51
|
Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Nat Struct Mol Biol 2011; 18:614-21. [PMID: 21499241 PMCID: PMC3412285 DOI: 10.1038/nsmb.2026] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 02/03/2011] [Indexed: 12/12/2022]
Abstract
The ubiquitous SecY/Sec61–complex translocates nascent secretory proteins across cellular membranes and integrates membrane proteins into lipid bilayers. Several structures of mostly detergent solubilized Sec–complexes have been reported. Here, we present a single–particle cryo–electron microscopy structure of the SecYEG complex in a membrane environment at sub–nanometer resolution, bound to a translating ribosome. Using the SecYEG complex reconstituted in a so–called Nanodisc, we could trace the nascent polypeptide chain from the peptidyl transferase center into the membrane. The reconstruction allowed for the identification of ribosome–lipid interactions. The rRNA helix 59 (H59) directly contacts the lipid surface and appears to modulate the membrane in immediate vicinity to the proposed lateral gate of the PCC. Based on our map and molecular dynamics simulations we present a model of a signal anchor–gated PCC in the membrane.
Collapse
|
52
|
SecA, a remarkable nanomachine. Cell Mol Life Sci 2011; 68:2053-66. [PMID: 21479870 PMCID: PMC3101351 DOI: 10.1007/s00018-011-0681-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/22/2011] [Accepted: 03/28/2011] [Indexed: 01/03/2023]
Abstract
Biological cells harbor a variety of molecular machines that carry out mechanical work at the nanoscale. One of these nanomachines is the bacterial motor protein SecA which translocates secretory proteins through the protein-conducting membrane channel SecYEG. SecA converts chemically stored energy in the form of ATP into a mechanical force to drive polypeptide transport through SecYEG and across the cytoplasmic membrane. In order to accommodate a translocating polypeptide chain and to release transmembrane segments of membrane proteins into the lipid bilayer, SecYEG needs to open its central channel and the lateral gate. Recent crystal structures provide a detailed insight into the rearrangements required for channel opening. Here, we review our current understanding of the mode of operation of the SecA motor protein in concert with the dynamic SecYEG channel. We conclude with a new model for SecA-mediated protein translocation that unifies previous conflicting data.
Collapse
|
53
|
Trabuco LG, Schreiner E, Gumbart J, Hsin J, Villa E, Schulten K. Applications of the molecular dynamics flexible fitting method. J Struct Biol 2011; 173:420-7. [PMID: 20932910 PMCID: PMC3032011 DOI: 10.1016/j.jsb.2010.09.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 09/19/2010] [Accepted: 09/28/2010] [Indexed: 12/12/2022]
Abstract
In recent years, cryo-electron microscopy (cryo-EM) has established itself as a key method in structural biology, permitting the structural characterization of large biomolecular complexes in various functional states. The data obtained through single-particle cryo-EM has recently seen a leap in resolution thanks to landmark advances in experimental and computational techniques, resulting in sub-nanometer resolution structures being obtained routinely. The remaining gap between these data and revealing the mechanisms of molecular function can be closed through hybrid modeling tools that incorporate known atomic structures into the cryo-EM data. One such tool, molecular dynamics flexible fitting (MDFF), uses molecular dynamics simulations to combine structures from X-ray crystallography with cryo-EM density maps to derive atomic models of large biomolecular complexes. The structures furnished by MDFF can be used subsequently in computational investigations aimed at revealing the dynamics of the complexes under study. In the present work, recent applications of MDFF are presented, including the interpretation of cryo-EM data of the ribosome at different stages of translation and the structure of a membrane-curvature-inducing photosynthetic complex.
