51
|
Rossi MN, Maione R. Identification of Chromatin Binding Sites for Long Noncoding RNAs by Chromatin Oligo-Affinity Precipitation (ChOP). Methods Mol Biol 2021; 2161:17-28. [PMID: 32681502 DOI: 10.1007/978-1-0716-0680-3_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Revealing the interactions of long noncoding RNAs (LncRNAs) with specific genomic regions is of basic importance to explore the mechanisms by which they regulate gene expression. Chromatin oligo-affinity precipitation (ChOP) technique was the first method developed to analyze the association of LncRNAs with genomic regions in the chromatin context. The first step of the procedure is cell cross-linking, aimed at stabilizing the RNA-protein-DNA complexes. Next, after chromatin fragmentation, the RNA complexes are pulled down through hybridization with antisense oligonucleotides tagged with biotin and purification with anti-biotin antibody. After extensive wash, the RNA-interacting chromatin is eluted by RNase treatment. Subsequent protein elimination and DNA purification allow to retrieve DNA fragments for following analyses such as qPCR or sequencing.In the present chapter, we describe the ChOP protocol, as used in our laboratory for investigating the interaction of the LncRNA Kcnq1ot1 with chromatin at specific regulatory regions of the Cdkn1c locus.
Collapse
Affiliation(s)
| | - Rossella Maione
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
52
|
Cheng Y, Saville L, Gollen B, Veronesi AA, Mohajerani M, Joseph JT, Zovoilis A. Increased Alu RNA processing in Alzheimer brains is linked to gene expression changes. EMBO Rep 2021; 22:e52255. [PMID: 33645898 PMCID: PMC8097388 DOI: 10.15252/embr.202052255] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Despite significant steps in our understanding of Alzheimer's disease (AD), many of the molecular processes underlying its pathogenesis remain largely unknown. Here, we focus on the role of non-coding RNAs produced by small interspersed nuclear elements (SINEs). RNAs from SINE B2 repeats in mouse and SINE Alu repeats in humans, long regarded as "junk" DNA, control gene expression by binding RNA polymerase II and suppressing transcription. They also possess self-cleaving activity that is accelerated through their interaction with certain proteins disabling this suppression. Here, we show that similar to mouse SINE RNAs, human Alu RNAs, are processed, and the processing rate is increased in brains of AD patients. This increased processing correlates with the activation of genes up-regulated in AD patients, while increased intact Alu RNA levels correlate with down-regulated gene expression in AD. In vitro assays show that processing of Alu RNAs is accelerated by HSF1. Overall, our data show that RNAs from SINE elements in the human brain show a similar pattern of deregulation during amyloid beta pathology as in mouse.
Collapse
Affiliation(s)
- Yubo Cheng
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.,Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, Canada.,Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Luke Saville
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.,Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, Canada.,Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Babita Gollen
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.,Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, Canada.,Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ana Alvarez Veronesi
- Departments of Pathology and Clinical Neurosciences and Calgary Brain Bank, University of Calgary, Calgary, AB, Canada
| | - Majid Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jeffrey T Joseph
- Departments of Pathology and Clinical Neurosciences and Calgary Brain Bank, University of Calgary, Calgary, AB, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.,Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, Canada.,Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
53
|
Pappalardo AM, Ferrito V, Biscotti MA, Canapa A, Capriglione T. Transposable Elements and Stress in Vertebrates: An Overview. Int J Mol Sci 2021; 22:1970. [PMID: 33671215 PMCID: PMC7922186 DOI: 10.3390/ijms22041970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/17/2022] Open
Abstract
Since their identification as genomic regulatory elements, Transposable Elements (TEs) were considered, at first, molecular parasites and later as an important source of genetic diversity and regulatory innovations. In vertebrates in particular, TEs have been recognized as playing an important role in major evolutionary transitions and biodiversity. Moreover, in the last decade, a significant number of papers has been published highlighting a correlation between TE activity and exposition to environmental stresses and dietary factors. In this review we present an overview of the impact of TEs in vertebrate genomes, report the silencing mechanisms adopted by host genomes to regulate TE activity, and finally we explore the effects of environmental and dietary factor exposures on TE activity in mammals, which is the most studied group among vertebrates. The studies here reported evidence that several factors can induce changes in the epigenetic status of TEs and silencing mechanisms leading to their activation with consequent effects on the host genome. The study of TE can represent a future challenge for research for developing effective markers able to detect precocious epigenetic changes and prevent human diseases.
Collapse
Affiliation(s)
- Anna Maria Pappalardo
- Department of Biological, Geological and Environmental Sciences-Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Venera Ferrito
- Department of Biological, Geological and Environmental Sciences-Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Maria Assunta Biscotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Adriana Canapa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Teresa Capriglione
- Department of Biology, University of Naples "Federico II", Via Cinthia 21-Ed7, 80126 Naples, Italy
| |
Collapse
|
54
|
Long non-coding RNA linc00665 inhibits CDKN1C expression by binding to EZH2 and affects cisplatin sensitivity of NSCLC cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:1053-1065. [PMID: 33664990 PMCID: PMC7887328 DOI: 10.1016/j.omtn.2021.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) can play significant regulatory roles in cells that affect the development and acquired drug resistance of lung cancer. Herein, we report that lncRNA linc00665 is significantly upregulated in non-small cell lung cancer (NSCLC) tissues compared with adjacent normal tissues. linc00665 affects the sensitivity of NSCLC cells to the chemotherapy drug cisplatin (DDP), making it a potential target for the treatment of NSCLC. Functional experiments showed that linc00665 enhanced the proliferation and migration of NSCLC cells in vivo and in vitro, and knocking down linc00665 could enhance the drug sensitivity of NSCLC cells to DDP. Further work revealed that linc00665 could recruit enhancer of zeste homolog 2 (EZH2) to the promoter region of cyclin-dependent kinase inhibitor 1C (CDKN1C) to inhibit its transcription and thus carry out its tumorigenic role. In conclusion, our study elucidated the carcinogenic role of the linc00665-EZH2-CDKN1C axis in NSCLC tumors and its ability to influence the sensitivity of these tumors to DDP. These results suggest that linc00665 may be a potential diagnostic marker and therapeutic target in NSCLC, and they also provide a new direction for the development of clinical reversal methods for acquired drug resistance in patients with NSCLC.
Collapse
|
55
|
Li M, Schifanella L, Larsen PA. Alu retrotransposons and COVID-19 susceptibility and morbidity. Hum Genomics 2021; 15:2. [PMID: 33390179 PMCID: PMC7779329 DOI: 10.1186/s40246-020-00299-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
SARS-CoV-2 has spread rapidly across the world and is negatively impacting the global human population. COVID-19 patients display a wide variety of symptoms and clinical outcomes, including those attributed to genetic ancestry. Alu retrotransposons have played an important role in human evolution, and their variants influence host response to viral infection. Intronic Alus regulate gene expression through several mechanisms, including both genetic and epigenetic pathways. With respect to SARS-CoV-2, an intronic Alu within the ACE gene is hypothesized to be associated with COVID-19 susceptibility and morbidity. Here, we review specific Alu polymorphisms that are of particular interest when considering host response to SARS-CoV-2 infection, especially polymorphic Alu insertions in genes associated with immune response and coagulation/fibrinolysis cascade. We posit that additional research focused on Alu-related pathways could yield novel biomarkers capable of predicting clinical outcomes as well as patient-specific treatment strategies for COVID-19 and related infectious diseases.
Collapse
Affiliation(s)
- Manci Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, 55108, USA
| | - Luca Schifanella
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Peter A Larsen
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
56
|
Wu SK, Roberts JT, Balas MM, Johnson AM. RNA matchmaking in chromatin regulation. Biochem Soc Trans 2020; 48:2467-2481. [PMID: 33245317 PMCID: PMC7888525 DOI: 10.1042/bst20191225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/12/2023]
Abstract
Beyond being the product of gene expression, RNA can also influence the regulation of chromatin. The majority of the human genome has the capacity to be transcribed and the majority of the non-protein-coding transcripts made by RNA Polymerase II are enriched in the nucleus. Many chromatin regulators can bind to these ncRNAs in the nucleus; in some cases, there are clear examples of direct RNA-mediated chromatin regulation mechanisms stemming from these interactions, while others have yet to be determined. Recent studies have highlighted examples of chromatin regulation via RNA matchmaking, a term we use broadly here to describe intermolecular base-pairing interactions between one RNA molecule and an RNA or DNA match. This review provides examples of RNA matchmaking that regulates chromatin processes and summarizes the technical approaches used to capture these events.
Collapse
Affiliation(s)
- Stephen K. Wu
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
| | - Justin T. Roberts
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
| | - Maggie M. Balas
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
| | - Aaron M. Johnson
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
| |
Collapse
|
57
|
Razavi ZS, Tajiknia V, Majidi S, Ghandali M, Mirzaei HR, Rahimian N, Hamblin MR, Mirzaei H. Gynecologic cancers and non-coding RNAs: Epigenetic regulators with emerging roles. Crit Rev Oncol Hematol 2020; 157:103192. [PMID: 33290823 DOI: 10.1016/j.critrevonc.2020.103192] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
Gynecologic cancers involve the female genital organs, such as the vulva, vagina, cervix, endometrium, ovaries, and fallopian tubes. The occurrence and frequency of gynecologic cancer depends on personal lifestyle, history of exposure to viruses or carcinogens, genetics, body shape, and geographical habitat. For a long time, research into the molecular biology of cancer was broadly restricted to protein-coding genes. Recently it has been realized that non-coding RNAs (ncRNA), including long noncoding RNAs (LncRNAs), microRNAs, circular RNAs and piRNAs (PIWI-interacting RNAs), can all play a role in the regulation of cellular function within gynecological cancer. It is now known that ncRNAs are able to play dual roles, i.e. can exert both oncogenic or tumor suppressive functions in gynecological cancer. Moreover, several clinical trials are underway looking at the biomarker and therapeutic roles of ncRNAs. These efforts may provide a new horizon for the diagnosis and treatment of gynecological cancer. Herein, we summarize some of the ncRNAs that have been shown to be important in gynecological cancers.
