51
|
Xuan F, Huang M, Zhao E, Cui H. MINA53 deficiency leads to glioblastoma cell apoptosis via inducing DNA replication stress and diminishing DNA damage response. Cell Death Dis 2018; 9:1062. [PMID: 30333481 PMCID: PMC6193027 DOI: 10.1038/s41419-018-1084-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022]
Abstract
MYC-induced nuclear antigen (MINA53) is a JmjC (jumonji C domain)-containing protein, which is highly expressed in many cancers including glioblastoma. We have revealed in our previous report that MINA53 is a poor prognostic indicator for glioblastoma patients, and knockdown of MINA53 could reduce glioblastoma malignancy. In this study, we found that MINA53 knockdown could decrease the DNA replication initiation in glioblastoma cells. Through further investigations, we revealed that MINA53 could regulate the expression of the CDC45-MCM-GINS (CMG) complex genes, which are vital for DNA replication initiation. Knockdown of MINA53 reduced the CMG genes expression and thus induced DNA replication stress and DNA damage. Furthermore, MINA53 knockdown diminished DNA damage response (DDR) by reducing the ATM/ATR-H2AX pathway activity and finally led glioblastoma cells to apoptosis and death. We further applied a genotoxic drug Doxorubicin and found that MINA53 deficiency sensitized glioblastoma cells to Doxorubicin. Our study reveals that MINA53 is involved in DNA replication initiation and DNA damage response, and provides support for MINA53 as a novel and potential therapeutic target for glioblastoma treatment.
Collapse
Affiliation(s)
- Fan Xuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
| | - Mengying Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
52
|
Villa-Hernández S, Bermejo R. Replisome-Cohesin Interfacing: A Molecular Perspective. Bioessays 2018; 40:e1800109. [PMID: 30106480 DOI: 10.1002/bies.201800109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/23/2018] [Indexed: 12/27/2022]
Abstract
Cohesion is established in S-phase through the action of key replisome factors as replication forks engage cohesin molecules. By holding sister chromatids together, cohesion critically assists both an equal segregation of the duplicated genetic material and an efficient repair of DNA breaks. Nonetheless, the molecular events leading the entrapment of nascent chromatids by cohesin during replication are only beginning to be understood. The authors describe here the essential structural features of the cohesin complex in connection to its ability to associate DNA molecules and review the current knowledge on the architectural-functional organization of the eukaryotic replisome, significantly advanced by recent biochemical and structural studies. In light of this novel insight, the authors discuss the mechanisms proposed to assist interfacing of replisomes with chromatin-bound cohesin complexes and elaborate on models for nascent chromatids entrapment by cohesin in the environment of the replication fork.
Collapse
Affiliation(s)
- Sara Villa-Hernández
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 928040 Madrid, Spain
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 928040 Madrid, Spain
| |
Collapse
|
53
|
Zhai Y, Tye BK. Structure of the MCM2-7 Double Hexamer and Its Implications for the Mechanistic Functions of the Mcm2-7 Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:189-205. [PMID: 29357059 DOI: 10.1007/978-981-10-6955-0_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The eukaryotic minichromosome maintenance 2-7 complex is the core of the inactive MCM replication licensing complex and the catalytic core of the Cdc45-MCM-GINS replicative helicase. The years of effort to determine the structure of parts or the whole of the heterohexameric complex by X-ray crystallography and conventional cryo-EM produced limited success. Modern cryo-EM technology ushered in a new era of structural biology that allowed the determination of the structure of the inactive double hexamer at an unprecedented resolution of 3.8 Å. This review will focus on the fine details observed in the Mcm2-7 double hexameric complex and their implications for the function of the Mcm2-7 hexamer in its different roles during DNA replication.
