toxicity from heavy metals, representing a novel outcome of phosphate dysregulation. Overall, these studies underscore the importance of maintaining a charge balance in the cell; a disruption in phosphate metabolism can dramatically impact on metal homeostasis.
Collapse
Affiliation(s)
- Leah Rosenfeld
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Amit R. Reddi
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Edison Leung
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kimberly Aranda
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Valeria C. Culotta
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
81
|
Novel acid phosphatase in Candida glabrata suggests selective pressure and niche specialization in the phosphate signal transduction pathway. Genetics 2010; 186:885-95. [PMID: 20739710 DOI: 10.1534/genetics.110.120824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolution through natural selection suggests unnecessary genes are lost. We observed that the yeast Candida glabrata lost the gene encoding a phosphate-repressible acid phosphatase (PHO5) present in many yeasts including Saccharomyces cerevisiae. However, C. glabrata still had phosphate starvation-inducible phosphatase activity. Screening a C. glabrata genomic library, we identified CgPMU2, a member of a three-gene family that contains a phosphomutase-like domain. This small-scale gene duplication event could allow for sub- or neofunctionalization. On the basis of phylogenetic and biochemical characterizations, CgPMU2 has neofunctionalized to become a broad range, phosphate starvation-regulated acid phosphatase, which functionally replaces PHO5 in this pathogenic yeast. We determined that CgPmu2, unlike ScPho5, is not able to hydrolyze phytic acid (inositol hexakisphosphate). Phytic acid is present in fruits and seeds where S. cerevisiae grows, but is not abundant in mammalian tissues where C. glabrata grows. We demonstrated that C. glabrata is limited from an environment where phytic acid is the only source of phosphate. Our work suggests that during evolutionary time, the selection for the ancestral PHO5 was lost and that C. glabrata neofunctionalized a weak phosphatase to replace PHO5. Convergent evolution of a phosphate starvation-inducible acid phosphatase in C. glabrata relative to most yeast species provides an example of how small changes in signal transduction pathways can mediate genetic isolation and uncovers a potential speciation gene.
Collapse
|
82
|
Lazard M, Blanquet S, Fisicaro P, Labarraque G, Plateau P. Uptake of selenite by Saccharomyces cerevisiae involves the high and low affinity orthophosphate transporters. J Biol Chem 2010; 285:32029-37. [PMID: 20688911 DOI: 10.1074/jbc.m110.139865] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the general cytotoxicity of selenite is well established, the mechanism by which this compound crosses cellular membranes is still unknown. Here, we show that in Saccharomyces cerevisiae, the transport system used opportunistically by selenite depends on the phosphate concentration in the growth medium. Both the high and low affinity phosphate transporters are involved in selenite uptake. When cells are grown at low P(i) concentrations, the high affinity phosphate transporter Pho84p is the major contributor to selenite uptake. When phosphate is abundant, selenite is internalized through the low affinity P(i) transporters (Pho87p, Pho90p, and Pho91p). Accordingly, inactivation of the high affinity phosphate transporter Pho84p results in increased resistance to selenite and reduced uptake in low P(i) medium, whereas deletion of SPL2, a negative regulator of low affinity phosphate uptake, results in exacerbated sensitivity to selenite. Measurements of the kinetic parameters for selenite and phosphate uptake demonstrate that there is a competition between phosphate and selenite ions for both P(i) transport systems. In addition, our results indicate that Pho84p is very selective for phosphate as compared with selenite, whereas the low affinity transporters discriminate less efficiently between the two ions. The properties of phosphate and selenite transport enable us to propose an explanation to the paradoxical increase of selenite toxicity when phosphate concentration in the growth medium is raised above 1 mm.
Collapse
Affiliation(s)
- Myriam Lazard
- Laboratoire de Biochimie, Ecole Polytechnique, F-91128 Palaiseau Cedex, France.