Collapse
Affiliation(s)
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Majidi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
58
|
Wang Y, Lian M, Xiu X, Zhang Z, Song L, Wu S. Dicer1 promotes Aβ clearance via blocking B2 RNA-mediated repression of apolipoprotein E. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166038. [PMID: 33285223 DOI: 10.1016/j.bbadis.2020.166038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/10/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022]
Abstract
Metabolism of β-amyloid is critical for healthy brain. Decreased clearance of β-amyloid is associated with ensued accumulation of amyloid peptide, culminating in formation of senile plaques, a neuropathological hallmark of Alzheimer's disease(AD). Apolipoprotein E (APOE), a lipoprotein for phospholipid and cholesterol metabolism, is predominantly synthesized by glia in the central nervous system, controlling Aβ aggregation and metabolism. By use of stereotactic injection and a Morris water maze, we found that delivery of Dicer1-expressing adenovirus into the hippocampus of an animal model of AD mice APPswe/PSEN1deltaE9 significantly improved spatial memory. The effect was associated with reduced amyloid peptides in the hippocampus which were analyzed with immunofluorescence and enzyme-linked immunosorbent assay. With western blot, quantitative real-time PCR, fluorescence in situ hybridization, and northern blot,Dicer1 overexpression increased apolipoprotein E (APOE) and concomitantly decreased B2 RNA in the hippocampus of the AD mice and in astrocyte cultures whereas transfection of B2 Mm2 RNA decreased APOE mRNA and protein levels in astrocyte cultures. Further, human or mouse APOE mRNA was found containing Alu RNA or its equivalent, B2 Mm2 RNA, locating downstream of its 3'-untranslated region (UTR), respectively. The 3'-UTR or 3'-UTR in conjunction with the downstream Alu/B2 RNA were cloned into a luciferase reporter; with dual-luciferase assay, we found that simultaneous transfection of Dicer1 siRNA or Alu/B2 RNA decreased the corresponding luciferase activities which suggest that Alu RNA mediated APOE mRNA degradation. Altogether, Dicer1 expression mediated amyloid peptide clearance by increasing APOE via blocking B2 RNA-mediated APOE mRNA degradation.
Collapse
Affiliation(s)
- Yan Wang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, PR China
| | - Meiling Lian
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, PR China
| | - Xiaoyu Xiu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, PR China
| | - Zhiwen Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, PR China
| | - Liping Song
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, PR China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, PR China.
| |
Collapse
|
59
|
Abstract
In this review, Yeganeh et al. summarize different human diseases that have been linked to defects in the Pol III transcription apparatus or to Pol III products imbalance and discuss the possible underlying mechanisms. RNA polymerase (Pol) III is responsible for transcription of different noncoding genes in eukaryotic cells, whose RNA products have well-defined functions in translation and other biological processes for some, and functions that remain to be defined for others. For all of them, however, new functions are being described. For example, Pol III products have been reported to regulate certain proteins such as protein kinase R (PKR) by direct association, to constitute the source of very short RNAs with regulatory roles in gene expression, or to control microRNA levels by sequestration. Consistent with these many functions, deregulation of Pol III transcribed genes is associated with a large variety of human disorders. Here we review different human diseases that have been linked to defects in the Pol III transcription apparatus or to Pol III products imbalance and discuss the possible underlying mechanisms.
Collapse
Affiliation(s)
- Meghdad Yeganeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
60
|
Noncoding RNAs Set the Stage for RNA Polymerase II Transcription. Trends Genet 2020; 37:279-291. [PMID: 33046273 DOI: 10.1016/j.tig.2020.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
Effective synthesis of mammalian messenger (m)RNAs depends on many factors that together direct RNA polymerase II (pol II) through the different stages of the transcription cycle and ensure efficient cotranscriptional processing of mRNAs. In addition to the many proteins involved in transcription initiation, elongation, and termination, several noncoding (nc)RNAs also function as global transcriptional regulators. Understanding the mode of action of these non-protein regulators has been an intense area of research in recent years. Here, we describe how these ncRNAs influence key regulatory steps of the transcription process, to affect large numbers of genes. Through direct association with pol II or by modulating the activity of transcription or RNA processing factors, these regulatory RNAs perform critical roles in gene expression.
Collapse
|
61
|
Boots JL, von Pelchrzim F, Weiss A, Zimmermann B, Friesacher T, Radtke M, Żywicki M, Chen D, Matylla-Kulińska K, Zagrovic B, Schroeder R. RNA polymerase II-binding aptamers in human ACRO1 satellites disrupt transcription in cis. Transcription 2020; 11:217-229. [PMID: 32663063 PMCID: PMC7714431 DOI: 10.1080/21541264.2020.1790990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcription elongation is a highly regulated process affected by many proteins, RNAs and the underlying DNA. Here we show that the nascent RNA can interfere with transcription in human cells, extending our previous findings from bacteria and yeast. We identified a variety of Pol II-binding aptamers (RAPs), prominent in repeat elements such as ACRO1 satellites, LINE1 retrotransposons and CA simple repeats, and also in several protein-coding genes. ACRO1 repeat, when translated in silico, exhibits ~50% identity with the Pol II CTD sequence. Taken together with a recent proposal that proteins in general tend to interact with RNAs similar to their cognate mRNAs, this suggests a mechanism for RAP binding. Using a reporter construct, we show that ACRO1 potently inhibits Pol II elongation in cis. We propose a novel mode of transcriptional regulation in humans, in which the nascent RNA binds Pol II to silence its own expression.
Collapse
Affiliation(s)
- Jennifer L. Boots
- Department of Biochemistry and Molecular Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Frederike von Pelchrzim
- Department of Biochemistry and Molecular Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Adam Weiss
- Department of Biochemistry and Molecular Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Bob Zimmermann
- Department of Biochemistry and Molecular Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Theres Friesacher
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Maximilian Radtke
- Department of Biochemistry and Molecular Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Marek Żywicki
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Doris Chen
- Department of Biochemistry and Molecular Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Katarzyna Matylla-Kulińska
- Department of Biochemistry and Molecular Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Renée Schroeder
- Department of Biochemistry and Molecular Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria,CONTACT Renée Schroeder Department of Biochemistry and Molecular Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| |
Collapse
|
62
|
Fort V, Khelifi G, Hussein SMI. Long non-coding RNAs and transposable elements: A functional relationship. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118837. [PMID: 32882261 DOI: 10.1016/j.bbamcr.2020.118837] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/29/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
Long non-coding RNAs (lncRNAs) have become increasingly important in the past decade. They are known to regulate gene expression and to interact with chromatin, proteins and other coding and non-coding RNAs. The study of lncRNAs has been challenging due to their low expression and the lack of tools developed to adapt to their particular features. Studies on lncRNAs performed to date have largely focused on cellular functions, whereas details on the mechanism of action has only been thoroughly investigated for a small number of lncRNAs. Nevertheless, some studies have highlighted the potential of these transcripts to contain functional domains, following the same accepted trend as proteins. Interestingly, many of these identified "domains" are attributed to functional units derived from transposable elements. Here, we review several types of functions of lncRNAs and relate these functions to lncRNA-embedded transposable elements.
Collapse
Affiliation(s)
- Victoire Fort
- Laval University Cancer Research Centre, Canada; Research Center of the CHU of Québec, Laval University, Québec G1R 3S3, Canada
| | - Gabriel Khelifi
- Laval University Cancer Research Centre, Canada; Research Center of the CHU of Québec, Laval University, Québec G1R 3S3, Canada
| | - Samer M I Hussein
- Laval University Cancer Research Centre, Canada; Research Center of the CHU of Québec, Laval University, Québec G1R 3S3, Canada.
| |
Collapse
|
63
|
Rasoulinejad SA, Karkhah A, Paniri A, Saleki K, Pirzadeh M, Nouri HR. Contribution of inflammasome complex in inflammatory-related eye disorders and its implications for anti-inflammasome therapy. Immunopharmacol Immunotoxicol 2020; 42:400-407. [PMID: 32791926 DOI: 10.1080/08923973.2020.1808986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammasome complex is regarded as a major molecular regulator that exerts a significant function in caspase-1 activation and consequently, the development of cytokines like interleukin-1β (IL-1β) and interleukin-18 (IL-18). The secretion of these cytokines may induce inflammation. The role of inflammasomes in the pathologic process of eye-related illnesses like glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy has been well studied over the past decade. However, the detailed pathogenic mechanism of inflammasomes in these retinal diseases is still unknown. Therefore, further investigation and understanding various aspects of inflammasome complexes as well as their pivotal roles in the immunopathology of human ocular illnesses are essential. The present review aims to describe the significant involvement of inflammasomes in the immunopathology of important inflammatory retinal illnesses, including glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy focusing on anti-inflammasome therapy as a promising approach in the treatment of inflammation-related eye diseases.