Collapse
Affiliation(s)
- Yuanliang Zhai
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong, China
| | - Bik-Kwoon Tye
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
54
|
The Temporal Regulation of S Phase Proteins During G 1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:335-369. [PMID: 29357066 DOI: 10.1007/978-981-10-6955-0_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Successful DNA replication requires intimate coordination with cell-cycle progression. Prior to DNA replication initiation in S phase, a series of essential preparatory events in G1 phase ensures timely, complete, and precise genome duplication. Among the essential molecular processes are regulated transcriptional upregulation of genes that encode replication proteins, appropriate post-transcriptional control of replication factor abundance and activity, and assembly of DNA-loaded protein complexes to license replication origins. In this chapter we describe these critical G1 events necessary for DNA replication and their regulation in the context of both cell-cycle entry and cell-cycle progression.
Collapse
|
55
|
Aihemaiti G, Kurata M, Nogawa D, Yamamoto A, Mineo T, Onishi I, Kinowaki Y, Jin XH, Tatsuzawa A, Miyasaka N, Kitagawa M, Yamamoto K. Subcellular localization of MCM2 correlates with the prognosis of ovarian clear cell carcinoma. Oncotarget 2018; 9:28213-28225. [PMID: 29963273 PMCID: PMC6021330 DOI: 10.18632/oncotarget.25613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/27/2018] [Indexed: 01/29/2023] Open
Abstract
Highly malignant tumors overexpress the minichromosome maintenance 2 (MCM2) protein in the nucleus, which is associated with advanced tumor grade, advanced stage, and poor prognosis. In this study, we showed that MCM2 is highly expressed in clinical samples of ovarian clear cell carcinoma. Although MCM2 expression was mainly localized to the nuclei as in other cancers, a few cases exhibited cytoplasmic localization of MCM2. Surprisingly, tumor samples with cytoplasmic MCM2 demonstrated excellent prognosis, showing 100% survival during the observation period of more than 200 months. However, cases with nuclear expression of MCM2 exhibited approximately 78% 5-year-survival rate. In a previous study, we showed that Friend leukemia virus (FLV) envelope protein gp70 bound to MCM2, impaired its nuclear translocation, and enhanced DNA damage-induced apoptosis in FLV-infected hematopoietic cells with high levels of MCM2. As expected, clear cell carcinoma cells with cytoplasmic expression of MCM2 exhibited significantly higher apoptotic cell ratio than that of cells with nuclear MCM2 expression. In vitro experiments using ovarian cancer cells with cytoplasmic expression of MCM2 demonstrated that transfection of MCM2-ΔN enhanced DNA damage-induced apoptosis. Therefore, cytoplasmic localization of MCM2 significantly correlated with increased apoptosis in clear cell carcinoma cells, resulting in improved prognosis.
Collapse
Affiliation(s)
- Gulinisha Aihemaiti
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Daichi Nogawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Akiko Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tatsunori Mineo
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Iichiroh Onishi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yuko Kinowaki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Xiao-Hai Jin
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Anna Tatsuzawa
- Department of Analytical Information of Clinical Laboratory Medicine, Graduate School of Health Care Science, Bunkyo Gakuin University, Tokyo 113-8668, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Naoyuki Miyasaka
- Department of Obstetrics and Gynecology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
56
|
Martínez-Noël G, Luck K, Kühnle S, Desbuleux A, Szajner P, Galligan JT, Rodriguez D, Zheng L, Boyland K, Leclere F, Zhong Q, Hill DE, Vidal M, Howley PM. Network Analysis of UBE3A/E6AP-Associated Proteins Provides Connections to Several Distinct Cellular Processes. J Mol Biol 2018; 430:1024-1050. [PMID: 29426014 PMCID: PMC5866790 DOI: 10.1016/j.jmb.2018.01.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
Perturbations in activity and dosage of the UBE3A ubiquitin-ligase have been linked to Angelman syndrome and autism spectrum disorders. UBE3A was initially identified as the cellular protein hijacked by the human papillomavirus E6 protein to mediate the ubiquitylation of p53, a function critical to the oncogenic potential of these viruses. Although a number of substrates have been identified, the normal cellular functions and pathways affected by UBE3A are largely unknown. Previously, we showed that UBE3A associates with HERC2, NEURL4, and MAPK6/ERK3 in a high-molecular-weight complex of unknown function that we refer to as the HUN complex (HERC2, UBE3A, and NEURL4). In this study, the combination of two complementary proteomic approaches with a rigorous network analysis revealed cellular functions and pathways in which UBE3A and the HUN complex are involved. In addition to finding new UBE3A-associated proteins, such as MCM6, SUGT1, EIF3C, and ASPP2, network analysis revealed that UBE3A-associated proteins are connected to several fundamental cellular processes including translation, DNA replication, intracellular trafficking, and centrosome regulation. Our analysis suggests that UBE3A could be involved in the control and/or integration of these cellular processes, in some cases as a component of the HUN complex, and also provides evidence for crosstalk between the HUN complex and CAMKII interaction networks. This study contributes to a deeper understanding of the cellular functions of UBE3A and its potential role in pathways that may be affected in Angelman syndrome, UBE3A-associated autism spectrum disorders, and human papillomavirus-associated cancers.