Collapse
Affiliation(s)
- Leonardo G. Trabuco
- Beckman Institute for Advanced Science and Technology
- Center for Biophysics and Computational Biology
| | | | - James Gumbart
- Beckman Institute for Advanced Science and Technology
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jen Hsin
- Beckman Institute for Advanced Science and Technology
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Elizabeth Villa
- Department of Structural Molecular Biology, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
54
|
Deville K, Gold VAM, Robson A, Whitehouse S, Sessions RB, Baldwin SA, Radford SE, Collinson I. The oligomeric state and arrangement of the active bacterial translocon. J Biol Chem 2010; 286:4659-69. [PMID: 21056980 PMCID: PMC3039378 DOI: 10.1074/jbc.m110.175638] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein secretion in bacteria is driven through the ubiquitous SecYEG complex by the ATPase SecA. The structure of SecYEG alone or as a complex with SecA in detergent reveal a monomeric heterotrimer enclosing a central protein channel, yet in membranes it is dimeric. We have addressed the functional significance of the oligomeric status of SecYEG in protein translocation using single molecule and ensemble methods. The results show that while monomers are sufficient for the SecA- and ATP-dependent association of SecYEG with pre-protein, active transport requires SecYEG dimers arranged in the back-to-back conformation. Molecular modeling of this dimeric structure, in conjunction with the new functional data, provides a rationale for the presence of both active and passive copies of SecYEG in the functional translocon.
Collapse
Affiliation(s)
- Karine Deville
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc Natl Acad Sci U S A 2010; 107:17182-7. [PMID: 20855604 DOI: 10.1073/pnas.1012556107] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of the protein-translocating channel SecYEβ from Pyrococcus furiosus at 3.1-Å resolution suggests a mechanism for chaperoning transmembrane regions of a protein substrate during its lateral delivery into the lipid bilayer. Cytoplasmic segments of SecY orient the C-terminal α-helical region of another molecule, suggesting a general binding mode and a promiscuous guiding surface capable of accommodating diverse nascent chains at the exit of the ribosomal tunnel. To accommodate this putative nascent chain mimic, the cytoplasmic vestibule widens, and a lateral exit portal is opened throughout its entire length for partition of transmembrane helical segments to the lipid bilayer. In this primed channel, the central plug still occludes the pore while the lateral gate is opened, enabling topological arbitration during early protein insertion. In vivo, a 15 amino acid truncation of the cytoplasmic C-terminal helix of SecY fails to rescue a secY-deficient strain, supporting the essential role of this helix as suggested from the structure.
Collapse
|
56
|
Mori T, Ishitani R, Tsukazaki T, Nureki O, Sugita Y. Molecular mechanisms underlying the early stage of protein translocation through the Sec translocon. Biochemistry 2010; 49:945-50. [PMID: 20055474 DOI: 10.1021/bi901594w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Sec translocon, a protein-conducting channel, consists of a heterotrimeric complex (SecYEG in bacteria and Sec61 alpha beta gamma in eukaryotes) that provides a pathway for secretary proteins to cross membranes, or for membrane proteins to integrate into the membrane. The Sec translocon alone is a passive channel, and association with channel partners, including the ribosome or SecA ATPase in bacteria, is needed for protein translocation. Three recently published crystal structures of SecY are considered to represent the closed (resting state), pre-open (transitional state determined with the bound Fab fragment mimicking SecA interaction), and SecA-bound forms. To elucidate mechanisms of transition between closed and pre-open forms, we performed all-atom molecular dynamics simulations for the pre-open form of Thermus thermophilus SecYE and the closed form of Methanococcus janaschii SecYE beta in explicit solvent and membranes. We found that the closed form of SecY is stable, while the pre-open form without the Fab fragment undergoes large conformational changes toward the closed form. The pre-open form of SecY with Fab remains unchanged, suggesting that the cytosolic interaction mimicking SecA binding stabilizes the pre-open form of SecY. Importantly, a lipid molecule at the lateral gate region appears to be required to maintain the pre-open form in the membrane. We propose that the conformational transition from closed to pre-open states of SecY upon association with SecA facilitates intercalation of phospholipids at the lateral gate, inducing initial entry of the positively charged signal peptide into the channel.
