51
|
Teixeira MT. Saccharomyces cerevisiae as a Model to Study Replicative Senescence Triggered by Telomere Shortening. Front Oncol 2013; 3:101. [PMID: 23638436 PMCID: PMC3636481 DOI: 10.3389/fonc.2013.00101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/11/2013] [Indexed: 01/22/2023] Open
Abstract
In many somatic human tissues, telomeres shorten progressively because of the DNA-end replication problem. Consequently, cells cease to proliferate and are maintained in a metabolically viable state called replicative senescence. These cells are characterized by an activation of DNA damage checkpoints stemming from eroded telomeres, which are bypassed in many cancer cells. Hence, replicative senescence has been considered one of the most potent tumor suppressor pathways. However, the mechanism through which short telomeres trigger this cellular response is far from being understood. When telomerase is removed experimentally in Saccharomyces cerevisiae, telomere shortening also results in a gradual arrest of population growth, suggesting that replicative senescence also occurs in this unicellular eukaryote. In this review, we present the key steps that have contributed to the understanding of the mechanisms underlying the establishment of replicative senescence in budding yeast. As in mammals, signals stemming from short telomeres activate the DNA damage checkpoints, suggesting that the early cellular response to the shortest telomere(s) is conserved in evolution. Yet closer analysis reveals a complex picture in which the apparent single checkpoint response may result from a variety of telomeric alterations expressed in the absence of telomerase. Accordingly, the DNA replication of eroding telomeres appears as a critical challenge for senescing budding yeast cells and the easy manipulation of S. cerevisiae is providing insights into the way short telomeres are integrated into their chromatin and nuclear environments. Finally, the loss of telomerase in budding yeast triggers a more general metabolic alteration that remains largely unexplored. Thus, telomerase-deficient S. cerevisiae cells may have more common points than anticipated with somatic cells, in which telomerase depletion is naturally programed, thus potentially inspiring investigations in mammalian cells.
Collapse
Affiliation(s)
- M Teresa Teixeira
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique Paris, France
| |
Collapse
|
52
|
Grandin N, Charbonneau M. RPA provides checkpoint-independent cell cycle arrest and prevents recombination at uncapped telomeres of Saccharomyces cerevisiae. DNA Repair (Amst) 2013; 12:212-26. [DOI: 10.1016/j.dnarep.2012.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/13/2012] [Accepted: 12/08/2012] [Indexed: 12/23/2022]
|
53
|
Churikov D, Corda Y, Luciano P, Géli V. Cdc13 at a crossroads of telomerase action. Front Oncol 2013; 3:39. [PMID: 23450759 PMCID: PMC3584321 DOI: 10.3389/fonc.2013.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/11/2013] [Indexed: 01/21/2023] Open
Abstract
Telomere elongation by telomerase involves sequential steps that must be highly coordinated to ensure the maintenance of telomeres at a proper length. Telomerase is delivered to telomere ends, where it engages single-strand DNA end as a primer, elongates it, and dissociates from the telomeres via mechanism that is likely coupled to the synthesis of the complementary C-strand. In Saccharomyces cerevisiae, the telomeric G-overhang bound Cdc13 acts as a platform for the recruitment of several factors that orchestrate timely transitions between these steps. In this review, we focus on some unresolved aspects of telomerase recruitment and on the mechanisms that regulate telomere elongation by telomerase after its recruitment to chromosome ends. We also highlight the key regulatory modifications of Cdc13 that promote transitions between the steps of telomere elongation.
Collapse
Affiliation(s)
- Dmitri Churikov
- Marseille Cancer Research Center, U1068 INSERM, UMR7258 CNRS, Aix-Marseille University Institut Paoli-Calmettes, Marseille, France
| | | | | | | |
Collapse
|
54
|
Abstract
The mechanisms that maintain the stability of chromosome ends have broad impact on genome integrity in all eukaryotes. Budding yeast is a premier organism for telomere studies. Many fundamental concepts of telomere and telomerase function were first established in yeast and then extended to other organisms. We present a comprehensive review of yeast telomere biology that covers capping, replication, recombination, and transcription. We think of it as yeast telomeres—soup to nuts.
Collapse
|
55
|
Wu Y, DiMaggio PA, Perlman DH, Zakian VA, Garcia BA. Novel phosphorylation sites in the S. cerevisiae Cdc13 protein reveal new targets for telomere length regulation. J Proteome Res 2012. [PMID: 23181431 DOI: 10.1021/pr300408v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The S. cerevisiae Cdc13 is a multifunctional protein with key roles in regulation of telomerase, telomere end protection, and conventional telomere replication, all of which are cell cycle-regulated processes. Given that phosphorylation is a key mechanism for regulating protein function, we identified sites of phosphorylation using nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). We also determined phosphorylation abundance on both wild type (WT) and a telomerase deficient form of Cdc13, encoded by the cdc13-2 allele, in both G1 phase cells, when telomerase is not active, and G2/M phase cells, when it is. We identified 21 sites of in vivo phosphorylation, of which only five had been reported previously. In contrast, phosphorylation of two in vitro targets of the ATM-like Tel1 kinase, S249 and S255, was not detected. This result helps resolve conflicting data on the importance of phosphorylation of these residues in telomerase recruitment. Multiple residues showed differences in their cell cycle pattern of modification. For example, phosphorylation of S314 was significantly higher in the G2/M compared to the G1 phase and in WT versus mutant Cdc13, and a S314D mutation negatively affected telomere length. Our findings provide new targets in a key telomerase regulatory protein for modulation of telomere dynamics.
Collapse
Affiliation(s)
- Yun Wu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | | | | | | | | |
Collapse
|
56
|
Cheung HC, San Lucas FA, Hicks S, Chang K, Bertuch AA, Ribes-Zamora A. An S/T-Q cluster domain census unveils new putative targets under Tel1/Mec1 control. BMC Genomics 2012. [PMID: 23176708 PMCID: PMC3564818 DOI: 10.1186/1471-2164-13-664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The cellular response to DNA damage is immediate and highly coordinated in order to maintain genome integrity and proper cell division. During the DNA damage response (DDR), the sensor kinases Tel1 and Mec1 in Saccharomyces cerevisiae and ATM and ATR in human, phosphorylate multiple mediators which activate effector proteins to initiate cell cycle checkpoints and DNA repair. A subset of kinase substrates are recognized by the S/T-Q cluster domain (SCD), which contains motifs of serine (S) or threonine (T) followed by a glutamine (Q). However, the full repertoire of proteins and pathways controlled by Tel1 and Mec1 is unknown. Results To identify all putative SCD-containing proteins, we analyzed the distribution of S/T-Q motifs within verified Tel1/Mec1 targets and arrived at a unifying SCD definition of at least 3 S/T-Q within a stretch of 50 residues. This new SCD definition was used in a custom bioinformatics pipeline to generate a census of SCD-containing proteins in both yeast and human. In yeast, 436 proteins were identified, a significantly larger number of hits than were expected by chance. These SCD-containing proteins did not distribute equally across GO-ontology terms, but were significantly enriched for those involved in processes related to the DDR. We also found a significant enrichment of proteins involved in telophase and cytokinesis, protein transport and endocytosis suggesting possible novel Tel1/Mec1 targets in these pathways. In the human proteome, a wide range of similar proteins were identified, including homologs of some SCD-containing proteins found in yeast. This list also included high concentrations of proteins in the Mediator, spindle pole body/centrosome and actin cytoskeleton complexes. Conclusions Using a bioinformatic approach, we have generated a census of SCD-containing proteins that are involved not only in known DDR pathways but several other pathways under Tel1/Mec1 control suggesting new putative targets for these kinases.
Collapse
Affiliation(s)
- Hannah C Cheung
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
57
|
Preserving Yeast Genetic Heritage through DNA Damage Checkpoint Regulation and Telomere Maintenance. Biomolecules 2012; 2:505-23. [PMID: 24970147 PMCID: PMC4030855 DOI: 10.3390/biom2040505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/10/2012] [Accepted: 10/22/2012] [Indexed: 01/07/2023] Open
Abstract
In order to preserve genome integrity, extrinsic or intrinsic DNA damages must be repaired before they accumulate in cells and trigger other mutations and genome rearrangements. Eukaryotic cells are able to respond to different genotoxic stresses as well as to single DNA double strand breaks (DSBs), suggesting highly sensitive and robust mechanisms to detect lesions that trigger a signal transduction cascade which, in turn, controls the DNA damage response (DDR). Furthermore, cells must be able to distinguish natural chromosomal ends from DNA DSBs in order to prevent inappropriate checkpoint activation, DDR and chromosomal rearrangements. Since the original discovery of RAD9, the first DNA damage checkpoint gene identified in Saccharomyces cerevisiae, many genes that have a role in this pathway have been identified, including MRC1, MEC3, RAD24, RAD53, DUN1, MEC1 and TEL1. Extensive studies have established most of the genetic basis of the DNA damage checkpoint and uncovered its different functions in cell cycle regulation, DNA replication and repair, and telomere maintenance. However, major questions concerning the regulation and functions of the DNA damage checkpoint remain to be answered. First, how is the checkpoint activity coupled to DNA replication and repair? Second, how do cells distinguish natural chromosome ends from deleterious DNA DSBs? In this review we will examine primarily studies performed using Saccharomyces cerevisiae as a model system.