Collapse
Affiliation(s)
- Gustavo Martínez-Noël
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Katja Luck
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Simone Kühnle
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alice Desbuleux
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; GIGA-R, University of Liège, Liège 4000, Belgium
| | - Patricia Szajner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey T Galligan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Diana Rodriguez
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Leon Zheng
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen Boyland
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Flavian Leclere
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Quan Zhong
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter M Howley
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
57
|
Seo YS, Kang YH. The Human Replicative Helicase, the CMG Complex, as a Target for Anti-cancer Therapy. Front Mol Biosci 2018; 5:26. [PMID: 29651420 PMCID: PMC5885281 DOI: 10.3389/fmolb.2018.00026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
DNA helicases unwind or rearrange duplex DNA during replication, recombination and repair. Helicases of many pathogenic organisms such as viruses, bacteria, and protozoa have been studied as potential therapeutic targets to treat infectious diseases, and human DNA helicases as potential targets for anti-cancer therapy. DNA replication machineries perform essential tasks duplicating genome in every cell cycle, and one of the important functions of these machineries are played by DNA helicases. Replicative helicases are usually multi-subunit protein complexes, and the minimal complex active as eukaryotic replicative helicase is composed of 11 subunits, requiring a functional assembly of two subcomplexes and one protein. The hetero-hexameric MCM2-7 helicase is activated by forming a complex with Cdc45 and the hetero-tetrameric GINS complex; the Cdc45-Mcm2-7-GINS (CMG) complex. The CMG complex can be a potential target for a treatment of cancer and the feasibility of this replicative helicase as a therapeutic target has been tested recently. Several different strategies have been implemented and are under active investigations to interfere with helicase activity of the CMG complex. This review focuses on the molecular function of the CMG helicase during DNA replication and its relevance to cancers based on data published in the literature. In addition, current efforts made to identify small molecules inhibiting the CMG helicase to develop anti-cancer therapeutic strategies were summarized, with new perspectives to advance the discovery of the CMG-targeting drugs.
Collapse
Affiliation(s)
- Yeon-Soo Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Young-Hoon Kang
- Core Protein Resources Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
58
|
Andis NM, Sausen CW, Alladin A, Bochman ML. The WYL Domain of the PIF1 Helicase from the Thermophilic Bacterium Thermotoga elfii is an Accessory Single-Stranded DNA Binding Module. Biochemistry 2018; 57:1108-1118. [PMID: 29341597 DOI: 10.1021/acs.biochem.7b01233] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PIF1 family helicases are conserved from bacteria to man. With the exception of the well-studied yeast PIF1 helicases (e.g., ScPif1 and ScRrm3), however, very little is known about how these enzymes help maintain genome stability. Indeed, we lack a basic understanding of the protein domains found N- and C-terminal to the characteristic central PIF1 helicase domain in these proteins. Here, using chimeric constructs, we show that the ScPif1 and ScRrm3 helicase domains are interchangeable and that the N-terminus of ScRrm3 is important for its function in vivo. This suggests that PIF1 family helicases evolved functional modules fused to a generic motor domain. To investigate this hypothesis, we characterized the biochemical activities of the PIF1 helicase from the thermophilic bacterium Thermotoga elfii (TePif1), which contains a C-terminal WYL domain of unknown function. Like helicases from other thermophiles, recombinant TePif1 was easily prepared, thermostable in vitro, and displayed activities similar to its eukaryotic homologues. We also found that the WYL domain was necessary for high-affinity single-stranded DNA (ssDNA) binding and affected both ATPase and helicase activities. Deleting the WYL domain from TePif1 or mutating conserved residues in the predicted ssDNA binding site uncoupled ATPase activity and DNA unwinding, leading to higher rates of ATP hydrolysis but less efficient DNA helicase activity. Our findings suggest that the domains of unknown function found in eukaryotic PIF1 helicases may also confer functional specificity and additional activities to these enzymes, which should be investigated in future work.