Collapse
Affiliation(s)
- Seyed Ahmad Rasoulinejad
- Department of Ophthalmology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.,Clinical Research Development Unit of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Ahmad Karkhah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Alireza Paniri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marzieh Pirzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
64
|
Chen Q, Meng X, Liao Q, Chen M. Versatile interactions and bioinformatics analysis of noncoding RNAs. Brief Bioinform 2020; 20:1781-1794. [PMID: 29939215 DOI: 10.1093/bib/bby050] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Advances in RNA sequencing technologies and computational methodologies have provided a huge impetus to noncoding RNA (ncRNA) study. Once regarded as inconsequential results of transcriptional promiscuity, ncRNAs were later found to exert great roles in various aspects of biological functions. They are emerging as key players in gene regulatory networks by interacting with other biomolecules (DNA, RNA or protein). Here, we provide an overview of ncRNA repertoire and highlight recent discoveries of their versatile interactions. To better investigate the ncRNA-mediated regulation, it is necessary to make full use of innovative sequencing techniques and computational tools. We further describe a comprehensive workflow for in silico ncRNA analysis, providing up-to-date platforms, databases and tools dedicated to ncRNA identification and functional annotation.
Collapse
Affiliation(s)
- Qi Chen
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Xianwen Meng
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Qi Liao
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Ming Chen
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
65
|
Conserved Herpesvirus Kinase ORF36 Activates B2 Retrotransposons during Murine Gammaherpesvirus Infection. J Virol 2020; 94:JVI.00262-20. [PMID: 32404524 DOI: 10.1128/jvi.00262-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Short interspersed nuclear elements (SINEs) are RNA polymerase III (RNAPIII)-transcribed, retrotransposable noncoding RNA (ncRNA) elements ubiquitously spread throughout mammalian genomes. While normally silenced in healthy somatic tissue, SINEs can be induced during infection with DNA viruses, including the model murine gammaherpesvirus 68 (MHV68). Here, we explored the mechanisms underlying MHV68 activation of SINE ncRNAs. We demonstrate that lytic MHV68 infection of B cells, macrophages, and fibroblasts leads to robust activation of the B2 family of SINEs in a cell-autonomous manner. B2 ncRNA induction requires neither host innate immune signaling factors nor involvement of the RNAPIII master regulator Maf1. However, we identified MHV68 ORF36, the conserved herpesviral kinase, as playing a key role in B2 induction during lytic infection. SINE activation is linked to ORF36 kinase activity and can also be induced by inhibition of histone deacetylases 1 and 2 (HCAC 1/2), which is one of the known ORF36 functions. Collectively, our data suggest that ORF36-mediated changes in chromatin modification contribute to B2 activation during MHV68 infection and that this activity is conserved in other herpesviral protein kinase homologs.IMPORTANCE Viral infection dramatically changes the levels of many types of RNA in a cell. In particular, certain oncogenic viruses activate expression of repetitive genes called retrotransposons, which are normally silenced due to their ability to copy and spread throughout the genome. Here, we established that infection with the gammaherpesvirus MHV68 leads to a dramatic induction of a class of noncoding retrotransposons called B2 SINEs in multiple cell types. We then explored how MHV68 activates B2 SINEs, revealing a role for the conserved herpesviral protein kinase ORF36. Both ORF36 kinase-dependent and kinase-independent functions contribute to B2 induction, perhaps through ORF36 targeting of proteins involved in controlling the accessibility of chromatin surrounding SINE loci. Understanding the features underlying induction of these elements following MHV68 infection should provide insight into core elements of SINE regulation, as well as disregulation of SINE elements associated with disease.
Collapse
|
66
|
Matsui M, Sakasai R, Abe M, Kimura Y, Kajita S, Torii W, Katsuki Y, Ishiai M, Iwabuchi K, Takata M, Nishi R. USP42 enhances homologous recombination repair by promoting R-loop resolution with a DNA-RNA helicase DHX9. Oncogenesis 2020; 9:60. [PMID: 32541651 PMCID: PMC7296013 DOI: 10.1038/s41389-020-00244-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 01/05/2023] Open
Abstract
The nucleus of mammalian cells is compartmentalized by nuclear bodies such as nuclear speckles, however, involvement of nuclear bodies, especially nuclear speckles, in DNA repair has not been actively investigated. Here, our focused screen for nuclear speckle factors involved in homologous recombination (HR), which is a faithful DNA double-strand break (DSB) repair mechanism, identified transcription-related nuclear speckle factors as potential HR regulators. Among the top hits, we provide evidence showing that USP42, which is a hitherto unidentified nuclear speckles protein, promotes HR by facilitating BRCA1 recruitment to DSB sites and DNA-end resection. We further showed that USP42 localization to nuclear speckles is required for efficient HR. Furthermore, we established that USP42 interacts with DHX9, which possesses DNA-RNA helicase activity, and is required for efficient resolution of DSB-induced R-loop. In conclusion, our data propose a model in which USP42 facilitates BRCA1 loading to DSB sites, resolution of DSB-induced R-loop and preferential DSB repair by HR, indicating the importance of nuclear speckle-mediated regulation of DSB repair.
Collapse
Affiliation(s)
- Misaki Matsui
- Department of Biomedical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Ryo Sakasai
- Department of Biochemistry I, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Masako Abe
- Department of Late Effects Studies, Radiation Biology Centre, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| | - Yusuke Kimura
- Department of Biomedical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Shoki Kajita
- Department of Biomedical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Wakana Torii
- Department of Biomedical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yoko Katsuki
- Department of Late Effects Studies, Radiation Biology Centre, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| | - Masamichi Ishiai
- Central Radioisotope Division, National Cancer Centre Research Institute, Chuoku, Tokyo, 104-0045, Japan
| | - Kuniyoshi Iwabuchi
- Department of Biochemistry I, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Minoru Takata
- Department of Late Effects Studies, Radiation Biology Centre, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| | - Ryotaro Nishi
- Department of Biomedical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan. .,School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
67
|
Nguyen TM, Alchalabi S, Oluwatoyosi A, Ropri AS, Herschkowitz JI, Rosen JM. New twists on long noncoding RNAs: from mobile elements to motile cancer cells. RNA Biol 2020; 17:1535-1549. [PMID: 32522127 DOI: 10.1080/15476286.2020.1760535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The purpose of this review is to highlight several areas of lncRNA biology and cancer that we hope will provide some new insights for future research. These include the relationship of lncRNAs and the epithelial to mesenchymal transition (EMT) with a focus on transcriptional and alternative splicing mechanisms and mRNA stability through miRNAs. In addition, we highlight the potential role of enhancer e-lncRNAs, the importance of transposable elements in lncRNA biology, and finally the emerging area of using antisense oligonucleotides (ASOs) and small molecules to target lncRNAs and their therapeutic implications.
Collapse
Affiliation(s)
- Tuan M Nguyen
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School , Boston, MA, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| | - Sumayya Alchalabi
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, SUNY , Rensselaer, NY, USA
| | - Adewunmi Oluwatoyosi
- Department of Molecular & Cellular Biology, Baylor College of Medicine , Houston, TX, USA
| | - Ali S Ropri
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, SUNY , Rensselaer, NY, USA
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, SUNY , Rensselaer, NY, USA
| | - Jeffrey M Rosen
- Department of Molecular & Cellular Biology, Baylor College of Medicine , Houston, TX, USA
| |
Collapse
|
68
|
Hunter RG. Stress, Adaptation, and the Deep Genome: Why Transposons Matter. Integr Comp Biol 2020; 60:1495-1505. [DOI: 10.1093/icb/icaa050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Synopsis
Stress is a common, if often unpredictable life event. It can be defined from an evolutionary perspective as a force an organism perceives it must adapt to. Thus stress is a useful tool to study adaptation and the adaptive capacity of organisms. The deep genome, long neglected as a pile of “junk” has emerged as a source of regulatory DNA and RNA as well as a potential stockpile of adaptive capacity at the organismal and species levels. Recent work on the regulation of transposable elements (TEs), the principle constituents of the deep genome, by stress has shown that these elements are responsive to host stress and other environmental cues. Further, we have shown that some are likely directly regulated by the glucocorticoid receptor (GR), one of the two major vertebrate stress steroid receptors in a fashion that appears adaptive. On the basis of this and other emerging evidence I argue that the deep genome may represent an adaptive toolkit for organisms to respond to their environments at both individual and evolutionary scales. This argues that genomes may be adapted for what Waddington called “trait adaptability” rather than being purely passive objects of natural selection and single nucleotide level mutation.
Collapse
Affiliation(s)
- Richard G Hunter
- Department of Psychology, University of Massachusetts Boston, 100 William T. Morrissey Blvd, Boston, MA 02125, USA
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
69
|
Samudyata, Castelo-Branco G, Liu J. Epigenetic regulation of oligodendrocyte differentiation: From development to demyelinating disorders. Glia 2020; 68:1619-1630. [PMID: 32154951 DOI: 10.1002/glia.23820] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
The maintenance of progenitor states or the differentiation of progenitors into specific lineages requires epigenetic remodeling of the gene expression program. In the central nervous system, oligodendrocyte progenitors (OPCs) give rise to oligodendrocytes (OLs), whose main function has been thought to be to produce myelin, a lipid-rich structure insulating the axons. However, recent findings suggest diverse OL transcriptional states, which might imply additional functions. The differentiation of OPCs into postmitotic OLs is a highly regulated and sensitive process and requires temporal waves of gene expression through epigenetic remodeling of the genome. In this review, we will discuss recent advances in understanding the events shaping the chromatin landscape through histone modifications and long noncoding RNAs during OPC differentiation, in physiological and pathological conditions. We suggest that epigenetic regulation plays a fundamental role in governing the accessibility of transcriptional machinery to DNA sequences, which ultimately determines functional outcomes in OLs.