Collapse
|
58
|
Pfeiffer V, Lingner J. TERRA promotes telomere shortening through exonuclease 1-mediated resection of chromosome ends. PLoS Genet 2012; 8:e1002747. [PMID: 22719262 PMCID: PMC3375253 DOI: 10.1371/journal.pgen.1002747] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/18/2012] [Indexed: 01/30/2023] Open
Abstract
The long noncoding telomeric repeat containing RNA (TERRA) is expressed at chromosome ends. TERRA upregulation upon experimental manipulation or in ICF (immunodeficiency, centromeric instability, facial anomalies) patients correlates with short telomeres. To study the mechanism of telomere length control by TERRA in Saccharomyces cerevisiae, we mapped the transcriptional start site of TERRA at telomere 1L and inserted a doxycycline regulatable promoter upstream. Induction of TERRA transcription led to telomere shortening of 1L but not of other chromosome ends. TERRA interacts with the Exo1-inhibiting Ku70/80 complex, and deletion of EXO1 but not MRE11 fully suppressed the TERRA–mediated short telomere phenotype in presence and absence of telomerase. Thus TERRA transcription facilitates the 5′-3′ nuclease activity of Exo1 at chromosome ends, providing a means to regulate the telomere shortening rate. Thereby, telomere transcription can regulate cellular lifespan through modulation of chromosome end processing activities. Telomeres protect chromosome ends from end fusion and end degradation, and they regulate cellular lifespan. Telomerase, a reverse transcriptase, maintains telomere length. The end replication problem and the processing of DNA ends by nucleases cause telomere shortening. Telomeres are transcribed into a long noncoding RNA known as TERRA. ICF syndrome derived patient cells have short telomeres and enriched TERRA. TERRA inhibits telomerase activity in vitro. To analyze TERRA function in vivo, we used the model organism Saccharomyces cerevisiae. We identified the natural TERRA promoter at one chromosome end and replaced it with an artificial promoter to modulate TERRA transcription with a drug. TERRA induction leads to telomere shortening at this specific chromosome end. We show that telomere shortening is a consequence of increased activation of the 5′-3′ Exonuclease 1 at the transcribed telomere with no notable effects on telomerase recruitment and activity. The Ku protein controls Exonuclease 1 activity at chromosome ends. TERRA physically and genetically interacts with Ku and appears to interfere with its ability to inhibit Exonuclease 1. Thus, we demonstrate how TERRA expression controls telomere length through the regulation of the processing of chromosome ends. Therefore, telomere transcription can regulate cellular lifespan independently of telomerase.
Collapse
Affiliation(s)
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Frontiers in Genetics National Center of Competence in Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
59
|
Dehé PM, Rog O, Ferreira M, Greenwood J, Cooper J. Taz1 Enforces Cell-Cycle Regulation of Telomere Synthesis. Mol Cell 2012; 46:797-808. [DOI: 10.1016/j.molcel.2012.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/21/2012] [Accepted: 04/13/2012] [Indexed: 01/14/2023]
|
60
|
Hector RE, Ray A, Chen BR, Shtofman R, Berkner KL, Runge KW. Mec1p associates with functionally compromised telomeres. Chromosoma 2012; 121:277-90. [PMID: 22289863 PMCID: PMC3350766 DOI: 10.1007/s00412-011-0359-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/30/2011] [Accepted: 12/30/2011] [Indexed: 12/22/2022]
Abstract
In many organisms, telomere DNA consists of simple sequence repeat tracts that are required to protect the chromosome end. In the yeast Saccharomyces cerevisiae, tract maintenance requires two checkpoint kinases of the ATM family, Tel1p and Mec1p. Previous work has shown that Tel1p is recruited to functional telomeres with shorter repeat tracts to promote telomerase-mediated repeat addition, but the role of Mec1p is unknown. We found that Mec1p telomere association was detected as cells senesced when telomere function was compromised by extreme shortening due to either the loss of telomerase or the double-strand break binding protein Ku. Exonuclease I effects the removal of the 5' telomeric strand, and eliminating it prevented both senescence and Mec1p telomere association. Thus, in contrast to Tel1p, Mec1p associates with short, functionally compromised telomeres.
Collapse
Affiliation(s)
- Ronald E. Hector
- Department of Molecular Genetics, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Lerner Research Institute, 9500 Euclid Avenue, NE20, Cleveland, OH 44195 USA
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4920 USA
- Present Address: NCAUR, ARS, USDA, 1815 N. University St., Peoria, IL 61604 USA
| | - Alo Ray
- Department of Molecular Genetics, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Lerner Research Institute, 9500 Euclid Avenue, NE20, Cleveland, OH 44195 USA
| | - Bo-Ruei Chen
- Department of Molecular Genetics, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Lerner Research Institute, 9500 Euclid Avenue, NE20, Cleveland, OH 44195 USA
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4920 USA
| | - Rebecca Shtofman
- Department of Molecular Genetics, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Lerner Research Institute, 9500 Euclid Avenue, NE20, Cleveland, OH 44195 USA
| | - Kathleen L. Berkner
- Department of Molecular Cardiology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Lerner Research Institute, 9500 Euclid Avenue, NB50, Cleveland, OH 44195 USA
| | - Kurt W. Runge
- Department of Molecular Genetics, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Lerner Research Institute, 9500 Euclid Avenue, NE20, Cleveland, OH 44195 USA
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4920 USA
| |
Collapse
|
61
|
RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts. EMBO J 2012; 31:2034-46. [PMID: 22354040 DOI: 10.1038/emboj.2012.40] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 01/31/2012] [Indexed: 11/08/2022] Open
Abstract
In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase. The interaction of RPA with telomerase appears to be mediated by both yKu and the telomerase subunit Est1. Moreover, a mutation in Rfa1 that affects both the interaction with yKu and telomerase reduces the dramatic increase in telomere length of a rif1Δ, rif2Δ double mutant. Finally, we show that the RPA/telomerase association and function are conserved in Schizosaccharomyces pombe. Our results indicate that in both yeasts, RPA directly facilitates telomerase activity at chromosome ends.
Collapse
|
62
|
A balance between Tel1 and Rif2 activities regulates nucleolytic processing and elongation at telomeres. Mol Cell Biol 2012; 32:1604-17. [PMID: 22354991 DOI: 10.1128/mcb.06547-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Generation of G-strand overhangs at Saccharomyces cerevisiae yeast telomeres depends primarily on the MRX (Mre11-Rad50-Xrs2) complex, which is also necessary to maintain telomere length by recruiting the Tel1 kinase. MRX physically interacts with Rif2, which inhibits both resection and elongation of telomeres. We provide evidence that regulation of telomere processing and elongation relies on a balance between Tel1 and Rif2 activities. Tel1 regulates telomere nucleolytic processing by promoting MRX activity. In fact, the lack of Tel1 impairs MRX-dependent telomere resection, which is instead enhanced by the Tel1-hy909 mutant variant, which causes telomerase-dependent telomere overelongation. The Tel1-hy909 variant is more robustly associated than wild-type Tel1 to double-strand-break (DSB) ends carrying telomeric repeat sequences. Furthermore, it increases the persistence at a DSB adjacent to telomeric repeats of both MRX and Est1, which in turn likely account for the increased telomere resection and elongation in TEL1-hy909 cells. Strikingly, Rif2 is unable to negatively regulate processing and lengthening at TEL1-hy909 telomeres, indicating that the Tel1-hy909 variant overcomes the inhibitory activity exerted by Rif2 on MRX. Altogether, these findings highlight a primary role of Tel1 in overcoming Rif2-dependent negative regulation of MRX activity in telomere resection and elongation.
Collapse
|
63
|
Cifuentes-Rojas C, Shippen DE. Telomerase regulation. Mutat Res 2012; 730:20-7. [PMID: 22032831 PMCID: PMC3256259 DOI: 10.1016/j.mrfmmm.2011.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/15/2011] [Accepted: 10/12/2011] [Indexed: 02/05/2023]
Abstract
The intimate connection between telomerase regulation and human disease is now well established. The molecular basis for telomerase regulation is highly complex and entails multiple layers of control. While the major target of enzyme regulation is the catalytic subunit TERT, the RNA subunit of telomerase is also implicated in telomerase control. In addition, alterations in gene dosage and alternative isoforms of core telomerase components have been described. Finally, telomerase localization, recruitment to the telomere and enzymology at the chromosome terminus are all subject to modulation. In this review we summarize recent advances in understanding fundamental mechanisms of telomerase regulation.