Collapse
Affiliation(s)
- Nicholas M Andis
- Molecular and Cellular Biochemistry Department, Indiana University , Bloomington, Indiana 47405, United States
| | - Christopher W Sausen
- Molecular and Cellular Biochemistry Department, Indiana University , Bloomington, Indiana 47405, United States
| | - Ashna Alladin
- Molecular and Cellular Biochemistry Department, Indiana University , Bloomington, Indiana 47405, United States
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University , Bloomington, Indiana 47405, United States
| |
Collapse
|
59
|
The ring-shaped hexameric helicases that function at DNA replication forks. Nat Struct Mol Biol 2018; 25:122-130. [PMID: 29379175 DOI: 10.1038/s41594-018-0024-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/27/2017] [Indexed: 11/08/2022]
Abstract
DNA replication requires separation of genomic duplex DNA strands, an operation that is performed by a hexameric ring-shaped helicase in all domains of life. The structures and chemomechanical actions of these fascinating machines are coming into sharper focus. Although there is no evolutionary relationship between the hexameric helicases of bacteria and those of archaea and eukaryotes, they share many fundamental features. Here we review recent studies of these two groups of hexameric helicases and the unexpected distinctions they have also unveiled.
Collapse
|
60
|
You Z, Masai H. Potent DNA strand annealing activity associated with mouse Mcm2∼7 heterohexameric complex. Nucleic Acids Res 2017; 45:6494-6506. [PMID: 28449043 PMCID: PMC5499727 DOI: 10.1093/nar/gkx269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/05/2017] [Indexed: 01/08/2023] Open
Abstract
Mini-chromosome maintenance (Mcm) is a central component for DNA unwinding reaction during eukaryotic DNA replication. Mcm2∼7, each containing a conserved ATPase motif, form a six subunit-heterohexamer. Although the reconstituted Mcm2∼7–Cdc45–GINS (CMG) complex displays DNA unwinding activity, the Mcm2∼7 complex does not generally exhibit helicase activity under a normal assay condition. We detected a strong DNA strand annealing activity in the purified mouse Mcm2∼7 heterohexamer, which promotes rapid reassociation of displaced complementary single-stranded DNAs, suggesting a potential cause for its inability to exhibit DNA helicase activity. Indeed, DNA unwinding activity of Mcm2∼7 could be detected in the presence of a single-stranded DNA that is complementary to the displaced strand, which would prevent its reannealing to the template. ATPase-deficient mutations in Mcm2, 4, 5 and 6 subunits inactivated the annealing activity, while those in Mcm2 and 5 subunits alone did not. The annealing activity of Mcm2∼7 does not require Mg2+ and ATP, and is adversely inhibited by the presence of high concentration of Mg2+ and ATP while activated by similar concentrations of ADP. Our findings show that the DNA helicase activity of Mcm2∼7 may be masked by its unexpectedly strong annealing activity, and suggest potential physiological roles of strand annealing activity of Mcm during replication stress responses.