Collapse
Affiliation(s)
- Samudyata
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Jia Liu
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, New York, USA
| |
Collapse
|
70
|
Ferrari R, de Llobet Cucalon LI, Di Vona C, Le Dilly F, Vidal E, Lioutas A, Oliete JQ, Jochem L, Cutts E, Dieci G, Vannini A, Teichmann M, de la Luna S, Beato M. TFIIIC Binding to Alu Elements Controls Gene Expression via Chromatin Looping and Histone Acetylation. Mol Cell 2020; 77:475-487.e11. [PMID: 31759822 PMCID: PMC7014570 DOI: 10.1016/j.molcel.2019.10.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/20/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
Abstract
How repetitive elements, epigenetic modifications, and architectural proteins interact ensuring proper genome expression remains poorly understood. Here, we report regulatory mechanisms unveiling a central role of Alu elements (AEs) and RNA polymerase III transcription factor C (TFIIIC) in structurally and functionally modulating the genome via chromatin looping and histone acetylation. Upon serum deprivation, a subset of AEs pre-marked by the activity-dependent neuroprotector homeobox Protein (ADNP) and located near cell-cycle genes recruits TFIIIC, which alters their chromatin accessibility by direct acetylation of histone H3 lysine-18 (H3K18). This facilitates the contacts of AEs with distant CTCF sites near promoter of other cell-cycle genes, which also become hyperacetylated at H3K18. These changes ensure basal transcription of cell-cycle genes and are critical for their re-activation upon serum re-exposure. Our study reveals how direct manipulation of the epigenetic state of AEs by a general transcription factor regulates 3D genome folding and expression.
Collapse
Affiliation(s)
- Roberto Ferrari
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain.
| | - Lara Isabel de Llobet Cucalon
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Chiara Di Vona
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - François Le Dilly
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Enrique Vidal
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Antonios Lioutas
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Javier Quilez Oliete
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Laura Jochem
- The Institute of Cancer Research (ICR), London, UK
| | - Erin Cutts
- The Institute of Cancer Research (ICR), London, UK
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Alessandro Vannini
- The Institute of Cancer Research (ICR), London, UK; Human Technopole. Via Cristina Belgioioso, 171, 20157 Milano MI, Italy
| | - Martin Teichmann
- Université de Bordeaux, INSERM U1212 CNRS UMR 5320 146, Bordeaux, France
| | - Susana de la Luna
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
71
|
Meng H, Feng J, Bai T, Jian Z, Chen Y, Wu G. Genome-wide analysis of short interspersed nuclear elements provides insight into gene and genome evolution in citrus. DNA Res 2020; 27:5818487. [PMID: 32271875 PMCID: PMC7315354 DOI: 10.1093/dnares/dsaa004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/03/2020] [Indexed: 12/03/2022] Open
Abstract
Short interspersed nuclear elements (SINEs) are non-autonomous retrotransposons that are highly abundant, but not well annotated, in plant genomes. In this study, we identified 41,573 copies of SINEs in seven citrus genomes, including 11,275 full-length copies. The citrus SINEs were distributed among 12 families, with an average full-length rate of 0.27, and were dispersed throughout the chromosomes, preferentially in AT-rich areas. Approximately 18.4% of citrus SINEs were found in close proximity (≤1 kb upstream) to genes, indicating a significant enrichment of SINEs in promoter regions. Citrus SINEs promote gene and genome evolution by offering exons as well as splice sites and start and stop codons, creating novel genes and forming tandem and dispersed repeat structures. Comparative analysis of unique homologous SINE-containing loci (HSCLs) revealed chromosome rearrangements in sweet orange, pummelo, and mandarin, suggesting that unique HSCLs might be valuable for understanding chromosomal abnormalities. This study of SINEs provides us with new perspectives and new avenues by which to understand the evolution of citrus genes and genomes.
Collapse
Affiliation(s)
- Haijun Meng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Tuanhui Bai
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Zaihai Jian
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanhui Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoliang Wu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
72
|
Yan W, Chen J, Wei Z, Wang X, Zeng Z, Tembo D, Wang Y, Wang X. Effect of eleutheroside B1 on non‑coding RNAs and protein profiles of influenza A virus‑infected A549 cells. Int J Mol Med 2020; 45:753-768. [PMID: 31985023 PMCID: PMC7015140 DOI: 10.3892/ijmm.2020.4468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/09/2019] [Indexed: 01/16/2023] Open
Abstract
Influenza viruses often pose a serious threat to animals and human health. In an attempt to explore the potential of herbal medicine as a treatment for influenza virus infection, eleutheroside B1, a coumarin compound extracted from herba sarcandrae, was identified, which exhibited antiviral and anti-inflammatory activities against influenza A virus. In this study, high-throughput RNA sequencing and isobaric tags for relative and absolute quantification (iTRAQ) assays were performed to determine alterations in the non-coding RNA (ncRNA) transcriptome and proteomics. Bioinformatics and target prediction analyses were used to decipher the potential roles of altered ncRNAs in the function of eleutheroside B1. Furthermore, long ncRNA (lncRNA) and mRNA co-expressing networks were constructed to analyze the biological functions by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The analysis of RNA sequencing data revealed that 5 differentially expressed ncRNAs were upregulated and 3 ncRNAs were downregulated in the A549 cells infected with A/PR8/34/H1N1, with or without eleutheroside B1 treatment (PR8+eleu and PR8, respectively). Nuclear paraspeckle assembly transcript 1 (NEAT1) was differentially expressed between the PR8 and A549 cell groups. GO and KEGG pathway analyses indicated that eleutheroside B1 took advantage of the host cell biological processes and molecular function for its antiviral and anti-inflammatory activities, as well as for regulating cytokine-cytokine receptor interaction in the immune system, consistent with previous findings. The results of the iTRAQ assays indicated that L antigen family member 3 (LAGE3) protein, essential for tRNA processing, tRNA metabolic processes and ncRNA processing, was down-regulated in the PR8+eleu compared with the PR8 group. In the present study, these comprehensive, large-scale data analysis enhanced the understanding of multiple aspects of the transcriptome and proteomics that are involved in the antiviral and anti-inflammatory activities of eleutheroside B1. These findings demonstrate the potential of eleutheroside B1 for use in the prevention and treatment of influenza A virus-mediated infections.
Collapse
Affiliation(s)
- Wen Yan
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jing Chen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, P.R. China
| | - Zhenquan Wei
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaohu Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, P.R. China
| | - Zhiqi Zeng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Dumizulu Tembo
- Centre of Immunology of Marseille‑Luminy, Aix‑Marseille University, 13009 Marseille, France
| | - Yutao Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
73
|
Lambert K, Hunter RG, Bartlett AA, Lapp HE, Kent M. In search of optimal resilience ratios: Differential influences of neurobehavioral factors contributing to stress-resilience spectra. Front Neuroendocrinol 2020; 56:100802. [PMID: 31738947 DOI: 10.1016/j.yfrne.2019.100802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/07/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Abstract
The ability to adapt to stressful circumstances, known as emotional resilience, is a key factor in the maintenance of mental health. Several individual biomarkers of the stress response (e.g., corticosterone) that influence an animal's position along the continuum that ranges from adaptive allostasis to maladaptive allostatic load have been identified. Extending beyond specific biomarkers of stress responses, however, it is also important to consider stress-related responses relative to other relevant responses for a thorough understanding of the underpinnings of adaptive allostasis. In this review, behavioral, neurobiological, developmental and genomic variables are considered in the context of emotional resilience [e.g., explore/exploit behavioral tendencies; DHEA/CORT ratios and relative proportions of protein-coding/nonprotein-coding (transposable) genomic elements]. As complex and multifaceted relationships between pertinent allostasis biomediators are identified, translational applications for optimal resilience are more likely to emerge as effective therapeutic strategies.
Collapse
Affiliation(s)
- Kelly Lambert
- Dept of Psychology, B326 Gottwald Science Center, University of Richmond, VA 23173, United States.
| | - Richard G Hunter
- Dept of Psychology, University of Massachusetts-Boston, 100 Morrissey Blvd., Boston, MA 00252, United States
| | - Andrew A Bartlett
- Dept of Psychology, University of Massachusetts-Boston, 100 Morrissey Blvd., Boston, MA 00252, United States
| | - Hannah E Lapp
- Dept of Psychology, University of Massachusetts-Boston, 100 Morrissey Blvd., Boston, MA 00252, United States
| | - Molly Kent
- Dept of Psychology, B326 Gottwald Science Center, University of Richmond, VA 23173, United States
| |
Collapse
|
74
|
B2 and ALU retrotransposons are self-cleaving ribozymes whose activity is enhanced by EZH2. Proc Natl Acad Sci U S A 2019; 117:415-425. [PMID: 31871160 DOI: 10.1073/pnas.1917190117] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transposable elements make up half of the mammalian genome. One of the most abundant is the short interspersed nuclear element (SINE). Among their million copies, B2 accounts for ∼350,000 in the mouse genome and has garnered special interest because of emerging roles in epigenetic regulation. Our recent work demonstrated that B2 RNA binds stress genes to retard transcription elongation. Although epigenetically silenced, B2s become massively up-regulated during thermal and other types of stress. Specifically, an interaction between B2 RNA and the Polycomb protein, EZH2, results in cleavage of B2 RNA, release of B2 RNA from chromatin, and activation of thermal stress genes. Although an established RNA-binding protein and histone methyltransferase, EZH2 is not known to be a nuclease. Here, we provide evidence for the surprising conclusion that B2 is a self-cleaving ribozyme. Ribozyme activity depends on Mg+2 and monovalent cations but is resistant to protease treatment. However, contact with EZH2 accelerates cleavage rate by >100-fold, suggesting that EZH2 promotes a cleavage-competent RNA conformation. B2 modification-interference analysis demonstrates that phosphorothioate changes at A and C nucleotides can substitute for EZH2. B2 nucleotides 45 to 55 and 100 to 101 are essential for activity. Finally, another family of SINEs, the human ALU element, also produces a self-cleaving RNA and is cleaved during T-cell activation as well as thermal and endoplasmic reticulum (ER) stress. Thus, B2/ALU SINEs may be classified as "epigenetic ribozymes" that function as transcriptional switches during stress. Given their high copy numbers, B2 and ALU may represent the predominant ribozyme activity in mammalian cells.