| | | | | | | | | |
Collapse
|
83
|
Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 2010; 56:1-32. [PMID: 20054690 DOI: 10.1007/s00294-009-0287-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 12/27/2022]
Abstract
Cells of all living organisms contain complex signal transduction networks to ensure that a wide range of physiological properties are properly adapted to the environmental conditions. The fundamental concepts and individual building blocks of these signalling networks are generally well-conserved from yeast to man; yet, the central role that growth factors and hormones play in the regulation of signalling cascades in higher eukaryotes is executed by nutrients in yeast. Several nutrient-controlled pathways, which regulate cell growth and proliferation, metabolism and stress resistance, have been defined in yeast. These pathways are integrated into a signalling network, which ensures that yeast cells enter a quiescent, resting phase (G0) to survive periods of nutrient scarceness and that they rapidly resume growth and cell proliferation when nutrient conditions become favourable again. A series of well-conserved nutrient-sensory protein kinases perform key roles in this signalling network: i.e. Snf1, PKA, Tor1 and Tor2, Sch9 and Pho85-Pho80. In this review, we provide a comprehensive overview on the current understanding of the signalling processes mediated via these kinases with a particular focus on how these individual pathways converge to signalling networks that ultimately ensure the dynamic translation of extracellular nutrient signals into appropriate physiological responses.
Collapse
|
84
|
Rubio-Texeira M, Van Zeebroeck G, Voordeckers K, Thevelein JM. Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res 2010; 10:134-49. [DOI: 10.1111/j.1567-1364.2009.00587.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
85
|
Harnessing gene expression to identify the genetic basis of drug resistance. Mol Syst Biol 2009; 5:310. [PMID: 19888205 PMCID: PMC2779083 DOI: 10.1038/msb.2009.69] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 08/24/2009] [Indexed: 11/08/2022] Open
Abstract
The advent of cost-effective genotyping and sequencing methods have recently made it possible to ask questions that address the genetic basis of phenotypic diversity and how natural variants interact with the environment. We developed Camelot (CAusal Modelling with Expression Linkage for cOmplex Traits), a statistical method that integrates genotype, gene expression and phenotype data to automatically build models that both predict complex quantitative phenotypes and identify genes that actively influence these traits. Camelot integrates genotype and gene expression data, both generated under a reference condition, to predict the response to entirely different conditions. We systematically applied our algorithm to data generated from a collection of yeast segregants, using genotype and gene expression data generated under drug-free conditions to predict the response to 94 drugs and experimentally confirmed 14 novel gene-drug interactions. Our approach is robust, applicable to other phenotypes and species, and has potential for applications in personalized medicine, for example, in predicting how an individual will respond to a previously unseen drug.
Collapse
|
86
|
Tracking lineages of single cells in lines using a microfluidic device. Proc Natl Acad Sci U S A 2009; 106:18149-54. [PMID: 19826080 DOI: 10.1073/pnas.0903163106] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cells within a genetically identical population exhibit phenotypic variation that in some cases can persist across multiple generations. However, information about the temporal variation and familial dependence of protein levels remains hidden when studying the population as an ensemble. To correlate phenotypes with the age and genealogy of single cells over time, we developed a microfluidic device that enables us to track multiple lineages in parallel by trapping single cells and constraining them to grow in lines for as many as 8 divisions. To illustrate the utility of this method, we investigate lineages of cells expressing one of 3 naturally regulated proteins, each with a different representative expression behavior. Within lineages deriving from single cells, we observe genealogically related clusters of cells with similar phenotype; cluster sizes vary markedly among the 3 proteins, suggesting that the time scale of phenotypic persistence is protein-specific. Growing lines of cells also allows us to dynamically track temporal fluctuations in protein levels at the same time as pedigree relationships among the cells as they divide in the chambers. We observe bursts in expression levels of the heat shock protein Hsp12-GFP that occur simultaneously in mother and daughter cells. In contrast, the ribosomal protein Rps8b-GFP shows relatively constant levels of expression over time. This method is an essential step toward understanding the time scales of phenotypic variation and correlations in phenotype among single cells within a population.
Collapse
|
87
|
Hürlimann HC, Pinson B, Stadler-Waibel M, Zeeman SC, Freimoser FM. The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity. EMBO Rep 2009; 10:1003-8. [PMID: 19590579 PMCID: PMC2710535 DOI: 10.1038/embor.2009.105] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 04/09/2009] [Accepted: 04/20/2009] [Indexed: 11/09/2022] Open
Abstract
Yeast has two phosphate-uptake systems that complement each other: the high-affinity transporters (Pho84 and Pho89) are active under phosphate starvation, whereas Pho87 and Pho90 are low-affinity transporters that function when phosphate is abundant. Here, we report new regulatory functions of the amino-terminal SPX domain of Pho87 and Pho90. By studying truncated versions of Pho87 and Pho90, we show that the SPX domain limits the phosphate-uptake velocity, suppresses phosphate efflux and affects the regulation of the phosphate signal transduction pathway. Furthermore, split-ubiquitin assays and co-immunoprecipitation suggest that the SPX domain of both Pho90 and Pho87 interacts physically with the regulatory protein Spl2. This work suggests that the SPX domain inhibits low-affinity phosphate transport through a physical interaction with Spl2.