Collapse
Affiliation(s)
- Takaharu Mori
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
57
|
Gumbart J, Trabuco LG, Schreiner E, Villa E, Schulten K. Regulation of the protein-conducting channel by a bound ribosome. Structure 2010; 17:1453-64. [PMID: 19913480 DOI: 10.1016/j.str.2009.09.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 09/13/2009] [Accepted: 09/15/2009] [Indexed: 01/01/2023]
Abstract
During protein synthesis, it is often necessary for the ribosome to form a complex with a membrane-bound channel, the SecY/Sec61 complex, in order to translocate nascent proteins across a cellular membrane. Structural data on the ribosome-channel complex are currently limited to low-resolution cryo-electron microscopy maps, including one showing a bacterial ribosome bound to a monomeric SecY complex. Using that map along with available atomic-level models of the ribosome and SecY, we have determined, through molecular dynamics flexible fitting (MDFF), an atomic-resolution model of the ribosome-channel complex. We characterized computationally the sites of ribosome-SecY interaction within the complex and determined the effect of ribosome binding on the SecY channel. We also constructed a model of a ribosome in complex with a SecY dimer by adding a second copy of SecY to the MDFF-derived model. The study involved 2.7-million-atom simulations over altogether nearly 50 ns.
Collapse
Affiliation(s)
- James Gumbart
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
58
|
Abstract
Special codes are embedded in the primary sequence of newly synthesized proteins to determine their final destination. Protein translocation across biological membranes requires co-operation between the targeting and translocation machineries. A conserved membrane channel, the Sec61/SecY complex, mediates protein translocation across or integration into the endoplasmic reticulum membrane in eukaryotes and the plasma membrane in prokaryotes. A combination of recent biochemical and structural data provides novel insights into the mechanism of how the channel allows polypeptide movement into the exoplasmic space and the lipid bilayer.
Collapse
|
59
|
Abstract
In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class.
Collapse
|
60
|
Structure of intact Thermus thermophilus V-ATPase by cryo-EM reveals organization of the membrane-bound V(O) motor. Proc Natl Acad Sci U S A 2010; 107:1367-72. [PMID: 20080582 DOI: 10.1073/pnas.0911085107] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eubacterium Thermus thermophilus uses a macromolecular assembly closely related to eukaryotic V-ATPase to produce its supply of ATP. This simplified V-ATPase offers several advantages over eukaryotic V-ATPases for structural analysis and investigation of the mechanism of the enzyme. Here we report the structure of the complex at approximately 16 A resolution as determined by single particle electron cryomicroscopy (cryo-EM). The resolution of the map and our use of cryo-EM, rather than negative stain EM, reveals detailed information about the internal organization of the assembly. We could separate the map into segments corresponding to subunits A and B, the threefold pseudosymmetric C-subunit, a central rotor consisting of subunits D and F, the L-ring, the stator subcomplex consisting of subunits I, E, and G, and a micelle of bound detergent. The architecture of the V(O) region shows a remarkably small area of contact between the I-subunit and the ring of L-subunits and is consistent with a two half-channel model for proton translocation. The arrangement of structural elements in V(O) gives insight into the mechanism of torque generation from proton translocation.
Collapse
|
61
|
Ott M, Herrmann JM. Co-translational membrane insertion of mitochondrially encoded proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:767-75. [PMID: 19962410 DOI: 10.1016/j.bbamcr.2009.11.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/18/2009] [Accepted: 11/25/2009] [Indexed: 11/29/2022]
Abstract
The components of the mitochondrial proteome represent a mosaic of dual genetic origin: while most mitochondrial proteins are encoded by nuclear genes and imported into the organelle following synthesis in the cytosol, a small number of proteins is encoded by the mitochondrial genome. Though small in number, mitochondrial translation products are vital for cellular functionality as these proteins represent the core subunits of the respiratory chain and the ATPase which produce the vast majority of the cellular ATP. Mitochondrial translation products are almost exclusively highly hydrophobic polypeptides which are inserted into the inner membrane in the course of their synthesis. The machinery that mediates membrane insertion in mitochondria is deduced from that of their bacterial ancestors and hence shows profound similarities to the insertion machinery of prokaryotes. However, the specialization on the production of a very small set of translation products drove a severe reduction in the complexity of this system. The insertase Oxa1 forms the central component of the insertion machinery. Oxa1 directly binds to mitochondrial ribosomes and, together with the inner membrane protein Mba1, aligns the polypeptide exit tunnel of the ribosome with the insertion site at the inner membrane. The specific hallmarks and the critical components of this machinery are discussed in this review article.