Collapse
|
75
|
Mishra K, Kanduri C. Understanding Long Noncoding RNA and Chromatin Interactions: What We Know So Far. Noncoding RNA 2019; 5:ncrna5040054. [PMID: 31817041 PMCID: PMC6958424 DOI: 10.3390/ncrna5040054] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
With the evolution of technologies that deal with global detection of RNAs to probing of lncRNA-chromatin interactions and lncRNA-chromatin structure regulation, we have been updated with a comprehensive repertoire of chromatin interacting lncRNAs, their genome-wide chromatin binding regions and mode of action. Evidence from these new technologies emphasize that chromatin targeting of lncRNAs is a prominent mechanism and that these chromatin targeted lncRNAs exert their functionality by fine tuning chromatin architecture resulting in an altered transcriptional readout. Currently, there are no unifying principles that define chromatin association of lncRNAs, however, evidence from a few chromatin-associated lncRNAs show presence of a short common sequence for chromatin targeting. In this article, we review how technological advancements contributed in characterizing chromatin associated lncRNAs, and discuss the potential mechanisms by which chromatin associated lncRNAs execute their functions.
Collapse
Affiliation(s)
- Kankadeb Mishra
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
- Department of Cell Biology, Memorial Sloan Kettering Cancer Centre, Rockefeller Research Laboratory, 430 East 67th Street, RRL 445, New York, NY 10065, USA
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
- Correspondence:
| |
Collapse
|
76
|
Schreiner WP, Pagliuso DC, Garrigues JM, Chen JS, Aalto AP, Pasquinelli AE. Remodeling of the Caenorhabditis elegans non-coding RNA transcriptome by heat shock. Nucleic Acids Res 2019; 47:9829-9841. [PMID: 31396626 PMCID: PMC6765114 DOI: 10.1093/nar/gkz693] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Elevated temperatures activate a heat shock response (HSR) to protect cells from the pathological effects of protein mis-folding, cellular mis-organization, organelle dysfunction and altered membrane fluidity. This response includes activation of the conserved transcription factor heat shock factor 1 (HSF-1), which binds heat shock elements (HSEs) in the promoters of genes induced by heat shock (HS). The upregulation of protein-coding genes (PCGs), such as heat shock proteins and cytoskeletal regulators, is critical for cellular survival during elevated temperatures. While the transcriptional response of PCGs to HS has been comprehensively analyzed in a variety of organisms, the effect of this stress on the expression of non-coding RNAs (ncRNAs) has not been systematically examined. Here we show that in Caenorhabditis elegans HS induces up- and downregulation of specific ncRNAs from multiple classes, including miRNA, piRNA, lincRNA, pseudogene and repeat elements. Moreover, some ncRNA genes appear to be direct targets of the HSR, as they contain HSF-1 bound HSEs in their promoters and their expression is regulated by this factor during HS. These results demonstrate that multiple ncRNA genes respond to HS, some as direct HSF-1 targets, providing new candidates that may contribute to organismal survival during this stress.
Collapse
Affiliation(s)
- William P Schreiner
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Delaney C Pagliuso
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Jacob M Garrigues
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Jerry S Chen
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Antti P Aalto
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Amy E Pasquinelli
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| |
Collapse
|
77
|
Himanen SV, Sistonen L. New insights into transcriptional reprogramming during cellular stress. J Cell Sci 2019; 132:132/21/jcs238402. [PMID: 31676663 DOI: 10.1242/jcs.238402] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cellular stress triggers reprogramming of transcription, which is required for the maintenance of homeostasis under adverse growth conditions. Stress-induced changes in transcription include induction of cyto-protective genes and repression of genes related to the regulation of the cell cycle, transcription and metabolism. Induction of transcription is mediated through the activation of stress-responsive transcription factors that facilitate the release of stalled RNA polymerase II and so allow for transcriptional elongation. Repression of transcription, in turn, involves components that retain RNA polymerase II in a paused state on gene promoters. Moreover, transcription during stress is regulated by a massive activation of enhancers and complex changes in chromatin organization. In this Review, we highlight the latest research regarding the molecular mechanisms of transcriptional reprogramming upon stress in the context of specific proteotoxic stress responses, including the heat-shock response, unfolded protein response, oxidative stress response and hypoxia response.
Collapse
Affiliation(s)
- Samu V Himanen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| |
Collapse
|
78
|
Simon MD, Machyna M. Principles and Practices of Hybridization Capture Experiments to Study Long Noncoding RNAs That Act on Chromatin. Cold Spring Harb Perspect Biol 2019; 11:11/11/a032276. [PMID: 31676573 DOI: 10.1101/cshperspect.a032276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The diverse roles of cellular RNAs can be studied by purifying RNAs of interest together with the biomolecules they bind. Biotinylated antisense oligonucleotides that hybridize specifically to the RNA of interest provide a general approach to develop affinity reagents for these experiments. Such oligonucleotides can be used to enrich endogenous RNAs from cross-linked chromatin extracts to study the genomic binding sites of RNAs. These hybridization capture protocols are evolving modular experiments that are compatible with a range of cross-linkers and conditions. This review discusses the principles of these hybridization capture experiments as well as considerations and controls necessary to interpret the resulting data without being misled by artifactual signals.
Collapse
Affiliation(s)
- Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| | - Martin Machyna
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| |
Collapse
|
79
|
Wen J, Liu Y, Shi Y, Huang H, Deng B, Xiao X. A classification model for lncRNA and mRNA based on k-mers and a convolutional neural network. BMC Bioinformatics 2019; 20:469. [PMID: 31519146 PMCID: PMC6743109 DOI: 10.1186/s12859-019-3039-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 08/21/2019] [Indexed: 01/06/2023] Open
Abstract
Background Long-chain non-coding RNA (lncRNA) is closely related to many biological activities. Since its sequence structure is similar to that of messenger RNA (mRNA), it is difficult to distinguish between the two based only on sequence biometrics. Therefore, it is particularly important to construct a model that can effectively identify lncRNA and mRNA. Results First, the difference in the k-mer frequency distribution between lncRNA and mRNA sequences is considered in this paper, and they are transformed into the k-mer frequency matrix. Moreover, k-mers with more species are screened by relative entropy. The classification model of the lncRNA and mRNA sequences is then proposed by inputting the k-mer frequency matrix and training the convolutional neural network. Finally, the optimal k-mer combination of the classification model is determined and compared with other machine learning methods in humans, mice and chickens. The results indicate that the proposed model has the highest classification accuracy. Furthermore, the recognition ability of this model is verified to a single sequence. Conclusion We established a classification model for lncRNA and mRNA based on k-mers and the convolutional neural network. The classification accuracy of the model with 1-mers, 2-mers and 3-mers was the highest, with an accuracy of 0.9872 in humans, 0.8797 in mice and 0.9963 in chickens, which is better than those of the random forest, logistic regression, decision tree and support vector machine.
Collapse
Affiliation(s)
- Jianghui Wen
- School of Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Yeshu Liu
- School of Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Yu Shi
- School of Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Haoran Huang
- School of Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Bing Deng
- Wuhan Academy of Agricultural Sciences, Wuhan, 430208, People's Republic of China.
| | - Xinping Xiao
- School of Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
80
|
Islam R, Lai C. A Brief Overview of lncRNAs in Endothelial Dysfunction-Associated Diseases: From Discovery to Characterization. EPIGENOMES 2019; 3:epigenomes3030020. [PMID: 34968230 PMCID: PMC8594677 DOI: 10.3390/epigenomes3030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a novel class of regulatory RNA molecules and they are involved in many biological processes and disease developments. Several unique features of lncRNAs have been identified, such as tissue-and/or cell-specific expression pattern, which suggest that they could be potential candidates for therapeutic and diagnostic applications. More recently, the scope of lncRNA studies has been extended to endothelial biology research. Many of lncRNAs were found to be critically involved in the regulation of endothelial function and its associated disease progression. An improved understanding of endothelial biology can thus facilitate the discovery of novel biomarkers and therapeutic targets for endothelial dysfunction-associated diseases, such as abnormal angiogenesis, hypertension, diabetes, and atherosclerosis. Nevertheless, the underlying mechanism of lncRNA remains undefined in previous published studies. Therefore, in this review, we aimed to discuss the current methodologies for discovering and investigating the functions of lncRNAs and, in particular, to address the functions of selected lncRNAs in endothelial dysfunction-associated diseases.
Collapse
Affiliation(s)
- Rashidul Islam
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, China;
| | - Christopher Lai
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
- Correspondence: ; Tel.: +65-6592-1045
| |
Collapse
|
81
|
Zhang XO, Gingeras TR, Weng Z. Genome-wide analysis of polymerase III-transcribed Alu elements suggests cell-type-specific enhancer function. Genome Res 2019; 29:1402-1414. [PMID: 31413151 PMCID: PMC6724667 DOI: 10.1101/gr.249789.119] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/24/2019] [Indexed: 01/09/2023]
Abstract
Alu elements are one of the most successful families of transposons in the human genome. A portion of Alu elements is transcribed by RNA Pol III, whereas the remaining ones are part of Pol II transcripts. Because Alu elements are highly repetitive, it has been difficult to identify the Pol III-transcribed elements and quantify their expression levels. In this study, we generated high-resolution, long-genomic-span RAMPAGE data in 155 biosamples all with matching RNA-seq data and built an atlas of 17,249 Pol III-transcribed Alu elements. We further performed an integrative analysis on the ChIP-seq data of 10 histone marks and hundreds of transcription factors, whole-genome bisulfite sequencing data, ChIA-PET data, and functional data in several biosamples, and our results revealed that although the human-specific Alu elements are transcriptionally repressed, the older, expressed Alu elements may be exapted by the human host to function as cell-type-specific enhancers for their nearby protein-coding genes.