Collapse
Affiliation(s)
- Hans Caspar Hürlimann
- Institute of Plant Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
88
|
Genome-wide allele- and strand-specific expression profiling. Mol Syst Biol 2009; 5:274. [PMID: 19536197 PMCID: PMC2710863 DOI: 10.1038/msb.2009.31] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 04/27/2009] [Indexed: 11/09/2022] Open
Abstract
Recent reports have shown that most of the genome is transcribed and that transcription frequently occurs concurrently on both DNA strands. In diploid genomes, the expression level of each allele conditions the degree to which sequence polymorphisms affect the phenotype. It is thus essential to quantify expression in an allele- and strand-specific manner. Using a custom-designed tiling array and a new computational approach, we piloted measuring allele- and strand-specific expression in yeast. Confident quantitative estimates of allele-specific expression were obtained for about half of the coding and non-coding transcripts of a heterozygous yeast strain, of which 371 transcripts (13%) showed significant allelic differential expression greater than 1.5-fold. The data revealed complex allelic differential expression on opposite strands. Furthermore, combining allele-specific expression with linkage mapping enabled identifying allelic variants that act in cis and in trans to regulate allelic expression in the heterozygous strain. Our results provide the first high-resolution analysis of differential expression on all four strands of an eukaryotic genome.
Collapse
|
89
|
Bistable switches control memory and plasticity in cellular differentiation. Proc Natl Acad Sci U S A 2009; 106:6638-43. [PMID: 19366677 DOI: 10.1073/pnas.0806137106] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development of stem and progenitor cells into specialized tissues in multicellular organisms involves a series of cell fate decisions. Cellular differentiation in higher organisms is generally considered irreversible, and the idea of developmental plasticity in postnatal tissues is controversial. Here, we show that inhibition of mitogen-activated protein kinase (MAPK) in a human bone marrow stromal cell-derived myogenic subclone suppresses their myogenic ability and converts them into satellite cell-like precursors that respond to osteogenic stimulation. Clonal analysis of the induced osteogenic response reveals ultrasensitivity and an "all-or-none" behavior, hallmarks of a bistable switch mechanism with stochastic noise. The response demonstrates cellular memory, which is contingent on the accumulation of an intracellular factor and can be erased by factor dilution through cell divisions or inhibition of protein synthesis. The effect of MAPK inhibition also exhibits memory and appears to be controlled by another bistable switch further upstream that determines cell fate. Once the memory associated with osteogenic differentiation is erased, the cells regain their myogenic ability. These results support a model of cell fate decision in which a network of bistable switches controls inducible production of lineage-specific differentiation factors. A competitive balance between these factors determines cell fate. Our work underscores the dynamic nature of cellular differentiation and explains mechanistically the dual properties of stability and plasticity associated with the process.
Collapse
|
90
|
Candida glabrata PHO4 is necessary and sufficient for Pho2-independent transcription of phosphate starvation genes. Genetics 2009; 182:471-9. [PMID: 19332882 DOI: 10.1534/genetics.109.101063] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Comparative genomic analyses of Candida glabrata and Saccharomyces cerevisiae suggest many signal transduction pathways are highly conserved. Focusing on the phosphate signal transduction (PHO) pathway of C. glabrata, we demonstrate that components of the pathway are conserved and confirm the role of CgPHO81, CgPHO80, CgPHO4, and CgMSN5 in the PHO pathway through deletion analysis. Unlike S. cerevisiae, C. glabrata shows little dependence on the transcription factor, Pho2, for induction of phosphate-regulated genes during phosphate limitation. We show that the CgPho4 protein is necessary and sufficient for Pho2-independent gene expression; CgPho4 is capable of driving expression of PHO promoters in S. cerevisiae in the absence of ScPHO2. On the basis of the sequences of PHO4 in the hemiascomycetes and complementation analysis, we suggest that Pho2 dependence is a trait only observed in species closely related to S. cerevisiae. Our data are consistent with trans-regulatory changes in the PHO pathway via the transcription factor Pho4 as opposed to cis-regulatory changes (the promoter).