Collapse
Affiliation(s)
| | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| |
Collapse
|
64
|
Stewart JA, Chaiken MF, Wang F, Price CM. Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation. Mutat Res 2012; 730:12-9. [PMID: 21945241 PMCID: PMC3256267 DOI: 10.1016/j.mrfmmm.2011.08.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/15/2011] [Accepted: 08/17/2011] [Indexed: 11/16/2022]
Abstract
Chromosome end protection is essential to protect genome integrity. Telomeres, tracts of repetitive DNA sequence and associated proteins located at the chromosomal terminus, serve to safeguard the ends from degradation and unwanted double strand break repair. Due to the essential nature of telomeres in protecting the genome, a number of unique proteins have evolved to ensure that telomere length and structure are preserved. The inability to properly maintain telomeres can lead to diseases such as dyskeratosis congenita, pulmonary fibrosis and cancer. In this review, we will discuss the known functions of mammalian telomere-associated proteins, their role in telomere replication and length regulation and how these processes relate to genome instability and human disease.
Collapse
Affiliation(s)
- Jason A. Stewart
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Mary F. Chaiken
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Feng Wang
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Carolyn M. Price
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| |
Collapse
|
65
|
Grandin N, Corset L, Charbonneau M. Genetic and physical interactions between Tel2 and the Med15 Mediator subunit in Saccharomyces cerevisiae. PLoS One 2012; 7:e30451. [PMID: 22291956 PMCID: PMC3265489 DOI: 10.1371/journal.pone.0030451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/16/2011] [Indexed: 11/23/2022] Open
Abstract
Background In budding yeast, the highly conserved Tel2 protein is part of several complexes and its main function is now believed to be in the biogenesis of phosphatidyl inositol 3-kinase related kinases. Principal Findings To uncover potentially novel functions of Tel2, we set out to isolate temperature-sensitive (ts) mutant alleles of TEL2 in order to perform genetic screenings. MED15/GAL11, a subunit of Mediator, a general regulator of transcription, was isolated as a suppressor of these mutants. The isolated tel2 mutants exhibited a short telomere phenotype that was partially rescued by MED15/GAL11 overexpression. The tel2-15mutant was markedly deficient in the transcription of EST2, coding for the catalytic subunit of telomerase, potentially explaining the short telomere phenotype of this mutant. In parallel, a two-hybrid screen identified an association between Tel2 and Rvb2, a highly conserved member of the AAA+ family of ATPases further found by in vivo co-immunoprecipitation to be tight and constitutive. Transiently overproduced Tel2 and Med15/Gal11 associated together, suggesting a potential role for Tel2 in transcription. Other Mediator subunits, as well as SUA7/TFIIB, also rescued the tel2-ts mutants. Significance Altogether, the present data suggest the existence of a novel role for Tel2, namely in transcription, possibly in cooperation with Rvb2 and involving the existence of physical interactions with the Med15/Gal11 Mediator subunit.
Collapse
Affiliation(s)
- Nathalie Grandin
- UMR CNRS 5239, Ecole Normale Supérieure de Lyon, IFR128 BioSciences Gerland, Lyon, France
- UMR CNRS 6239, Université de Tours, Tours, France
| | | | - Michel Charbonneau
- UMR CNRS 5239, Ecole Normale Supérieure de Lyon, IFR128 BioSciences Gerland, Lyon, France
- UMR CNRS 6239, Université de Tours, Tours, France
- * E-mail:
| |
Collapse
|
66
|
Fukunaga K, Hirano Y, Sugimoto K. Subtelomere-binding protein Tbf1 and telomere-binding protein Rap1 collaborate to inhibit localization of the Mre11 complex to DNA ends in budding yeast. Mol Biol Cell 2011; 23:347-59. [PMID: 22130795 PMCID: PMC3258178 DOI: 10.1091/mbc.e11-06-0568] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Rap1 acts together with the subtelomere-binding protein Tbf1 and inhibits localization of Mre11 complex to DNA ends. Depletion of Tbf1 protein stimulates checkpoint activation in cells containing short telomeres. The results suggest that Tbf1 and Rap1 collaborate to maintain genomic stability of short telomeres. Chromosome ends, known as telomeres, have to be distinguished from DNA double-strand breaks that activate DNA damage checkpoints. In budding yeast, the Mre11-Rad50-Xrs2 (MRX) complex associates with DNA ends and promotes checkpoint activation. Rap1 binds to double-stranded telomeric regions and recruits Rif1 and Rif2 to telomeres. Rap1 collaborates with Rif1 and Rif2 and inhibits MRX localization to DNA ends. This Rap1-Rif1-Rif2 function becomes attenuated at shortened telomeres. Here we show that Rap1 acts together with the subtelomere-binding protein Tbf1 and inhibits MRX localization to DNA ends. The placement of a subtelomeric sequence or TTAGGG repeats together with a short telomeric TG repeat sequence inhibits MRX accumulation at nearby DNA ends in a Tbf1-dependent manner. Moreover, tethering of both Tbf1 and Rap1 proteins decreases MRX and Tel1 accumulation at nearby DNA ends. This Tbf1- and Rap1-dependent pathway operates independently of Rif1 or Rif2 function. Depletion of Tbf1 protein stimulates checkpoint activation in cells containing short telomeres but not in cells containing normal-length telomeres. These data support a model in which Tbf1 and Rap1 collaborate to maintain genomic stability of short telomeres.
Collapse
Affiliation(s)
- Kenzo Fukunaga
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | |
Collapse
|
67
|
Moser BA, Chang YT, Kosti J, Nakamura TM. Tel1ATM and Rad3ATR kinases promote Ccq1-Est1 interaction to maintain telomeres in fission yeast. Nat Struct Mol Biol 2011; 18:1408-13. [PMID: 22101932 PMCID: PMC3230746 DOI: 10.1038/nsmb.2187] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/19/2011] [Indexed: 12/22/2022]
Abstract
The shelterin complex plays both positive and negative roles in telomerase regulation. While shelterin prevents the checkpoint kinases ATM and ATR from fully activating DNA damage responses at telomeres, those kinases are also required for telomere maintenance. In fission yeast, cells lacking both Tel1 (ATM ortholog) and Rad3 (ATR ortholog) fail to recruit telomerase to telomeres, and survive by circularizing chromosomes. However, the critical telomere substrate(s) of Tel1ATM/Rad3ATR remained unknown. Here, we show that Tel1ATM/Rad3ATR-dependent phosphorylation of the shelterin subunit Ccq1 on Thr93 is essential for telomerase association with telomeres. In addition, we show that the telomerase subunit Est1 interacts directly with the phosphorylated Thr93 of Ccq1 to ensure telomere maintenance. The shelterin subunits Taz1, Rap1 and Poz1 (previously established inhibitors of telomerase) were also found to negatively regulate Ccq1 phosphorylation. These findings establish Tel1ATM/Rad3ATR-dependent Ccq1 Thr93 phosphorylation as a critical regulator of telomere maintenance in fission yeast.
Collapse
Affiliation(s)
- Bettina A Moser
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
68
|
The telomeric Cdc13 protein interacts directly with the telomerase subunit Est1 to bring it to telomeric DNA ends in vitro. Proc Natl Acad Sci U S A 2011; 108:20362-9. [PMID: 21969561 DOI: 10.1073/pnas.1100281108] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In Saccharomyces cerevisiae, a Cdc13-Est1 interaction is proposed to mediate recruitment of telomerase to DNA ends. Here we provide unique in vitro evidence for this model by demonstrating a direct interaction between purified Cdc13 and Est1. The Cdc13-Est1 interaction is specific and requires the in vivo defined Cdc13 recruitment domain. Moreover, in the absence of this interaction, Est1 is excluded from telomeric single-stranded (ss)DNA. The apparent association constand (K(d)) between Est1 and a Cdc13-telomeric ssDNA complex was ∼250 nM. In G2 phase cells, where telomerase is active, Cdc13 and Est1 were sufficiently abundant (∼420 and ∼110 copies per cell, respectively) to support complex formation. Interaction between Cdc13 and Est1 was unchanged by three telomerase-deficient mutations, Cdc13(E252K) (cdc13-2), Est1(K444E) (est1-60), and Cdc13(S249,255D), indicating that their telomerase null phenotypes are not due to loss of the Cdc13-Est1 interaction. These data recapitulate in vitro the first step in telomerase recruitment to telomeric ssDNA and suggest that this step is necessary to recruit telomerase to DNA ends.