Collapse
Affiliation(s)
- Xiao-Ou Zhang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Thomas R Gingeras
- Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
82
|
Liu J, Han X, Zhu G, Liu S, Lu Q, Tang Z. Analysis of potential functional significance of microRNA‑3613‑3p in human umbilical vein endothelial cells affected by heat stress. Mol Med Rep 2019; 20:1846-1856. [PMID: 31257536 PMCID: PMC6625459 DOI: 10.3892/mmr.2019.10376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of microRNA‑3613‑3p (miR‑3613‑3p) was previously reported in endothelial cells (ECs) during heat stress. The aim of the present study was to investigate the precise role of miR‑3613‑3p in heat stress. In the present study, potential gene targets of miR‑3613‑3p in heat‑treated ECs were assessed, and the potential effects of miR‑3613‑3p were determined using Gene Ontology enrichment analysis. Kyoto Encyclopedia of Genes and Genomes pathway analysis was used to identify signaling pathways that may be affected by miR‑3613‑3p in heat‑treated cells. Reverse transcription‑quantitative PCR, western blotting and annexin V‑FITC/propidium iodide staining were performed to detect miRNA expression, protein expression and apoptosis, respectively. Luciferase gene reporter assay was performed to evaluate the association between miR‑3613‑3p and mitogen‑activated protein kinase kinase kinase 2 (MAP3K2). Bioinformatics analysis revealed 865 potential gene targets for miR‑3613‑3p and a series of functions and pathways in heat‑treated ECs. 'Negative regulation of apoptotic process' was identified as a potential function of miR‑3613‑3p. In addition, functional analysis confirmed the downregulated expression levels of miR‑3613‑3p in ECs during heat stress, which was accompanied by an increase in apoptosis; restoration of miR‑3613‑3p expression inhibited apoptosis. MAP3K2 protein was demonstrated to be upregulated in heat‑treated ECs, and overexpression of miR‑3613‑3p reduced MAP3K2 expression levels. Additionally, MAP3K2 was targeted by miR‑3613‑3p. These results indicated that miR‑3613‑3p may have complicated roles in ECs under heat stress. miR‑3613‑3p may serve an important role in the apoptosis of heat‑treated ECs, and this effect may be partly achieved by targeting MAP3K2.
Collapse
Affiliation(s)
- Jie Liu
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
- Department of Emergency, Hefei BOE Hospital Co., Ltd., Anhui, Hefei 230011, P.R. China
| | - Xuan Han
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Guoguo Zhu
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Shixin Liu
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Qiping Lu
- Department of General Surgery, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Zhongzhi Tang
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
83
|
Alu RNA Modulates the Expression of Cell Cycle Genes in Human Fibroblasts. Int J Mol Sci 2019; 20:ijms20133315. [PMID: 31284509 PMCID: PMC6651528 DOI: 10.3390/ijms20133315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
Alu retroelements, whose retrotransposition requires prior transcription by RNA polymerase III to generate Alu RNAs, represent the most numerous non-coding RNA (ncRNA) gene family in the human genome. Alu transcription is generally kept to extremely low levels by tight epigenetic silencing, but it has been reported to increase under different types of cell perturbation, such as viral infection and cancer. Alu RNAs, being able to act as gene expression modulators, may be directly involved in the mechanisms determining cellular behavior in such perturbed states. To directly address the regulatory potential of Alu RNAs, we generated IMR90 fibroblasts and HeLa cell lines stably overexpressing two slightly different Alu RNAs, and analyzed genome-wide the expression changes of protein-coding genes through RNA-sequencing. Among the genes that were upregulated or downregulated in response to Alu overexpression in IMR90, but not in HeLa cells, we found a highly significant enrichment of pathways involved in cell cycle progression and mitotic entry. Accordingly, Alu overexpression was found to promote transition from G1 to S phase, as revealed by flow cytometry. Therefore, increased Alu RNA may contribute to sustained cell proliferation, which is an important factor of cancer development and progression.
Collapse
|
84
|
Lapp HE, Hunter RG. Early life exposures, neurodevelopmental disorders, and transposable elements. Neurobiol Stress 2019; 11:100174. [PMID: 31193573 PMCID: PMC6536887 DOI: 10.1016/j.ynstr.2019.100174] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/27/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022] Open
Abstract
Transposable elements make up a much larger portion of the genome than protein-coding genes, yet we know relatively little about their function in the human genome. However, we are beginning to more fully understand their role in brain development, neuroinflammation, and adaptation to environmental insults such as stress. For instance, glucocorticoid receptor activation regulates transposable elements in the brain following acute stress. Early life is a period of substantial brain development during which transposable elements play a role. Environmental exposures and experiences during early life that promote abnormal regulation of transposable elements may lead to a cascade of events that ultimately increase susceptibility to disorders later in life. Recent attention to transposable elements in psychiatric illness has begun to clarify associations indicative of dysregulation of different classes of transposable elements in stress-related and neurodevelopmental illness. Though individual susceptibility or resiliency to psychiatric illness has not been explained by traditional genetic studies, the wide inter-individual variability in transposable element composition in the human genome make TEs attractive candidates to elucidate this differential susceptibility. In this review, we discuss evidence that regulation of transposable elements in the brain are stage-specific, sensitive to environmental factors, and may be impacted by early life perturbations. We further present evidence of associations with stress-related and neurodevelopmental psychiatric illness from a developmental perspective.
Collapse
Affiliation(s)
- Hannah E Lapp
- University of Massachusetts Boston, 100 Morrissey Blvd Boston, MA, 02125, USA
| | - Richard G Hunter
- University of Massachusetts Boston, 100 Morrissey Blvd Boston, MA, 02125, USA
| |
Collapse
|
85
|
Mai H, Zhou B, Liu L, Yang F, Conran C, Ji Y, Hou J, Jiang D. Molecular pattern of lncRNAs in hepatocellular carcinoma. J Exp Clin Cancer Res 2019; 38:198. [PMID: 31097003 PMCID: PMC6524221 DOI: 10.1186/s13046-019-1213-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most notable lethal malignancies worldwide. However, the molecular mechanisms involved in the initiation and progression of this disease remain poorly understood. Over the past decade, many studies have demonstrated the important regulatory roles of long non-coding RNAs (lncRNAs) in HCC. Here, we comprehensively review recent discoveries regarding HCC-associated lncRNA functions, which we have classified and described according to their mechanism models.
Collapse
Affiliation(s)
- Haoming Mai
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Institute of Liver Diseases Research of Guangdong Province, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Institute of Liver Diseases Research of Guangdong Province, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Li Liu
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Institute of Liver Diseases Research of Guangdong Province, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Fu Yang
- Department of Medical Genetics, Second Military Medical University, Shanghai, 200433 China
| | - Carly Conran
- University of Illinois College of Medicine, Chicago, IL 60612 USA
| | - Yuan Ji
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637 USA
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Institute of Liver Diseases Research of Guangdong Province, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Deke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Institute of Liver Diseases Research of Guangdong Province, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
86
|
Abstract
A diverse catalog of long noncoding RNAs (lncRNAs), which lack protein-coding potential, are transcribed from the mammalian genome. They are emerging as important regulators in gene expression networks by controlling nuclear architecture and transcription in the nucleus and by modulating mRNA stability, translation and post-translational modifications in the cytoplasm. In this Review, we highlight recent progress in cellular functions of lncRNAs at the molecular level in mammalian cells.
Collapse
|
87
|
Tomar D, Yadav AS, Kumar D, Bhadauriya G, Kundu GC. Non-coding RNAs as potential therapeutic targets in breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194378. [PMID: 31048026 DOI: 10.1016/j.bbagrm.2019.04.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Paradigm shifting studies especially involving non-coding RNAs (ncRNAs) during last few decades have significantly changed the scientific perspectives regarding the complexity of cellular signalling pathways. Several studies have shown that the non-coding RNAs, initially ignored as transcriptional noise or products of erroneous transcription; actually regulate plethora of biological phenomena ranging from developmental processes to various diseases including cancer. Current strategies that are employed for the management of various cancers including that of breast fall short when their undesired side effects like Cancer Stem Cells (CSC) enrichment, low recurrence-free survival and development of drug resistance are taken into consideration. This review aims at exploring the potential role of ncRNAs as therapeutics in breast cancer, by providing a comprehensive understanding of their mechanism of action and function and their crucial contribution in regulating various aspects of breast cancer progression such as cell proliferation, angiogenesis, EMT, CSCs, drug resistance and metastasis. In addition, we also provide information about various strategies that can be employed or are under development to explore them as potential moieties that may be used for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Deepti Tomar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Amit S Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Garima Bhadauriya
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| |
Collapse
|
88
|
Being in a loop: how long non-coding RNAs organise genome architecture. Essays Biochem 2019; 63:177-186. [DOI: 10.1042/ebc20180057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
Abstract
Chromatin architecture has a significant impact on gene expression. Evidence in the last two decades support RNA as an important component of chromatin structure [Genes Dev. (2005) 19, 1635–1655; PLoS ONE (2007) 2, e1182; Nat. Genet. (2002) 30, 329–334]. Long non-coding RNAs (lncRNAs) are able to control chromatin structure through nucleosome positioning, interaction with chromatin re-modellers and chromosome looping. These functions are carried out in cis at the site of lncRNAs transcription or in trans at distant loci. While the evidence for a role in lncRNAs in regulating gene expression through chromatin interactions is increasing, there is still very little conclusive evidence for a potential role in looping organisation. Here, we review models for the involvement of lncRNAs in genome architecture and the experimental evidence to support them.