Collapse
Affiliation(s)
- Martin Ott
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | |
Collapse
|
62
|
Becker T, Bhushan S, Jarasch A, Armache JP, Funes S, Jossinet F, Gumbart J, Mielke T, Berninghausen O, Schulten K, Westhof E, Gilmore R, Mandon EC, Beckmann R. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 2009; 326:1369-73. [PMID: 19933108 DOI: 10.1126/science.1178535] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The trimeric Sec61/SecY complex is a protein-conducting channel (PCC) for secretory and membrane proteins. Although Sec complexes can form oligomers, it has been suggested that a single copy may serve as an active PCC. We determined subnanometer-resolution cryo-electron microscopy structures of eukaryotic ribosome-Sec61 complexes. In combination with biochemical data, we found that in both idle and active states, the Sec complex is not oligomeric and interacts mainly via two cytoplasmic loops with the universal ribosomal adaptor site. In the active state, the ribosomal tunnel and a central pore of the monomeric PCC were occupied by the nascent chain, contacting loop 6 of the Sec complex. This provides a structural basis for the activity of a solitary Sec complex in cotranslational protein translocation.
Collapse
Affiliation(s)
- Thomas Becker
- Gene Center Munich and Center for Integrated Protein Science, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Mapping of the Saccharomyces cerevisiae Oxa1-mitochondrial ribosome interface and identification of MrpL40, a ribosomal protein in close proximity to Oxa1 and critical for oxidative phosphorylation complex assembly. EUKARYOTIC CELL 2009; 8:1792-802. [PMID: 19783770 DOI: 10.1128/ec.00219-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Oxa1 protein plays a central role in facilitating the cotranslational insertion of the nascent polypeptide chains into the mitochondrial inner membrane. Mitochondrially encoded proteins are synthesized on matrix-localized ribosomes which are tethered to the inner membrane and in physical association with the Oxa1 protein. In the present study we used a chemical cross-linking approach to map the Saccharomyces cerevisiae Oxa1-ribosome interface, and we demonstrate here a close association of Oxa1 and the large ribosomal subunit protein, MrpL40. Evidence to indicate that a close physical and functional relationship exists between MrpL40 and another large ribosomal protein, the Mrp20/L23 protein, is also provided. MrpL40 shares sequence features with the bacterial ribosomal protein L24, which like Mrp20/L23 is known to be located adjacent to the ribosomal polypeptide exit site. We propose therefore that MrpL40 represents the Saccharomyces cerevisiae L24 homolog. MrpL40, like many mitochondrial ribosomal proteins, contains a C-terminal extension region that bears no similarity to the bacterial counterpart. We show that this C-terminal mitochondria-specific region is important for MrpL40's ability to support the synthesis of the correct complement of mitochondrially encoded proteins and their subsequent assembly into oxidative phosphorylation complexes.
Collapse
|
64
|
Liang FC, Bageshwar UK, Musser SM. Bacterial Sec protein transport is rate-limited by precursor length: a single turnover study. Mol Biol Cell 2009; 20:4256-66. [PMID: 19656854 DOI: 10.1091/mbc.e09-01-0075] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An in vitro real-time single turnover assay for the Escherichia coli Sec transport system was developed based on fluorescence dequenching. This assay corrects for the fluorescence quenching that occurs when fluorescent precursor proteins are transported into the lumen of inverted membrane vesicles. We found that 1) the kinetics were well fit by a single exponential, even when the ATP concentration was rate-limiting; 2) ATP hydrolysis occurred during most of the observable reaction period; and 3) longer precursor proteins transported more slowly than shorter precursor proteins. If protein transport through the SecYEG pore is the rate-limiting step of transport, which seems likely, these conclusions argue against a model in which precursor movement through the SecYEG translocon is mechanically driven by a series of rate-limiting, discrete translocation steps that result from conformational cycling of the SecA ATPase. Instead, we propose that precursor movement results predominantly from Brownian motion and that the SecA ATPase regulates pore accessibility.