Collapse
|
69
|
Tuzon CT, Wu Y, Chan A, Zakian VA. The Saccharomyces cerevisiae telomerase subunit Est3 binds telomeres in a cell cycle- and Est1-dependent manner and interacts directly with Est1 in vitro. PLoS Genet 2011; 7:e1002060. [PMID: 21573139 PMCID: PMC3088721 DOI: 10.1371/journal.pgen.1002060] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/02/2011] [Indexed: 11/18/2022] Open
Abstract
Telomerase is a telomere dedicated reverse transcriptase that replicates the very ends of eukaryotic chromosomes. Saccharomyces cerevisiae telomerase consists of TLC1 (the RNA template), Est2 (the catalytic subunit), and two accessory proteins, Est1 and Est3, that are essential in vivo for telomerase activity but are dispensable for catalysis in vitro. Est1 functions in both recruitment and activation of telomerase. The association of Est3 with telomeres occurred largely in late S/G2 phase, the time when telomerase acts and Est1 telomere binding occurs. Est3 telomere binding was Est1-dependent. This dependence is likely due to a direct interaction between the two proteins, as purified recombinant Est1 and Est3 interacted in vitro. Est3 abundance was neither cell cycle–regulated nor Est1-dependent. Est3 was the most abundant of the three Est proteins (84.3±13.3 molecules per cell versus 71.1±19.2 for Est1 and 37.2±6.5 for Est2), so its telomere association and/or activity is unlikely to be limited by its relative abundance. Est2 and Est1 telomere binding was unaffected by the absence of Est3. Taken together, these data indicate that Est3 acts downstream of both Est2 and Est1 and that the putative activation function of Est1 can be explained by its role in recruiting Est3 to telomeres. Owing to the biochemical properties of DNA polymerases, the free ends of linear chromosomes, called telomeres, cannot be replicated by the same mechanisms that suffice for the rest of the chromosome. Instead they are maintained by a telomere-dedicated reverse transcriptase called telomerase that uses its integral RNA component as the template to make more telomeric DNA. In baker's yeast, telomerase is composed of a catalytic subunit (Est2), the templating RNA (TLC1), and two accessory proteins, Est1 and Est3. Here we show that Est3 associates with telomeres late in the cell cycle, at the same time when telomerase is active, and this binding was Est1-dependent, even though Est3 abundance was neither cell cycle–regulated nor Est1-dependent. Since purified Est3 and Est1interacted in vitro, Est1-dependent recruitment of Est3 is probably due to direct protein–protein interaction. Neither Est1 nor Est2 telomere binding was Est3-dependent. Thus, Est3 acts downstream of telomerase recruitment to promote telomerase activity, and the telomerase activation functions of Est1 can be explained by its recruiting Est3 to telomeres.
Collapse
Affiliation(s)
- Creighton T. Tuzon
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Yun Wu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Angela Chan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Virginia A. Zakian
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
70
|
Abstract
Telomeres are essential for the stability and complete replication of linear chromosomes. Telomere elongation by telomerase counteracts the telomere shortening due to the incomplete replication of chromosome ends by DNA polymerase. Telomere elongation is cell-cycle-regulated and coupled to DNA replication during S-phase. However, the molecular mechanisms that underlie such cell-cycle-dependent telomere elongation by telomerase remain largely unknown. Several aspects of telomere replication in budding yeast, including the modulation of telomere chromatin structure, telomere end processing, recruitment of telomere-binding proteins and telomerase complex to telomere as well as the coupling of DNA replication to telomere elongation during cell cycle progression will be discussed, and the potential roles of Cdk (cyclin-dependent kinase) in these processes will be illustrated.
Collapse
|
71
|
McGee JS, Phillips JA, Chan A, Sabourin M, Paeschke K, Zakian VA. Reduced Rif2 and lack of Mec1 target short telomeres for elongation rather than double-strand break repair. Nat Struct Mol Biol 2010; 17:1438-45. [PMID: 21057524 PMCID: PMC3058685 DOI: 10.1038/nsmb.1947] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/07/2010] [Indexed: 01/01/2023]
Abstract
Telomerase in Saccharomyces cerevisiae binds and preferentially elongates short telomeres, and this process requires the checkpoint kinase Tel1. Here we show that the Mre11 complex bound preferentially to short telomeres, which could explain the preferential binding of Tel1 to these ends. Compared to wild-type length telomeres, short telomeres generated by incomplete replication had low levels of the telomerase inhibitory protein Rif2. Moreover, in the absence of Rif2, Tel1 bound equally well to short and wild-type length telomeres, suggesting that low Rif2 content marks short telomeres for preferential elongation. In congenic strains, a double-strand break bound at least 140 times as much Mec1 in the first cell cycle after breakage as did a short telomere in the same time frame. Binding of replication protein A was also much lower at short telomeres. The absence of Mec1 at short telomeres could explain why they do not trigger a checkpoint-mediated cell-cycle arrest.
Collapse
Affiliation(s)
- Jean S. McGee
- Department of Molecular Biology, Princeton University, Princeton NJ 08544
| | - Jane A. Phillips
- Department of Molecular Biology, Princeton University, Princeton NJ 08544
| | - Angela Chan
- Department of Molecular Biology, Princeton University, Princeton NJ 08544
| | - Michelle Sabourin
- Department of Molecular Biology, Princeton University, Princeton NJ 08544
| | - Katrin Paeschke
- Department of Molecular Biology, Princeton University, Princeton NJ 08544
| | - Virginia A. Zakian
- Department of Molecular Biology, Princeton University, Princeton NJ 08544
| |
Collapse
|
72
|
Telomerase recruitment in Saccharomyces cerevisiae is not dependent on Tel1-mediated phosphorylation of Cdc13. Genetics 2010; 186:1147-59. [PMID: 20837994 DOI: 10.1534/genetics.110.122044] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In Saccharomyces cerevisiae, association between the Est1 telomerase subunit and the telomere-binding protein Cdc13 is essential for telomerase to be recruited to its site of action. A current model proposes that Tel1 binding to telomeres marks them for elongation, as the result of phosphorylation of a proposed S/TQ cluster in the telomerase recruitment domain of Cdc13. However, three observations presented here argue against one key aspect of this model. First, the pattern of Cdc13 phosphatase-sensitive isoforms is not altered by loss of Tel1 function or by mutations introduced into two conserved serines (S249 and S255) in the Cdc13 recruitment domain. Second, an interaction between Cdc13 and Est1, as monitored by a two-hybrid assay, is dependent on S255 but Tel1-independent. Finally, a derivative of Cdc13, cdc13-(S/TQ)11→(S/TA)11, in which every potential consensus phosphorylation site for Tel1 has been eliminated, confers nearly wild-type telomere length. These results are inconsistent with a model in which the Cdc13-Est1 interaction is regulated by Tel1-mediated phosphorylation of the Cdc13 telomerase recruitment domain. We propose an alternative model for the role of Tel1 in telomere homeostasis, which is based on the assumption that Tel1 performs the same molecular task at double-strand breaks (DSBs) and chromosome termini.
Collapse
|
73
|
Williams TL, Levy DL, Maki-Yonekura S, Yonekura K, Blackburn EH. Characterization of the yeast telomere nucleoprotein core: Rap1 binds independently to each recognition site. J Biol Chem 2010; 285:35814-24. [PMID: 20826803 DOI: 10.1074/jbc.m110.170167] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
At the core of Saccharomyces cerevisiae telomeres is an array of tandem telomeric DNA repeats bound site-specifically by multiple Rap1 molecules. There, Rap1 orchestrates the binding of additional telomere-associated proteins and negatively regulates both telomere fusion and length homeostasis. Using electron microscopy, viscosity, and light scattering measurements, we show that purified Rap1 is a monomer in solution that adopts a ringlike or C shape with a central cavity. Rap1 could orchestrate telomere function by binding multiple telomere array sites through either cooperative or independent mechanisms. To determine the mechanism, we analyze the distribution of Rap1 monomers on defined telomeric DNA arrays. This analysis clearly indicates that Rap1 binds independently to each nonoverlapping site in an array, regardless of the spacing between sites, the total number of sites, the affinity of the sites for Rap1, and over a large concentration range. Previous experiments have not clearly separated the effects of affinity from repeat spacing on telomere function. We clarify these results by testing in vivo the function of defined telomere arrays containing the same Rap1 binding site separated by spacings that were previously defined as low or high activity. We find that Rap1 binding affinity in vitro correlates with the ability of telomeric repeat arrays to regulate telomere length in vivo. We suggest that Rap1 binding to multiple sites in a telomere array does not, by itself, promote formation of a more energetically stabile complex.