Collapse
|
89
|
Liu XQ, Li BX, Zeng GR, Liu QY, Ai DM. Prediction of Long Non-Coding RNAs Based on Deep Learning. Genes (Basel) 2019; 10:genes10040273. [PMID: 30987229 PMCID: PMC6523782 DOI: 10.3390/genes10040273] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 01/09/2023] Open
Abstract
With the rapid development of high-throughput sequencing technology, a large number of transcript sequences have been discovered, and how to identify long non-coding RNAs (lncRNAs) from transcripts is a challenging task. The identification and inclusion of lncRNAs not only can more clearly help us to understand life activities themselves, but can also help humans further explore and study the disease at the molecular level. At present, the detection of lncRNAs mainly includes two forms of calculation and experiment. Due to the limitations of bio sequencing technology and ineluctable errors in sequencing processes, the detection effect of these methods is not very satisfactory. In this paper, we constructed a deep-learning model to effectively distinguish lncRNAs from mRNAs. We used k-mer embedding vectors obtained through training the GloVe algorithm as input features and set up the deep learning framework to include a bidirectional long short-term memory model (BLSTM) layer and a convolutional neural network (CNN) layer with three additional hidden layers. By testing our model, we have found that it obtained the best values of 97.9%, 96.4% and 99.0% in F1score, accuracy and auROC, respectively, which showed better classification performance than the traditional PLEK, CNCI and CPC methods for identifying lncRNAs. We hope that our model will provide effective help in distinguishing mature mRNAs from lncRNAs, and become a potential tool to help humans understand and detect the diseases associated with lncRNAs.
Collapse
Affiliation(s)
- Xiu-Qin Liu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Bing-Xiu Li
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Guan-Rong Zeng
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Qiao-Yue Liu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Dong-Mei Ai
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
90
|
Silva AM, Moura SR, Teixeira JH, Barbosa MA, Santos SG, Almeida MI. Long noncoding RNAs: a missing link in osteoporosis. Bone Res 2019; 7:10. [PMID: 30937214 PMCID: PMC6437190 DOI: 10.1038/s41413-019-0048-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a systemic disease that results in loss of bone density and increased fracture risk, particularly in the vertebrae and the hip. This condition and associated morbidity and mortality increase with population ageing. Long noncoding (lnc) RNAs are transcripts longer than 200 nucleotides that are not translated into proteins, but play important regulatory roles in transcriptional and post-transcriptional regulation. Their contribution to disease onset and development is increasingly recognized. Herein, we present an integrative revision on the studies that implicate lncRNAs in osteoporosis and that support their potential use as therapeutic tools. Firstly, current evidence on lncRNAs involvement in cellular and molecular mechanisms linked to osteoporosis and its major complication, fragility fractures, is reviewed. We analyze evidence of their roles in osteogenesis, osteoclastogenesis, and bone fracture healing events from human and animal model studies. Secondly, the potential of lncRNAs alterations at genetic and transcriptomic level are discussed as osteoporosis risk factors and as new circulating biomarkers for diagnosis. Finally, we conclude debating the possibilities, persisting difficulties, and future prospects of using lncRNAs in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Andreia Machado Silva
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - Sara Reis Moura
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - José Henrique Teixeira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Mário Adolfo Barbosa
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Susana Gomes Santos
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Maria Inês Almeida
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| |
Collapse
|
91
|
Jiang Y, Zong W, Ju S, Jing R, Cui M. Promising member of the short interspersed nuclear elements ( Alu elements): mechanisms and clinical applications in human cancers. J Med Genet 2019; 56:639-645. [PMID: 30852527 DOI: 10.1136/jmedgenet-2018-105761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
Alu elements are one of most ubiquitous repetitive sequences in human genome, which were considered as the junk DNA in the past. Alu elements have been found to be associated with human diseases including cancers via events such as amplification, insertion, recombination or RNA editing, which provide a new perspective of oncogenesis at both DNA and RNA levels. Due to the prevalent distribution, Alu elements are widely used as target molecule of liquid biopsy. Alu-based cell-free DNA shows feasible application value in tumour diagnosis, postoperative monitoring and adjuvant therapy. In this review, the special tumourigenesis mechanism of Alu elements in human cancers is discussed, and the application of Alu elements in various tumour liquid biopsy is summarised.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical college, Nantong University, Nantong, Jiangsu, China
| | - Wei Zong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical college, Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ming Cui
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
92
|
Machyna M, Simon MD. Catching RNAs on chromatin using hybridization capture methods. Brief Funct Genomics 2019; 17:96-103. [PMID: 29126220 DOI: 10.1093/bfgp/elx038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The growing appreciation of the importance of long noncoding RNAs (lncRNAs), together with the awareness that some of these RNAs are associated with chromatin, has inspired the development of methods to detect their sites of interaction on a genome-wide scale at high resolution. Hybridization capture methods combine antisense oligonucleotide hybridization with enrichment of RNA from cross-linked chromatin extracts. These techniques have provided insight into lncRNA localization and the interactions of lncRNAs with protein to better understand biological roles of lncRNAs. Here, we review the core principles of hybridization capture methods, focusing on the three most commonly used protocols: capture hybridization analysis of RNA targets (CHART), chromatin isolation by RNA purification (ChIRP) and RNA affinity purification (RAP). We highlight the general principles of these techniques and discuss how differences in experimental procedures present distinct challenges to help researchers using these protocols or, more generally, interpreting the results of hybridization capture experiments.
Collapse
|
93
|
Pierron F, Daffe G, Lambert P, Couture P, Baudrimont M. Retrotransposon methylation and activity in wild fish (A. anguilla): A matter of size. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:494-503. [PMID: 30458379 DOI: 10.1016/j.envpol.2018.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Understanding how organisms cope with global change is a major question in many fields of biology. Mainly, understanding the molecular mechanisms supporting rapid phenotypic changes of organisms in response to stress and linking stress-induced molecular events to adaptive or adverse outcomes at the individual or population levels remain a major challenge in evolutionary biology, ecology or ecotoxicology. In this view, the present study aimed to test (i) whether environmental factors, especially pollutants, can trigger changes in the activity of retrotransposons (RTs) in wild fish and (ii) if changes in RT DNA methylation or transcription levels can be linked to modifications at the individual level. RTs are genetic elements that have the ability to replicate and integrate elsewhere in the genome. Although RTs are mainly quiescent during normal development, they can be experimentally activated under life-threatening conditions, affecting the fitness of their host. Wild eels were collected in four sampling sites presenting differing levels of contamination. The methylation level and the transcriptional activity of two RTs and two genes involved in development and cell differentiation were analyzed in fish liver in addition to the determination of fish contaminants levels and diverse growth and morphometric indices. An up-regulation of RTs associated to lower methylation levels and lower growth indices were observed in highly contaminated fish. Our results suggest that RT activation in fish experiencing stress conditions could have both detrimental and beneficial implications, affecting fish growth but promoting resistance to environmental stressors such as pollutants.
Collapse
Affiliation(s)
| | - Guillemine Daffe
- CNRS, Université de Bordeaux, Observatoire Aquitain des Sciences de l'Univers, UMS 2567 POREA, Allée Geoffroy Saint Hilaire, F-33615, Pessac, France
| | - Patrick Lambert
- Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture (IRSTEA), équipe Poissons Migrateurs Amphihalins (PMA), Cestas, France
| | - Patrice Couture
- Institut national de La Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 rue de La Couronne, Québec, QC G1K 9A9, Canada
| | | |
Collapse
|
94
|
Andresini O, Rossi MN, Matteini F, Petrai S, Santini T, Maione R. The long non-coding RNA Kcnq1ot1 controls maternal p57 expression in muscle cells by promoting H3K27me3 accumulation to an intragenic MyoD-binding region. Epigenetics Chromatin 2019; 12:8. [PMID: 30651140 PMCID: PMC6334472 DOI: 10.1186/s13072-019-0253-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/07/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The cell-cycle inhibitor p57kip2 plays a critical role in mammalian development by coordinating cell proliferation and differentiation in many cell types. p57kip2 expression is finely regulated by several epigenetic mechanisms, including paternal imprinting. Kcnq1ot1, a long non-coding RNA (LncRNA), whose gene maps to the p57Kip2 imprinting domain, is expressed exclusively from the paternal allele and participates in the cis-silencing of the neighboring imprinted genes through chromatin-level regulation. In light of our previous evidence of a functional interaction between myogenic factors and imprinting control elements in the regulation of the maternal p57Kip2 allele during muscle differentiation, we examined the possibility that also Kcnq1ot1 could play an imprinting-independent role in the control of p57Kip2 expression in muscle cells. RESULTS We found that Kcnq1ot1 depletion by siRNA causes the upregulation of the maternal and functional p57Kip2 allele during differentiation, suggesting a previously undisclosed role for this LncRNA. Consistently, Chromatin Oligo-affinity Precipitation assays showed that Kcnq1ot1 physically interacts not only with the paternal imprinting control region of the locus, as already known, but also with both maternal and paternal alleles of a novel p57Kip2 regulatory region, located intragenically and containing two binding sites for the muscle-specific factor MyoD. Moreover, chromatin immunoprecipitation assays after Kcnq1ot1 depletion demonstrated that the LncRNA is required for the accumulation of H3K27me3, a chromatin modification catalyzed by the histone-methyl-transferase EZH2, at the maternal p57kip2 intragenic region. Finally, upon differentiation, the binding of MyoD to this region and its physical interaction with Kcnq1ot1, analyzed by ChIP and RNA immunoprecipitation assays, correlate with the loss of EZH2 and H3K27me3 from chromatin and with p57Kip2 de-repression. CONCLUSIONS These findings highlight the existence of an imprinting-independent role of Kcnq1ot1, adding new insights into the biology of a still mysterious LncRNA. Moreover, they expand our knowledge about the molecular mechanisms underlying the tight and fine regulation of p57Kip2 during differentiation and, possibly, its aberrant silencing observed in several pathologic conditions.