Collapse
Affiliation(s)
- Fu-Cheng Liang
- Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M Health Science Center, College Station, TX 77843, USA
| | | | | |
Collapse
|
65
|
Mandon EC, Trueman SF, Gilmore R. Translocation of proteins through the Sec61 and SecYEG channels. Curr Opin Cell Biol 2009; 21:501-7. [PMID: 19450960 PMCID: PMC2916700 DOI: 10.1016/j.ceb.2009.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/15/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
Abstract
The Sec61 and SecYEG translocation channels mediate the selective transport of proteins across the endoplasmic reticulum and bacterial inner membrane, respectively. These channels are also responsible for the integration of membrane proteins. To accomplish these two critical events in protein expression, the transport channels undergo conformational changes to permit the export of lumenal domains and the integration of transmembrane spans. Novel insight into how these channels open during protein translocation has been provided by a combination of the analysis of new channel structures, biochemical characterization of translocation intermediates, molecular dynamics simulations, and in vivo and in vitro analysis of structure-based Sec61 and SecY mutants.
Collapse
Affiliation(s)
- Elisabet C Mandon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | |
Collapse
|
66
|
Erdmann F, Jung M, Eyrisch S, Lang S, Helms V, Wagner R, Zimmermann R. Lanthanum ions inhibit the mammalian Sec61 complex in its channel dynamics and protein transport activity. FEBS Lett 2009; 583:2359-64. [PMID: 19555690 DOI: 10.1016/j.febslet.2009.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
Previous electrophysiological experiments characterized the Sec61 complex, which provides the aqueous path for entry of newly-synthesized polypeptides into the mammalian endoplasmic reticulum, as a highly dynamic channel that, once activated by precursor proteins, fluctuates between main open states with mean conductances of 220 and 550pS. Millimolar concentrations of lanthanum ions simultaneously restricted the dynamics of the Sec61 channel and inhibited translocation of polypeptides. Molecular modeling indicates that lanthanum binding sites cluster at the putative lateral gate of the Sec61 complex and suggests that structural flexibility of the lateral gate is essential for channel and protein transport activities of the Sec61 complex.
Collapse
Affiliation(s)
- Frank Erdmann
- Biophysik, Universität Osnabrück, FB Biologie/Chemie, D-49034 Osnabrück, Germany
| | | | | | | | | | | | | |
Collapse
|
67
|
Kohler R, Boehringer D, Greber B, Bingel-Erlenmeyer R, Collinson I, Schaffitzel C, Ban N. YidC and Oxa1 form dimeric insertion pores on the translating ribosome. Mol Cell 2009; 34:344-53. [PMID: 19450532 DOI: 10.1016/j.molcel.2009.04.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/09/2009] [Accepted: 04/16/2009] [Indexed: 11/19/2022]
Abstract
The YidC/Oxa1/Alb3 family of membrane proteins facilitates the insertion and assembly of membrane proteins in bacteria, mitochondria, and chloroplasts. Here we present the structures of both Escherichia coli YidC and Saccharomyces cerevisiae Oxa1 bound to E. coli ribosome nascent chain complexes determined by cryo-electron microscopy. Dimers of YidC and Oxa1 are localized above the exit of the ribosomal tunnel. Crosslinking experiments show that the ribosome specifically stabilizes the dimeric state. Functionally important and conserved transmembrane helices of YidC and Oxa1 were localized at the dimer interface by cysteine crosslinking. Both Oxa1 and YidC dimers contact the ribosome at ribosomal protein L23 and conserved rRNA helices 59 and 24, similarly to what was observed for the nonhomologous SecYEG translocon. We suggest that dimers of the YidC and Oxa1 proteins form insertion pores and share a common overall architecture with the SecY monomer.
Collapse
Affiliation(s)
- Rebecca Kohler
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
68
|
Dalal K, Nguyen N, Alami M, Tan J, Moraes TF, Lee WC, Maurus R, Sligar SS, Brayer GD, Duong F. Structure, binding, and activity of Syd, a SecY-interacting protein. J Biol Chem 2009; 284:7897-902. [PMID: 19139097 PMCID: PMC2658082 DOI: 10.1074/jbc.m808305200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/19/2008] [Indexed: 01/20/2023] Open
Abstract
The Syd protein has been implicated in the Sec-dependent transport of polypeptides across the bacterial inner membrane. Using Nanodiscs, we here provide direct evidence that Syd binds the SecY complex, and we demonstrate that interaction involves the two electropositive and cytosolic loops of the SecY subunit. We solve the crystal structure of Syd and together with cysteine cross-link analysis, we show that a conserved concave and electronegative groove constitutes the SecY-binding site. At the membrane, Syd decreases the activity of the translocon containing loosely associated SecY-SecE subunits, whereas in detergent solution Syd disrupts the SecYEG heterotrimeric associations. These results support the role of Syd in proofreading the SecY complex biogenesis and point to the electrostatic nature of the Sec channel interaction with its cytosolic partners.