Collapse
Affiliation(s)
- Tanya L Williams
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, USA
| | | | | | | | | |
Collapse
|
74
|
Wellinger RJ. When the caps fall off: responses to telomere uncapping in yeast. FEBS Lett 2010; 584:3734-40. [PMID: 20600003 DOI: 10.1016/j.febslet.2010.06.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 12/25/2022]
Abstract
Telomeres protect the ends of linear chromosomes from activities that cause sequence losses or challenge chromosome integrity. Furthermore, these ends must be hidden from detection by the DNA damage recognition and response pathways. In particular, they must not fuse with each other. These fundamental and very first functions attributed to telomeres are also summarized with the term 'chromosome capping'. However, telomeres can become uncapped and the foremost cellular responses to such events aim to restore genome stability in the most conservative fashion possible. I will provide an outline of cellular responses to uncapping in budding yeast and briefly discuss the reverse, namely avoidance mechanisms that prevent telomere formation at inappropriate places.
Collapse
Affiliation(s)
- Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
75
|
Cdc13 and Telomerase Bind through Different Mechanisms at the Lagging- and Leading-Strand Telomeres. Mol Cell 2010; 38:842-52. [DOI: 10.1016/j.molcel.2010.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 02/20/2010] [Accepted: 04/22/2010] [Indexed: 11/22/2022]
|
76
|
An mre11 mutation that promotes telomere recombination and an efficient bypass of senescence. Genetics 2010; 185:761-70. [PMID: 20421597 DOI: 10.1534/genetics.110.117598] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Preventing the formation of dysfunctional telomeres is essential for genomic stability. In most organisms, the ribo-nucleoprotein reverse transcriptase telomerase is responsible for telomere GT-strand elongation. However, in telomerase-negative cells, low-frequency recombination mechanisms can avert lethality by elongating critically short telomeres. This study focuses on the involvement of the budding yeast Mre11 in telomere recombination and homeostasis. We have identified a novel allele of MRE11, mre11-A470T, that, in telomerase-positive cells, confers a semidominant decrease in telomere size and a recessive defect in telomere healing. In addition, mutant cells lack normal telomere size homeostasis. Telomerase-negative mre11-A470T cells display a Rad51-dependent bypass of replicative senescence via induction of a highly efficient type I-related recombination pathway termed type IA. The type IA pathway involves an amplification of subtelomeric Y' elements, coupled with elongated and more heterogeneous telomere tracts relative to the short telomere size of type I survivors. The data have led us to propose the involvement of break-induced replication in telomere expansion. The differing phenotypes elicited by the mre11-A470T mutants in telomerase-positive and telomerase-negative cells have also led us to speculate that the telomere end structure may be modified differentially in mre11-A470T cells, directing the telomere into specific pathways.
Collapse
|
77
|
Tamayo M, Mosquera A, Rego JI, Fernández-Sueiro JL, Blanco FJ, Fernández JL. Differing patterns of peripheral blood leukocyte telomere length in rheumatologic diseases. Mutat Res 2010; 683:68-73. [PMID: 19879280 DOI: 10.1016/j.mrfmmm.2009.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/08/2009] [Accepted: 10/19/2009] [Indexed: 11/26/2022]
Abstract
Telomeres progressively shorten with repeated somatic tissue cell division, their length being an indicator of cellular ageing. Telomeric dysfunction may be implicated in a variety of diseases. We measured mean telomere length in peripheral blood leukocytes (PBL) from patients with various rheumatologic diseases. Mean PBL telomere length was measured using real-time quantitative polymerase chain reaction (Q-PCR) assay in a control population (n=130; age range: 3-94 years) and in subjects diagnosed with rheumatoid arthritis (RA; n=86; age range: 31-82 years), psoriatic arthritis (PA; n=56; age range: 26-79 years) and ankylosing spondylitis (AS; n=59; age range: 21-75 years). These diseases are associated with chronic systemic inflammatory activity. Telomere length was also quantified in subjects with osteoarthritis (OA; n=34; age range: 43-82 years) and osteoporosis (OP; n=35; age range: 59-95 years), diseases without a chronic systemic inflammatory component. Telomere length in OA showed no differences from age-matched controls (p=0.234), but was significantly shorter in OP (p=0.001). Telomere length was significantly longer than controls in RA (p=0.015), PA (p<0.001) and AS (p<0.001). Different patterns in telomere length from PBL are evidenced in rheumatologic pathologies, possibly dependent on the presence or absence of chronic systemic inflammation.
Collapse
Affiliation(s)
- María Tamayo
- INIBIC-Complexo Hospitalario Universitario A Coruña, Genetics Unit, Coruña, Spain
| | | | | | | | | | | |
Collapse
|
78
|
Subramanian L, Nakamura TM. A kinase-independent role for the Rad3(ATR)-Rad26(ATRIP) complex in recruitment of Tel1(ATM) to telomeres in fission yeast. PLoS Genet 2010; 6:e1000839. [PMID: 20140190 PMCID: PMC2816689 DOI: 10.1371/journal.pgen.1000839] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 01/04/2010] [Indexed: 01/13/2023] Open
Abstract
ATM and ATR are two redundant checkpoint kinases essential for the stable maintenance of telomeres in eukaryotes. Previous studies have established that MRN (Mre11-Rad50-Nbs1) and ATRIP (ATR Interacting Protein) interact with ATM and ATR, respectively, and recruit their partner kinases to sites of DNA damage. Here, we investigated how Tel1(ATM) and Rad3(ATR) recruitment to telomeres is regulated in fission yeast. Quantitative chromatin immunoprecipitation (ChIP) assays unexpectedly revealed that the MRN complex could also contribute to the recruitment of Tel1(ATM) to telomeres independently of the previously established Nbs1 C-terminal Tel1(ATM) interaction domain. Recruitment of Tel1(ATM) to telomeres in nbs1-c60Delta cells, which lack the C-terminal 60 amino acid Tel1(ATM) interaction domain of Nbs1, was dependent on Rad3(ATR)-Rad26(ATRIP), but the kinase domain of Rad3(ATR) was dispensable. Thus, our results establish that the Rad3(ATR)-Rad26(ATRIP) complex contributes to the recruitment of Tel1(ATM) independently of Rad3(ATR) kinase activity, by a mechanism redundant with the Tel1(ATM) interaction domain of Nbs1. Furthermore, we found that the N-terminus of Nbs1 contributes to the recruitment of Rad3(ATR)-Rad26(ATRIP) to telomeres. In response to replication stress, mammalian ATR-ATRIP also contributes to ATM activation by a mechanism that is dependent on the MRN complex but independent of the C-terminal ATM interaction domain of Nbs1. Since telomere protection and DNA damage response mechanisms are very well conserved between fission yeast and mammalian cells, mammalian ATR-ATRIP may also contribute to the recruitment of ATM to telomeres and to sites of DNA damage independently of ATR kinase activity.
Collapse
Affiliation(s)
- Lakxmi Subramanian
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Toru M. Nakamura
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
79
|
Linger BR, Price CM. Conservation of telomere protein complexes: shuffling through evolution. Crit Rev Biochem Mol Biol 2009; 44:434-46. [PMID: 19839711 DOI: 10.3109/10409230903307329] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The rapid evolution of telomere proteins has hindered identification of orthologs from diverse species and created the impression that certain groups of eukaryotes have largely non-overlapping sets of telomere proteins. However, the recent identification of additional telomere proteins from various model organisms has dispelled this notion by expanding our understanding of the composition, architecture and range of telomere protein complexes present in individual species. It is now apparent that versions of the budding yeast CST complex and mammalian shelterin are present in multiple phyla. While the precise subunit composition and architecture of these complexes vary between species, the general function is often conserved. Despite the overall conservation of telomere protein complexes, there is still considerable species-specific variation, with some organisms having lost a particular subunit or even an entire complex. In some cases, complex components appear to have migrated between the telomere and the telomerase RNP. Finally, gene duplication has created telomere protein paralogs with novel functions. While one paralog may be part of a conserved telomere protein complex and have the expected function, the other paralog may serve in a completely different aspect of telomere biology.
Collapse
Affiliation(s)
- Benjamin R Linger
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267-0521, USA
| | | |
Collapse
|
80
|
Deletion of Ogg1 DNA glycosylase results in telomere base damage and length alteration in yeast. EMBO J 2009; 29:398-409. [PMID: 19942858 DOI: 10.1038/emboj.2009.355] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 11/04/2009] [Indexed: 12/20/2022] Open
Abstract
Telomeres consist of short guanine-rich repeats. Guanine can be oxidized to 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). 8-oxoguanine DNA glycosylase (Ogg1) repairs these oxidative guanine lesions through the base excision repair (BER) pathway. Here we show that in Saccharomyces cerevisiae ablation of Ogg1p leads to an increase in oxidized guanine level in telomeric DNA. The ogg1 deletion (ogg1Delta) strain shows telomere lengthening that is dependent on telomerase and/or Rad52p-mediated homologous recombination. 8-oxoG in telomeric repeats attenuates the binding of the telomere binding protein, Rap1p, to telomeric DNA in vitro. Moreover, the amount of telomere-bound Rap1p and Rif2p is reduced in ogg1Delta strain. These results suggest that oxidized guanines may perturb telomere length equilibrium by attenuating telomere protein complex to function in telomeres, which in turn impedes their regulation of pathways engaged in telomere length maintenance. We propose that Ogg1p is critical in maintaining telomere length homoeostasis through telomere guanine damage repair, and that interfering with telomere length homoeostasis may be one of the mechanism(s) by which oxidative DNA damage inflicts the genome.