Collapse
|
91
|
Nishizawa M, Komai T, Katou Y, Shirahige K, Ito T, Toh-E A. Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast. PLoS Biol 2009; 6:2817-30. [PMID: 19108609 PMCID: PMC2605928 DOI: 10.1371/journal.pbio.0060326] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 11/11/2008] [Indexed: 11/19/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae alters its gene expression profile in response to a change in nutrient availability. The PHO system is a well-studied case in the transcriptional regulation responding to nutritional changes in which a set of genes (PHO genes) is expressed to activate inorganic phosphate (Pi) metabolism for adaptation to Pi starvation. Pi starvation triggers an inhibition of Pho85 kinase, leading to migration of unphosphorylated Pho4 transcriptional activator into the nucleus and enabling expression of PHO genes. When Pi is sufficient, the Pho85 kinase phosphorylates Pho4, thereby excluding it from the nucleus and resulting in repression (i.e., lack of transcription) of PHO genes. The Pho85 kinase has a role in various cellular functions other than regulation of the PHO system in that Pho85 monitors whether environmental conditions are adequate for cell growth and represses inadequate (untimely) responses in these cellular processes. In contrast, Pho4 appears to activate some genes involved in stress response and is required for G1 arrest caused by DNA damage. These facts suggest the antagonistic function of these two players on a more general scale when yeast cells must cope with stress conditions. To explore general involvement of Pho4 in stress response, we tried to identify Pho4-dependent genes by a genome-wide mapping of Pho4 and Rpo21 binding (Rpo21 being the largest subunit of RNA polymerase II) using a yeast tiling array. In the course of this study, we found Pi- and Pho4-regulated intragenic and antisense RNAs that could modulate the Pi signal transduction pathway. Low-Pi signal is transmitted via certain inositol polyphosphate (IP) species (IP7) that are synthesized by Vip1 IP6 kinase. We have shown that Pho4 activates the transcription of antisense and intragenic RNAs in the KCS1 locus to down-regulate the Kcs1 activity, another IP6 kinase, by producing truncated Kcs1 protein via hybrid formation with the KCS1 mRNA and translation of the intragenic RNA, thereby enabling Vip1 to utilize more IP6 to synthesize IP7 functioning in low-Pi signaling. Because Kcs1 also can phosphorylate these IP7 species to synthesize IP8, reduction in Kcs1 activity can ensure accumulation of the IP7 species, leading to further stimulation of low-Pi signaling (i.e., forming a positive feedback loop). We also report that genes apparently not involved in the PHO system are regulated by Pho4 either dependent upon or independent of the Pi conditions, and many of the latter genes are involved in stress response. In S. cerevisiae, a large-scale cDNA analysis and mapping of RNA polymerase II binding using a high-resolution tiling array have identified a large number of antisense RNA species whose functions are yet to be clarified. Here we have shown that nutrient-regulated antisense and intragenic RNAs as well as direct regulation of structural gene transcription function in the response to nutrient availability. Our findings also imply that Pho4 is present in the nucleus even under high-Pi conditions to activate or repress transcription, which challenges our current understanding of Pho4 regulation.
Collapse
Affiliation(s)
- Masafumi Nishizawa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
92
|
Reddi AR, Jensen LT, Naranuntarat A, Rosenfeld L, Leung E, Shah R, Culotta VC. The overlapping roles of manganese and Cu/Zn SOD in oxidative stress protection. Free Radic Biol Med 2009; 46:154-62. [PMID: 18973803 PMCID: PMC2707084 DOI: 10.1016/j.freeradbiomed.2008.09.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/15/2008] [Accepted: 09/24/2008] [Indexed: 11/28/2022]
Abstract
In various organisms, high intracellular manganese provides protection against oxidative damage through unknown pathways. Herein we use a genetic approach in Saccharomyces cerevisiae to analyze factors that promote manganese as an antioxidant in cells lacking Cu/Zn superoxide dismutase (sod1 Delta). Unlike certain bacterial systems, oxygen resistance in yeast correlates with high intracellular manganese without a lowering of iron. This manganese for antioxidant protection is provided by the Nramp transporters Smf1p and Smf2p, with Smf1p playing a major role. In fact, loss of manganese transport by Smf1p together with loss of the Pmr1p manganese pump is lethal to sod1 Delta cells despite normal manganese SOD2 activity. Manganese-phosphate complexes are excellent superoxide dismutase mimics in vitro, yet through genetic disruption of phosphate transport and storage, we observed no requirement for phosphate in manganese suppression of oxidative damage. If anything, elevated phosphate correlated with profound oxidative stress in sod1 Delta mutants. The efficacy of manganese as an antioxidant was drastically reduced in cells that hyperaccumulate phosphate without effects on Mn SOD activity. Non-SOD manganese can provide a critical backup for Cu/Zn SOD1, but only under appropriate physiologic conditions.