Collapse
Affiliation(s)
- Oriella Andresini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Marianna Nicoletta Rossi
- Rheumatology Unit, Bambino Gesu Children's Hospital (IRCCS), Viale di S. Paolo 15, 00146, Rome, Italy
| | - Francesca Matteini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Stefano Petrai
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Tiziana Santini
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Rossella Maione
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
95
|
Zhen S, Li X. Application of CRISPR-Cas9 for Long Noncoding RNA Genes in Cancer Research. Hum Gene Ther 2019; 30:3-9. [PMID: 30045635 DOI: 10.1089/hum.2018.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Shuai Zhen
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xu Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
96
|
Hung J, Miscianinov V, Sluimer JC, Newby DE, Baker AH. Targeting Non-coding RNA in Vascular Biology and Disease. Front Physiol 2018; 9:1655. [PMID: 30524312 PMCID: PMC6262071 DOI: 10.3389/fphys.2018.01655] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022] Open
Abstract
Only recently have we begun to appreciate the importance and complexity of the non-coding genome, owing in some part to truly significant advances in genomic technology such as RNA sequencing and genome-wide profiling studies. Previously thought to be non-functional transcriptional “noise,” non-coding RNAs (ncRNAs) are now known to play important roles in many diverse biological pathways, not least in vascular disease. While microRNAs (miRNA) are known to regulate protein-coding gene expression principally through mRNA degradation, long non-coding RNAs (lncRNAs) can activate and repress genes by a variety of mechanisms at both transcriptional and translational levels. These versatile molecules, with complex secondary structures, may interact with chromatin, proteins, and other RNA to form complexes with an array of functional consequences. A body of emerging evidence indicates that both classes of ncRNAs regulate multiple physiological and pathological processes in vascular physiology and disease. While dozens of miRNAs are now implicated and described in relative mechanistic depth, relatively fewer lncRNAs are well described. However, notable examples include ANRIL, SMILR, and SENCR in vascular smooth muscle cells; MALAT1 and GATA-6S in endothelial cells; and mitochondrial lncRNA LIPCAR as a powerful biomarker. Due to such ubiquitous involvement in pathology and well-known biogenesis and functional genetics, novel miRNA-based therapies and delivery methods are now in development, including some early stage clinical trials. Although lncRNAs may hold similar potential, much more needs to be understood about their relatively complex molecular behaviours before realistic translation into novel therapies. Here, we review the current understanding of the mechanism and function of ncRNA, focusing on miRNAs and lncRNAs in vascular disease and atherosclerosis. We discuss existing therapies and current delivery methods, emphasising the importance of miRNAs and lncRNAs as effectors and biomarkers in vascular pathology.
Collapse
Affiliation(s)
- John Hung
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.,Deanery of Clinical Sciences, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Vladislav Miscianinov
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | | | - David E Newby
- Deanery of Clinical Sciences, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
97
|
Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2018; 60:25. [PMID: 30386629 PMCID: PMC6201556 DOI: 10.1186/s40781-018-0183-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023]
Abstract
The central dogma of gene expression propounds that DNA is transcribed to mRNA and finally gets translated into protein. Only 2–3% of the genomic DNA is transcribed to protein-coding mRNA. Interestingly, only a further minuscule part of genomic DNA encodes for long non-coding RNAs (lncRNAs) which are characteristically more than 200 nucleotides long and can be transcribed from both protein-coding (e.g. H19 and TUG1) as well as non-coding DNA by RNA polymerase II. The lncRNAs do not have open reading frames (with some exceptions), 3`-untranslated regions (3’-UTRs) and necessarily these RNAs lack any translation-termination regions, however, these can be spliced, capped and polyadenylated as mRNA molecules. The flexibility of lncRNAs confers them specific 3D-conformations that eventually enable the lncRNAs to interact with proteins, DNA or other RNA molecules via base pairing or by forming networks. The lncRNAs play a major role in gene regulation, cell differentiation, cancer cell invasion and metastasis and chromatin remodeling. Deregulation of lncRNA is also responsible for numerous diseases in mammals. Various studies have revealed their significance as biomarkers for prognosis and diagnosis of cancer. The aim of this review is to overview the salient features, evolution, biogenesis and biological importance of these molecules in the mammalian system.
Collapse
Affiliation(s)
- Jasdeep Kaur Dhanoa
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| | - Ram Saran Sethi
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| | - Ramneek Verma
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| | - Jaspreet Singh Arora
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| | - Chandra Sekhar Mukhopadhyay
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| |
Collapse
|
98
|
Luo Z, Pan J, Ding Y, Zhang YS, Zeng Y. The function and clinical relevance of lncRNA UBE2CP3-001 in human gliomas. Arch Med Sci 2018; 14:1308-1320. [PMID: 30393485 PMCID: PMC6209712 DOI: 10.5114/aoms.2018.79004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/23/2016] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Gliomas are the most frequent primary tumors in the human brain. Recent studies have identified a class of long noncoding RNAs, named lncRNAs, which were reported to participate in regulating the development of various diseases, including gliomas. In our previous studies, we found that lncRNA UBE2CP3-001 was overexpressed in gliomas but not in normal tissue. However, the molecular functions of UBE2CP3-001 in glioma are largely unknown. MATERIAL AND METHODS The presence of UBE2CP3-001 in U87 cells, glioma tissues and normal brain tissues was detected by real-time RT-PCR. The ability of U87 cells to migrate was analyzed using a cellular wound healing assay after downregulation of UBE2CP3-001. The survival rate of U87 cells after UBE2CP3-001 knockdown was also analyzed using the CCK8 assay. In vivo tumor weights from xenograft tumors transfected with UBE2CP3-001 shRNA were further analyzed using in vivo animal experiments. The expression levels of MMP-9 and TRAF3IP2 were determined by Western blot. RESULTS Our data showed that UBE2CP3-001 was overexpressed in most glioma tissues (p < 0.01). Downregulation of UBE2CP3-001 could inhibit cell migration (p < 0.01) and invasiveness (p < 0.01) of U87 cells. Downregulation of UBE2CP3-001 in U87 cells also suppressed the cell proliferation (p < 0.01) and promoted apoptosis (p < 0.01). Furthermore, in vivo studies confirmed that knockdown of UBE2CP3-001 could retard the growth of U87 xenograft tumors (p < 0.01). Western blot analysis showed that knockdown of UBE2CP3-001 could effectively inhibit the expression of MMP-9 (p < 0.01) and TRAF3IP2 (p < 0.01) in U87 glioma cells. CONCLUSIONS These data suggest an important role of UBE2CP3-001 in glioma and indicate its potential application in anti-glioma therapy.
Collapse
Affiliation(s)
- Zhengxiang Luo
- Department of Neurosurgery, Nanjing Brian Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Junchen Pan
- Department of Neurosurgery, Nanjing Benq Hospital, Nanjing, Jiangsu, China
| | - Yi Ding
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yan-Song Zhang
- Department of Neurosurgery, Nanjing Brian Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yanjun Zeng
- Biomechanics and Medical Information Institute, Beijing University of Technology, Beijing, China
| |
Collapse
|
99
|
|
100
|
Policarpi C, Crepaldi L, Brookes E, Nitarska J, French SM, Coatti A, Riccio A. Enhancer SINEs Link Pol III to Pol II Transcription in Neurons. Cell Rep 2018; 21:2879-2894. [PMID: 29212033 PMCID: PMC5732322 DOI: 10.1016/j.celrep.2017.11.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 06/30/2017] [Accepted: 11/02/2017] [Indexed: 12/25/2022] Open
Abstract
Spatiotemporal regulation of gene expression depends on the cooperation of multiple mechanisms, including the functional interaction of promoters with distally located enhancers. Here, we show that, in cortical neurons, a subset of short interspersed nuclear elements (SINEs) located in the proximity of activity-regulated genes bears features of enhancers. Enhancer SINEs (eSINEs) recruit the Pol III cofactor complex TFIIIC in a stimulus-dependent manner and are transcribed by Pol III in response to neuronal depolarization. Characterization of an eSINE located in proximity to the Fos gene (FosRSINE1) indicated that the FosRSINE1-encoded transcript interacts with Pol II at the Fos promoter and mediates Fos relocation to Pol II factories, providing an unprecedented molecular link between Pol III and Pol II transcription. Strikingly, knockdown of the FosRSINE1 transcript induces defects of both cortical radial migration in vivo and activity-dependent dendritogenesis in vitro, demonstrating that FosRSINE1 acts as a strong enhancer of Fos expression in diverse physiological contexts.
Collapse
Affiliation(s)
- Cristina Policarpi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Luca Crepaldi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Emily Brookes
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Justyna Nitarska
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Sarah M French
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Alessandro Coatti
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Antonella Riccio
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|