Collapse
|
81
|
Abstract
Double-strand breaks (DSBs) are deleterious DNA lesions and if left unrepaired result in severe genomic instability. Cells use two main pathways to repair DSBs: homologous recombination (HR) or non-homologous end joining (NHEJ) depending on the phase of the cell cycle and the nature of the DSB ends. A key step where pathway choice is exerted is in the 'licensing' of 5'-3' resection of the ends to produce recombinogenic 3' single-stranded tails. These tails are substrate for binding by Rad51 to initiate pairing and strand invasion with homologous duplex DNA. Moreover, the single-stranded DNA generated after end processing is important to activate the DNA damage response. The mechanism of end processing is the focus of this review and we will describe recent findings that shed light on this important initiating step for HR. The conserved MRX/MRN complex appears to be a major regulator of DNA end processing. Sae2/CtIP functions with the MRX complex, either to activate the Mre11 nuclease or via the intrinsic endonuclease, in an initial step to trim the DSB ends. In a second step, redundant systems remove long tracts of DNA to reveal extensive 3' single-stranded tails. One system is dependent on the helicase Sgs1 and the nuclease Dna2, and the other on the 5'-3' exonuclease Exo1.
Collapse
Affiliation(s)
- Eleni P. Mimitou
- Department of Microbiology, Columbia University Medical Center, New York, NY 10032
| | | |
Collapse
|
82
|
Abstract
Pif1, an evolutionarily conserved helicase, negatively regulates telomere length by removing telomerase from chromosome ends. Pif1 has also been implicated in DNA replication processes such as Okazaki fragment maturation and replication fork pausing. We find that overexpression of Saccharomyces cervisiae PIF1 results in dose-dependent growth inhibition. Strong overexpression causes relocalization of the DNA damage response factors Rfa1 and Mre11 into nuclear foci and activation of the Rad53 DNA damage checkpoint kinase, indicating that the toxicity is caused by accumulation of DNA damage. We screened the complete set of approximately 4800 haploid gene deletion mutants and found that moderate overexpression of PIF1, which is only mildly toxic on its own, causes growth defects in strains with mutations in genes involved in DNA replication and the DNA damage response. Interestingly, we find that telomerase-deficient strains are also sensitive to PIF1 overexpression. Our data are consistent with a model whereby increased levels of Pif1 interfere with DNA replication, causing collapsed replication forks. At chromosome ends, collapsed forks result in truncated telomeres that must be rapidly elongated by telomerase to maintain viability.
Collapse
|
83
|
Shore D, Bianchi A. Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase. EMBO J 2009; 28:2309-22. [PMID: 19629031 PMCID: PMC2722252 DOI: 10.1038/emboj.2009.195] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 11/09/2022] Open
Abstract
The conventional DNA polymerase machinery is unable to fully replicate the ends of linear chromosomes. To surmount this problem, nearly all eukaryotes use the telomerase enzyme, a specialized reverse transcriptase that utilizes its own RNA template to add short TG-rich repeats to chromosome ends, thus reversing their gradual erosion occurring at each round of replication. This unique, non-DNA templated mode of telomere replication requires a regulatory mechanism to ensure that telomerase acts at telomeres whose TG tracts are too short, but not at those with long tracts, thus maintaining the protective TG repeat 'cap' at an appropriate average length. The prevailing notion in the field is that telomere length regulation is brought about through a negative feedback mechanism that 'counts' TG repeat-bound protein complexes to generate a signal that regulates telomerase action. This review summarizes experiments leading up to this model and then focuses on more recent experiments, primarily from yeast, that begin to suggest how this 'counting' mechanism might work. The emerging picture is that of a complex interplay between the conventional DNA replication machinery, DNA damage response factors, and a specialized set of proteins that help to recruit and regulate the telomerase enzyme.
Collapse
Affiliation(s)
- David Shore
- Department of Molecular Biology and NCCR Program 'Frontiers in Genetics', University of Geneva, Sciences III, Geneva, Switzerland.
| | | |
Collapse
|
84
|
Lydall D. Taming the tiger by the tail: modulation of DNA damage responses by telomeres. EMBO J 2009; 28:2174-87. [PMID: 19629039 PMCID: PMC2722249 DOI: 10.1038/emboj.2009.176] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/03/2009] [Indexed: 11/09/2022] Open
Abstract
Telomeres are by definition stable and inert chromosome ends, whereas internal chromosome breaks are potent stimulators of the DNA damage response (DDR). Telomeres do not, as might be expected, exclude DDR proteins from chromosome ends but instead engage with many DDR proteins. However, the most powerful DDRs, those that might induce chromosome fusion or cell-cycle arrest, are inhibited at telomeres. In budding yeast, many DDR proteins that accumulate most rapidly at double strand breaks (DSBs), have important functions in physiological telomere maintenance, whereas DDR proteins that arrive later tend to have less important functions. Considerable diversity in telomere structure has evolved in different organisms and, perhaps reflecting this diversity, different DDR proteins seem to have distinct roles in telomere physiology in different organisms. Drawing principally on studies in simple model organisms such as budding yeast, in which many fundamental aspects of the DDR and telomere biology have been established; current views on how telomeres harness aspects of DDR pathways to maintain telomere stability and permit cell-cycle division are discussed.
Collapse
Affiliation(s)
- David Lydall
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, HenryWellcome Laboratory, Newcastle University, Tyne and Wear, UK.
| |
Collapse
|
85
|
Abdallah P, Luciano P, Runge KW, Lisby M, Géli V, Gilson E, Teixeira MT. A two-step model for senescence triggered by a single critically short telomere. Nat Cell Biol 2009; 11:988-93. [PMID: 19597486 DOI: 10.1038/ncb1911] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/29/2009] [Indexed: 12/14/2022]
Abstract
Telomeres protect chromosome ends from fusion and degradation. In the absence of a specific telomere elongation mechanism, their DNA shortens progressively with every round of replication, leading to replicative senescence. Here, we show that telomerase-deficient cells bearing a single, very short telomere senesce earlier, demonstrating that the length of the shortest telomere is a major determinant of the onset of senescence. We further show that Mec1p-ATR specifically recognizes the single, very short telomere causing the accelerated senescence. Strikingly, before entering senescence, cells divide for several generations despite complete erosion of their shortened telomeres. This pre-senescence growth requires RAD52 (radiation sensitive) and MMS1 (methyl methane sulfonate sensitive), and there is no evidence for major inter-telomeric recombination. We propose that, in the absence of telomerase, a very short telomere is first maintained in a pre-signalling state by a RAD52-MMS1-dependent pathway and then switches to a signalling state leading to senescence through a Mec1p-dependent checkpoint.
Collapse
Affiliation(s)
- Pauline Abdallah
- LBMC, UMR 5239, CNRS- ENS Lyon, Université Lyon 1, Ecole Normale Supérieure, 46 allée d'Italie, F-69364 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
TEL1 is important in Saccharomyces cerevisiae telomere maintenance, and its kinase activity is required. Tel1p associates with telomeres in vivo, is enriched at short telomeres, and enhances the binding of telomerase components to short telomeres. However, it is unclear how the kinase activity and telomere association contribute to Tel1p's overall function in telomere length maintenance. To investigate this question, we generated a set of single point mutants and a double point mutant (tel1(KD)) of Tel1p that were kinase deficient and two Xrs2p mutants that failed to bind Tel1p. Using these separation-of-function alleles in a de novo telomere elongation assay, we found, surprisingly, that the tel1(KD) allele and xrs2 C-terminal mutants were both partially functional. Combining the tel1(KD) and xrs2 C-terminal mutants had an additive effect and resembled the TEL1 null (tel1Delta) phenotype. These data indicate that Tel1p has two separate functions in telomere maintenance and that the Xrs2p-dependent recruitment of Tel1p to telomeres plays an important role even in the absence of its kinase activity.