Collapse
Affiliation(s)
- Kush Dalal
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Boy D, Koch HG. Visualization of distinct entities of the SecYEG translocon during translocation and integration of bacterial proteins. Mol Biol Cell 2009; 20:1804-15. [PMID: 19158385 DOI: 10.1091/mbc.e08-08-0886] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The universally conserved SecYEG/Sec61 translocon constitutes the major protein-conducting channel in the cytoplasmic membrane of bacteria and the endoplasmic reticulum membrane of eukaryotes. It is engaged in both translocating secretory proteins across the membrane as well as in integrating membrane proteins into the lipid phase of the membrane. In the current study we have detected distinct SecYEG translocon complexes in native Escherichia coli membranes. Blue-Native-PAGE revealed the presence of a 200-kDa SecYEG complex in resting membranes. When the SecA-dependent secretory protein pOmpA was trapped inside the SecYEG channel, a smaller SecY-containing complex of approximately 140-kDa was observed, which probably corresponds to a monomeric SecYEG-substrate complex. Trapping the SRP-dependent polytopic membrane protein mannitol permease in the SecYEG translocon, resulted in two complexes of 250 and 600 kDa, each containing both SecY and the translocon-associated membrane protein YidC. The appearance of both complexes was correlated with the number of transmembrane domains that were exposed during targeting of mannitol permease to the membrane. These results suggest that the assembly or the stability of the bacterial SecYEG translocon is influenced by the substrate that needs to be transported.
Collapse
Affiliation(s)
- Diana Boy
- Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | | |
Collapse
|
70
|
A single Sec61-complex functions as a protein-conducting channel. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2375-83. [DOI: 10.1016/j.bbamcr.2008.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/06/2008] [Accepted: 08/06/2008] [Indexed: 12/30/2022]
|
71
|
Tsukazaki T, Mori H, Fukai S, Ishitani R, Mori T, Dohmae N, Perederina A, Sugita Y, Vassylyev DG, Ito K, Nureki O. Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 2008; 455:988-91. [PMID: 18923527 PMCID: PMC2590585 DOI: 10.1038/nature07421] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 09/10/2008] [Indexed: 11/09/2022]
Abstract
Over 30% of proteins are secreted across or integrated into membranes. Their newly synthesized forms contain either cleavable signal sequences or non-cleavable membrane anchor sequences, which direct them to the evolutionarily conserved Sec translocon (SecYEG in prokaryotes and Sec61, comprising alpha-, gamma- and beta-subunits, in eukaryotes). The translocon then functions as a protein-conducting channel. These processes of protein localization occur either at or after translation. In bacteria, the SecA ATPase drives post-translational translocation. The only high-resolution structure of a translocon available so far is that for SecYEbeta from the archaeon Methanococcus jannaschii, which lacks SecA. Here we present the 3.2-A-resolution crystal structure of the SecYE translocon from a SecA-containing organism, Thermus thermophilus. The structure, solved as a complex with an anti-SecY Fab fragment, revealed a 'pre-open' state of SecYE, in which several transmembrane helices are shifted, as compared to the previous SecYEbeta structure, to create a hydrophobic crack open to the cytoplasm. Fab and SecA bind to a common site at the tip of the cytoplasmic domain of SecY. Molecular dynamics and disulphide mapping analyses suggest that the pre-open state might represent a SecYE conformational transition that is inducible by SecA binding. Moreover, we identified a SecA-SecYE interface that comprises SecA residues originally buried inside the protein, indicating that both the channel and the motor components of the Sec machinery undergo cooperative conformational changes on formation of the functional complex.