Collapse
Affiliation(s)
- Amit R. Reddi
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Laran T. Jensen
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Amornrat Naranuntarat
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Leah Rosenfeld
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Edison Leung
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Rishita Shah
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Valeria C. Culotta
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| |
Collapse
|
93
|
Zvyagilskaya RA, Lundh F, Samyn D, Pattison-Granberg J, Mouillon JM, Popova Y, Thevelein JM, Persson BL. Characterization of the Pho89 phosphate transporter by functional hyperexpression inSaccharomyces cerevisiae. FEMS Yeast Res 2008; 8:685-96. [DOI: 10.1111/j.1567-1364.2008.00408.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
94
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
95
|
Abstract
Feedback loops have been identified in a variety of regulatory systems and organisms. While feedback loops of the same type (negative or positive) tend to have properties in common, they can play distinctively diverse roles in different regulatory systems, where they can affect virulence in a pathogenic bacterium, maturation patterns of vertebrate oocytes and transitions through cell cycle phases in eukaryotic cells. This review focuses on the properties and functions of positive feedback in biological systems, including bistability, hysteresis and activation surges.
Collapse
Affiliation(s)
- Alexander Y. Mitrophanov
- Howard Hughes Medical Institute, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Eduardo A. Groisman
- Howard Hughes Medical Institute, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
96
|
Boeger H, Griesenbeck J, Kornberg RD. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell 2008; 133:716-26. [PMID: 18485878 PMCID: PMC2409070 DOI: 10.1016/j.cell.2008.02.051] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 01/13/2008] [Accepted: 02/29/2008] [Indexed: 11/24/2022]
Abstract
The rate-limiting step of transcriptional activation in eukaryotes, and thus the critical point for gene regulation, is unknown. Combining biochemical analyses of the chromatin transition at the transcriptionally induced PHO5 promoter in yeast with modeling based on a small number of simple assumptions, we demonstrate that random removal and reformation of promoter nucleosomes can account for stochastic and kinetic properties of PHO5 expression. Our analysis suggests that the disassembly of promoter nucleosomes is rate limiting for PHO5 expression, and supports a model for the underlying mechanism of promoter chromatin remodeling, which appears to conserve a single nucleosome on the promoter at all times.
Collapse
Affiliation(s)
- Hinrich Boeger
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | | | | |
Collapse
|
97
|
Gauthier S, Coulpier F, Jourdren L, Merle M, Beck S, Konrad M, Daignan-Fornier B, Pinson B. Co-regulation of yeast purine and phosphate pathways in response to adenylic nucleotide variations. Mol Microbiol 2008; 68:1583-94. [PMID: 18433446 DOI: 10.1111/j.1365-2958.2008.06261.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenylate kinase (Adk1p) is a pivotal enzyme in both energetic and adenylic nucleotide metabolisms. In this paper, using a transcriptomic analysis, we show that the lack of Adk1p strongly induced expression of the PHO and ADE genes involved in phosphate utilization and AMP de novo biosynthesis respectively. Isolation and characterization of adk1 point mutants affecting PHO5 expression revealed that all these mutations also severely affected Adk1p catalytic activity, as well as PHO84 and ADE1 transcription. Furthermore, overexpression of distantly related enzymes such as human adenylate kinase or yeast UMP kinase was sufficient to restore regulation. These results demonstrate that adenylate kinase catalytic activity is critical for proper regulation of the PHO and ADE pathways. We also establish that adk1 deletion and purine limitation have similar effects on both adenylic nucleotide pool and PHO84 or ADE17 expression. Finally, we show that, in the adk1 mutant, upregulation of ADE1 depends on synthesis of the previously described effector(s) (S)AICAR ((N-succinyl)-5-aminoimidazol-4-carboxamide ribotide), while upregulation of PHO84 necessitates the Spl2p positive regulator. This work reveals that adenylic nucleotide availability is a key signal used by yeast to co-ordinate phosphate utilization and purine synthesis.
Collapse
Affiliation(s)
- Sébastien Gauthier
- Université Victor Segalen/Bordeaux 2, Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|