Collapse
|
87
|
Sinclair DA, Oberdoerffer P. The ageing epigenome: damaged beyond repair? Ageing Res Rev 2009; 8:189-98. [PMID: 19439199 PMCID: PMC2696802 DOI: 10.1016/j.arr.2009.04.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/30/2009] [Accepted: 04/30/2009] [Indexed: 12/28/2022]
Abstract
Of all the proposed causes of ageing, DNA damage remains a leading, though still debated theory. Unlike most other types of age-related cellular damage, which can hypothetically be reversed, mutations in DNA are permanent. Such errors result in the accumulation of changes to RNA and protein sequences with age, and are tightly linked to cellular senescence and overall organ dysfunction. Over the past few years, an additional, more global role has emerged for the contribution of DNA damage and genomic instability to the ageing process. We, and others have found that DNA damage and the concomitant repair process can induce genome-wide epigenetic changes, which may promote a variety of age-related transcriptional and functional changes. Here, we discuss the link between DNA damage, chromatin alterations and ageing, an interplay that explains how seemingly random DNA damage could manifest in predictable phenotypic changes that define ageing, changes that may ultimately be reversible.
Collapse
Affiliation(s)
- David A Sinclair
- The Paul F. Glenn Laboratories for the Biological Mechanisms of Ageing, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
88
|
Sua5p a single-stranded telomeric DNA-binding protein facilitates telomere replication. EMBO J 2009; 28:1466-78. [PMID: 19369944 DOI: 10.1038/emboj.2009.92] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 03/17/2009] [Indexed: 11/08/2022] Open
Abstract
In budding yeast Saccharomyces cerevisiae, telomere length maintenance involves a complicated network as more than 280 telomere maintenance genes have been identified in the nonessential gene deletion mutant set. As a supplement, we identified additional 29 telomere maintenance genes, which were previously taken as essential genes. In this study, we report a novel function of Sua5p in telomere replication. Epistasis analysis and telomere sequencing show that sua5Delta cells display progressively shortened telomeres at early passages, and Sua5 functions downstream telomerase recruitment. Further, biochemical, structural and genetic studies show that Sua5p specifically binds single-stranded telomeric (ssTG) DNA in vitro through a distinct DNA-binding region on its surface, and the DNA-binding ability is essential for its telomere function. Thus, Sua5p represents a novel ssTG DNA-binding protein and positively regulates the telomere length in vivo.
Collapse
|
89
|
Moser BA, Subramanian L, Chang YT, Noguchi C, Noguchi E, Nakamura TM. Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres. EMBO J 2009; 28:810-20. [PMID: 19214192 PMCID: PMC2670859 DOI: 10.1038/emboj.2009.31] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 01/20/2009] [Indexed: 11/08/2022] Open
Abstract
To maintain genomic integrity, telomeres must undergo switches from a protected state to an accessible state that allows telomerase recruitment. To better understand how telomere accessibility is regulated in fission yeast, we analysed cell cycle-dependent recruitment of telomere-specific proteins (telomerase Trt1, Taz1, Rap1, Pot1 and Stn1), DNA replication proteins (DNA polymerases, MCM, RPA), checkpoint protein Rad26 and DNA repair protein Nbs1 to telomeres. Quantitative chromatin immunoprecipitation studies revealed that MCM, Nbs1 and Stn1 could be recruited to telomeres in the absence of telomere replication in S-phase. In contrast, Trt1, Pot1, RPA and Rad26 failed to efficiently associate with telomeres unless telomeres are actively replicated. Unexpectedly, the leading strand DNA polymerase epsilon (Polepsilon) arrived at telomeres earlier than the lagging strand DNA polymerases alpha (Polalpha) and delta (Poldelta). Recruitment of RPA and Rad26 to telomeres matched arrival of DNA Polepsilon, whereas S-phase specific recruitment of Trt1, Pot1 and Stn1 matched arrival of DNA Polalpha. Thus, the conversion of telomere states involves an unanticipated intermediate step where lagging strand synthesis is delayed until telomerase is recruited.
Collapse
Affiliation(s)
- Bettina A Moser
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lakxmi Subramanian
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Ya-Ting Chang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Toru M Nakamura
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
90
|
Abstract
Telomere length homeostasis is thought to occur via a "protein-counting" mechanism whereby high numbers of telomere-bound proteins inhibit telomerase activity. In a recent issue of Molecular Cell, Hirano et al. (2009) delineate the molecular interactions that underlie the budding yeast protein-counting machinery.
Collapse
|
91
|
Abstract
The budding yeast Cdc13, Stn1 and Ten1 (CST) proteins are proposed to function as an RPA-like complex at telomeres that protects ('caps') chromosome ends and regulates their elongation by telomerase. We show that Stn1 has a critical function in both processes through the deployment of two separable domains. The N terminus of Stn1 interacts with Ten1 and carries out its essential capping function. The C terminus of Stn1 binds both Cdc13 and Pol12, and we present genetic data indicating that the Stn1-Cdc13 interaction is required to limit continuous telomerase action. Stn1 telomere association, similar to that of Cdc13, peaks during S phase. Significantly, the magnitude of Stn1 telomere binding is independent of telomere TG tract length, suggesting that the negative effect of Stn1 on telomerase action might be regulated by a modification of CST activity or structure in cis at individual telomeres. Genetic analysis suggests that the Tell kinase exerts an effect in parallel with the Stn1 C terminus to counteract its inhibition of telomerase. These data provide new insights into the coordination of telomere capping and telomerase regulation.
Collapse
|
92
|
Hirano Y, Fukunaga K, Sugimoto K. Rif1 and rif2 inhibit localization of tel1 to DNA ends. Mol Cell 2009; 33:312-22. [PMID: 19217405 PMCID: PMC2662776 DOI: 10.1016/j.molcel.2008.12.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 10/10/2008] [Accepted: 12/30/2008] [Indexed: 01/05/2023]
Abstract
Chromosome ends, known as telomeres, have to be distinguished from DNA double-strand breaks (DSBs) that activate the DNA-damage checkpoint. In budding yeast, the ATM homolog Tel1 associates preferentially with short telomeres and promotes telomere addition. Here, we show that the telomeric proteins Rif1 and Rif2 attenuate Tel1 recruitment to DNA ends through distinct mechanisms. Both Rif1 and Rif2 inhibit the localization of Tel1, but not the Mre11-Rad50-Xrs2 (MRX) complex, to adjacent DNA ends. Rif1 function is weaker at short telomeric repeats compared with Rif2 function and is partly dependent on Rif2. Rif2 competes with Tel1 for binding to the C terminus of Xrs2. Once Tel1 is delocalized, MRX does not associate efficiently with Rap1-covered DNA ends. These results reveal a mechanism by which telomeric DNA sequences mask DNA ends from Tel1 recognition for the regulation of telomere length.
Collapse
Affiliation(s)
- Yukinori Hirano
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, U.S.A
| | - Kenzo Fukunaga
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, U.S.A
| | - Katsunori Sugimoto
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, U.S.A
| |
Collapse
|
93
|
Zappulla DC, Roberts JN, Goodrich KJ, Cech TR, Wuttke DS. Inhibition of yeast telomerase action by the telomeric ssDNA-binding protein, Cdc13p. Nucleic Acids Res 2009; 37:354-67. [PMID: 19043074 PMCID: PMC2632905 DOI: 10.1093/nar/gkn830] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/16/2008] [Accepted: 10/14/2008] [Indexed: 01/07/2023] Open
Abstract
Appropriate control of the chromosome end-replicating enzyme telomerase is crucial for maintaining telomere length and genomic stability. The essential telomeric DNA-binding protein Cdc13p both positively and negatively regulates telomere length in budding yeast. Here we test the effect of purified Cdc13p on telomerase action in vitro. We show that the full-length protein and its DNA-binding domain (DBD) inhibit primer extension by telomerase. This inhibition occurs by competitive blocking of telomerase access to DNA. To further understand the requirements for productive telomerase 3'-end access when Cdc13p or the DBD is bound to a telomerase substrate, we constrained protein binding at various distances from the 3'-end on two sets of increasingly longer oligonucleotides. We find that Cdc13p inhibits the action of telomerase through three distinct biochemical modes, including inhibiting telomerase even when a significant tail is available, representing a novel 'action at a distance' inhibitory activity. Thus, while yeast Cdc13p exhibits the same general activity as human POT1, providing an off switch for telomerase when bound near the 3'-end, there are significant mechanistic differences in the ways telomere end-binding proteins inhibit telomerase action.