Collapse
Affiliation(s)
- Tomoya Tsukazaki
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Cooper DB, Smith VF, Crane JM, Roth HC, Lilly AA, Randall LL. SecA, the motor of the secretion machine, binds diverse partners on one interactive surface. J Mol Biol 2008; 382:74-87. [PMID: 18602400 PMCID: PMC2633600 DOI: 10.1016/j.jmb.2008.06.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 11/22/2022]
Abstract
In all living cells, regulated passage across membranes of specific proteins occurs through a universally conserved secretory channel. In bacteria and chloroplasts, the energy for the mechanical work of moving polypeptides through that channel is provided by SecA, a regulated ATPase. Here, we use site-directed spin labeling and electron paramagnetic resonance spectroscopy to identify the interactive surface used by SecA for each of the diverse binding partners encountered during the dynamic cycle of export. Although the binding sites overlap, resolution at the level of aminoacyl side chains allows us to identify contacts that are unique to each partner. Patterns of constraint and mobilization of residues on that interactive surface suggest a conformational change that may underlie the coupling of ATP hydrolysis to precursor translocation.
Collapse
Affiliation(s)
- Dylan B. Cooper
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Virginia F. Smith
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Jennine M. Crane
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Hilary C. Roth
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Angela A. Lilly
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
73
|
Abstract
A decisive step in the biosynthesis of many eukaryotic proteins is their partial or complete translocation across the endoplasmic reticulum membrane. A similar process occurs in prokaryotes, except that proteins are transported across or are integrated into the plasma membrane. In both cases, translocation occurs through a protein-conducting channel that is formed from a conserved, heterotrimeric membrane protein complex, the Sec61 or SecY complex. Structural and biochemical data suggest mechanisms that enable the channel to function with different partners, to open across the membrane and to release laterally hydrophobic segments of membrane proteins into lipid.
Collapse
Affiliation(s)
- Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
74
|
Ménétret JF, Hegde RS, Aguiar M, Gygi SP, Park E, Rapoport TA, Akey CW. Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome. Structure 2008; 16:1126-37. [PMID: 18611385 PMCID: PMC2527209 DOI: 10.1016/j.str.2008.05.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/12/2008] [Accepted: 05/12/2008] [Indexed: 12/20/2022]
Abstract
During cotranslational protein translocation, the ribosome associates with a membrane channel, formed by the Sec61 complex, and recruits the translocon-associated protein complex (TRAP). Here we report the structure of a ribosome-channel complex from mammalian endoplasmic reticulum in which the channel has been visualized at 11 A resolution. In this complex, single copies of Sec61 and TRAP associate with a nontranslating ribosome and this stoichiometry was verified by quantitative mass spectrometry. A bilayer-like density surrounds the channel and can be attributed to lipid and detergent. The crystal structure of an archaeal homolog of the Sec61 complex was then docked into the map. In this model, two cytoplasmic loops of Sec61 may interact with RNA helices H6, H7, and H50, while the central pore is located below the ribosome tunnel exit. Hence, this copy of Sec61 is positioned to capture and translocate the nascent chain. Finally, we show that mammalian and bacterial ribosome-channel complexes have similar architectures.
Collapse
MESH Headings
- Animals
- Archaeal Proteins/chemistry
- Calcium-Binding Proteins/analysis
- Calcium-Binding Proteins/chemistry
- Calcium-Binding Proteins/ultrastructure
- Dogs
- Endoplasmic Reticulum/metabolism
- Membrane Glycoproteins/analysis
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/ultrastructure
- Membrane Proteins/analysis
- Membrane Proteins/chemistry
- Models, Molecular
- Protein Transport
- Receptors, Cytoplasmic and Nuclear/analysis
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/ultrastructure
- Receptors, Peptide/analysis
- Receptors, Peptide/chemistry
- Receptors, Peptide/ultrastructure
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosomes/chemistry
- Ribosomes/ultrastructure
- SEC Translocation Channels
- Translocation, Genetic
Collapse
Affiliation(s)
- Jean-François Ménétret
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118-2526, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Protein transport in and out of the endoplasmic reticulum. HARVEY LECTURES 2006. [PMID: 20166563 DOI: 10.1002/9780470593042.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|