Collapse
Affiliation(s)
- David C. Zappulla
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Jennifer N. Roberts
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Karen J. Goodrich
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Thomas R. Cech
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Deborah S. Wuttke
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
94
|
Li S, Makovets S, Matsuguchi T, Blethrow JD, Shokat KM, Blackburn EH. Cdk1-dependent phosphorylation of Cdc13 coordinates telomere elongation during cell-cycle progression. Cell 2009; 136:50-61. [PMID: 19135888 PMCID: PMC2642970 DOI: 10.1016/j.cell.2008.11.027] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 09/11/2008] [Accepted: 11/20/2008] [Indexed: 10/21/2022]
Abstract
Elongation of telomeres by telomerase replenishes the loss of terminal telomeric DNA repeats during each cell cycle. In budding yeast, Cdc13 plays an essential role in telomere length homeostasis, partly through its interactions with both the telomerase complex and the competing Stn1-Ten1 complex. Previous studies in yeast have shown that telomere elongation by telomerase is cell cycle dependent, but the mechanism underlying this dependence is unclear. In S. cerevisiae, a single cyclin-dependent kinase Cdk1 (Cdc28) coordinates the serial events required for the cell division cycle, but no Cdk1 substrate has been identified among telomerase and telomere-associated factors. Here we show that Cdk1-dependent phosphorylation of Cdc13 is essential for efficient recruitment of the yeast telomerase complex to telomeres by favoring the interaction of Cdc13 with Est1 rather than the competing Stn1-Ten1 complex. These results provide a direct mechanistic link between coordination of telomere elongation and cell-cycle progression in vivo.
Collapse
Affiliation(s)
- Shang Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, Box 2200, 94143-2200, USA
| | - Svetlana Makovets
- Department of Biochemistry and Biophysics, University of California, San Francisco, Box 2200, 94143-2200, USA
| | - Tetsuya Matsuguchi
- Department of Biochemistry and Biophysics, University of California, San Francisco, Box 2200, 94143-2200, USA
| | - Justin D. Blethrow
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco
| | - Elizabeth H. Blackburn
- Department of Biochemistry and Biophysics, University of California, San Francisco, Box 2200, 94143-2200, USA
| |
Collapse
|
95
|
di Domenico EG, Auriche C, Viscardi V, Longhese MP, Gilson E, Ascenzioni F. The Mec1p and Tel1p checkpoint kinases allow humanized yeast to tolerate chronic telomere dysfunctions by suppressing telomere fusions. DNA Repair (Amst) 2008; 8:209-18. [PMID: 19007917 DOI: 10.1016/j.dnarep.2008.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 09/01/2008] [Accepted: 10/10/2008] [Indexed: 01/23/2023]
Abstract
In this work we report that budding yeasts carrying human-type telomeric repeats at their chromosome termini show a chronic activation of the Rad53-dependent DNA damage checkpoint pathway and a G2/M cell cycle delay. Furthermore, in the absence of either TEL1/ATM or MEC1/ATR genes, which encodes phosphatidylinositol 3-kinase-related kinases (PIKKs), we detected telomere fusions, whose appearance correlates with a reduced cell viability and a high rate of genome instability. Based on sequence analysis, telomere fusions occurred primarily between ultrashort telomeres. Microcolony formation assays argue against the possibility that fusion-containing cells are eliminated by PIKK-dependent signalling. These findings reveal that humanized telomeres in yeast cells are sensed as a chronically damaged DNA but do not greatly impair cell viability as long as the cells have a functional DNA damage checkpoint.
Collapse
Affiliation(s)
- Enea Gino di Domenico
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Roma "La Sapienza", Roma, Italy
| | | | | | | | | | | |
Collapse
|
96
|
Hiraga SI, Botsios S, Donaldson AD. Histone H3 lysine 56 acetylation by Rtt109 is crucial for chromosome positioning. J Cell Biol 2008; 183:641-51. [PMID: 19001125 PMCID: PMC2582893 DOI: 10.1083/jcb.200806065] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 10/20/2008] [Indexed: 12/15/2022] Open
Abstract
Correct intranuclear organization of chromosomes is crucial for many genome functions, but the mechanisms that position chromatin are not well understood. We used a layered screen to identify Saccharomyces cerevisiae mutants defective in telomere localization to the nuclear periphery. We find that events in S phase are crucial for correct telomere localization. In particular, the histone chaperone Asf1 functions in telomere peripheral positioning. Asf1 stimulates acetylation of histone H3 lysine 56 (H3K56) by the histone acetyltransferase Rtt109. Analysis of rtt109Delta and H3K56 mutants suggests that the acetylation/deacetylation cycle of the H3K56 residue is required for proper telomere localization. The function of H3K56 acetylation in localizing chromosome domains is not confined to telomeres because deletion of RTT109 also prevents the correct peripheral localization of a newly identified S. cerevisiae "chromosome-organizing clamp" locus. Because chromosome positioning is subject to epigenetic inheritance, H3K56 acetylation may mediate correct chromosome localization by facilitating accurate transmission of chromatin status during DNA replication.
Collapse
Affiliation(s)
- Shin-Ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | | | | |
Collapse
|
97
|
Abstract
Telomeres, the ends of chromosomes, shorten with each cell division. To expand their replicative potential, various cell types use the ribonucleoprotein telomerase, which lengthens telomeres by its reverse transcriptase activity. Because of its ability to immortalize cancer cells, telomerase also plays a significant role in tumor growth. However, in recent years, a wide variety of non-canonical effects of telomerase that are independent of telomere lengthening have been discovered, and even the notion that telomerase is restricted to very few cell types has been questioned. These effects also seem to be important in carcinogenesis and might explain the tumor-promoting effects of telomerase independently of telomere elongation. Here, the current understanding of the extratelomeric roles of telomerase and their physiological and pathological significance is reviewed.
Collapse
Affiliation(s)
- F Mathias Bollmann
- Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg.
| |
Collapse
|
98
|
Bianchi A, Shore D. How telomerase reaches its end: mechanism of telomerase regulation by the telomeric complex. Mol Cell 2008; 31:153-65. [PMID: 18657499 DOI: 10.1016/j.molcel.2008.06.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Indexed: 10/21/2022]
Abstract
The telomerase enzyme, which synthesizes telomeric DNA repeats, is regulated in cis at individual chromosome ends by the telomeric protein/DNA complex in a manner dependent on telomere repeat-array length. A dynamic interplay between telomerase-inhibiting factors bound at duplex DNA repeats and telomerase-promoting ones bound at single-stranded terminal DNA overhangs appears to modulate telomerase activity and to be directly related to the transient deprotection of telomeres. We discuss recent advances on the mechanism of telomerase regulation at chromosome ends in both yeast and mammalian systems.
Collapse
Affiliation(s)
- Alessandro Bianchi
- Department of Molecular Biology and NCCR Frontiers in Genetics Program, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Geneva, Switzerland
| | | |
Collapse
|
99
|
A novel Tel1/ATM N-terminal motif, TAN, is essential for telomere length maintenance and a DNA damage response. Mol Cell Biol 2008; 28:5736-46. [PMID: 18625723 DOI: 10.1128/mcb.00326-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tel1/ATM, a conserved phosphatidylinositol 3-kinase-related kinase (PIKK), acts in the response to DNA damage and regulates telomere maintenance. PIKK family members share an extended N-terminal region of low sequence homology. Sequence alignment of the N terminus of Tel1/ATM orthologs revealed a conserved, novel motif we term TAN (for Tel1/ATM N-terminal motif). Point mutations in conserved residues of the TAN motif resulted in telomere shortening, and its deletion caused the same short telomere phenotype as complete deletion of Tel1 did. Overexpressing Tel1 TAN mutants did not rescue telomere shortening. The TAN motif was also essential for the function of Tel1 in the response to DNA damage, as TAN-deleted Tel1 was indistinguishable from the complete lack of Tel1 in causing reduced viability and signaling through Rad53 upon DNA damage. Strikingly, TAN deletion reduced recruitment of Tel1 to a double-strand DNA break. Together, these results define a conserved sequence motif within an otherwise poorly defined region of the Tel1/ATM kinase family proteins that is essential for normal Tel1 function in Saccharomyces cerevisiae.
Collapse
|
100
|
Sabourin M, Zakian VA. ATM-like kinases and regulation of telomerase: lessons from yeast and mammals. Trends Cell Biol 2008; 18:337-46. [PMID: 18502129 PMCID: PMC2556866 DOI: 10.1016/j.tcb.2008.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 12/18/2022]
Abstract
Telomeres, the essential structures at the ends of eukaryotic chromosomes, are composed of G-rich DNA and asociated proteins. These structures are crucial for the integrity of the genome, because they protect chromosome ends from degradation and distinguish natural ends from chromosomal breaks. The complete replication of telomeres requires a telomere-dedicated reverse transcriptase called telomerase. Paradoxically, proteins that promote the very activities against which telomeres protect, namely DNA repair, recombination and checkpoint activation, are integral to both telomeric chromatin and telomere elongation. This review focuses on recent findings that shed light on the roles of ATM-like kinases and other checkpoint and repair proteins in telomere maintenance, replication and checkpoint signaling.
Collapse
Affiliation(s)
- Michelle Sabourin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|