Collapse
Affiliation(s)
- Zhiying You
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| |
Collapse
|
61
|
Zhang J, Geng Y, Guo F, Zhang F, Liu M, Song L, Ma Y, Li D, Zhang Y, Xu H, Yang H. Screening and identification of critical transcription factors involved in the protection of cardiomyocytes against hydrogen peroxide-induced damage by Yixin-shu. Sci Rep 2017; 7:13867. [PMID: 29066842 PMCID: PMC5655617 DOI: 10.1038/s41598-017-10131-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/04/2017] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress initiates harmful cellular responses, such as DNA damage and protein denaturation, triggering a series of cardiovascular disorders. Systematic investigations of the transcription factors (TFs) involved in oxidative stress can help reveal the underlying molecular mechanisms and facilitate the discovery of effective therapeutic targets in related diseases. In this study, an integrated strategy which integrated RNA-seq-based transcriptomics techniques and a newly developed concatenated tandem array of consensus TF response elements (catTFREs)-based proteomics approach and then combined with a network pharmacology analysis, was developed and this integrated strategy was used to investigate critical TFs in the protection of Yixin-shu (YXS), a standardized medical product used for ischaemic heart disease, against hydrogen peroxide (H2O2)-induced damage in cardiomyocytes. Importantly, YXS initiated biological process such as anti-apoptosis and DNA repair to protect cardiomyocytes from H2O2-induced damage. By using the integrated strategy, DNA-(apurinic or apyrimidinic site) lyase (Apex1), pre B-cell leukemia transcription factor 3 (Pbx3), and five other TFs with their functions involved in anti-oxidation, anti-apoptosis and DNA repair were identified. This study offers a new understanding of the mechanism underlying YXS-mediated protection against H2O2-induced oxidative stress in cardiomyocytes and reveals novel targets for oxidative stress-related diseases.
Collapse
Affiliation(s)
- Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ya Geng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Defeng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
62
|
Cheung CHY, Hsu CL, Chen KP, Chong ST, Wu CH, Huang HC, Juan HF. MCM2-regulated functional networks in lung cancer by multi-dimensional proteomic approach. Sci Rep 2017; 7:13302. [PMID: 29038488 PMCID: PMC5643318 DOI: 10.1038/s41598-017-13440-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022] Open
Abstract
DNA replication control is vital for maintaining genome stability and the cell cycle, perhaps most notably during cell division. Malignancies often exhibit defective minichromosome maintenance protein 2 (MCM2), a cancer proliferation biomarker that serves as a licensing factor in the initiation of DNA replication. MCM2 is also known to be one of the ATPase active sites that facilitates conformational changes and drives DNA unwinding at the origin of DNA replication. However, the biological networks of MCM2 in lung cancer cells via protein phosphorylation remain unmapped. The RNA-seq datasets from The Cancer Genome Atlas (TCGA) revealed that MCM2 overexpression is correlated with poor survival rate in lung cancer patients. To uncover MCM2-regulated functional networks in lung cancer, we performed multi-dimensional proteomic approach by integrating analysis of the phosphoproteome and proteome, and identified a total of 2361 phosphorylation sites on 753 phosphoproteins, and 4672 proteins. We found that the deregulation of MCM2 is involved in lung cancer cell proliferation, the cell cycle, and migration. Furthermore, HMGA1S99 phosphorylation was found to be differentially expressed under MCM2 perturbation in opposite directions, and plays an important role in regulating lung cancer cell proliferation. This study therefore enhances our capacity to therapeutically target cancer-specific phosphoproteins.
Collapse
Affiliation(s)
- Chantal Hoi Yin Cheung
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Lang Hsu
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Kai-Pu Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
| | - Siao-Ting Chong
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chang-Hsun Wu
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, 11221, Taiwan.
| | - Hsueh-Fen Juan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan. .,Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan. .,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
63
|
Coster G, Diffley JFX. Bidirectional eukaryotic DNA replication is established by quasi-symmetrical helicase loading. Science 2017; 357:314-318. [PMID: 28729513 PMCID: PMC5608077 DOI: 10.1126/science.aan0063] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/22/2017] [Indexed: 01/03/2023]
Abstract
Bidirectional replication from eukaryotic DNA replication origins requires the loading of two ring-shaped minichromosome maintenance (MCM) helicases around DNA in opposite orientations. MCM loading is orchestrated by binding of the origin recognition complex (ORC) to DNA, but how ORC coordinates symmetrical MCM loading is unclear. We used natural budding yeast DNA replication origins and synthetic DNA sequences to show that efficient MCM loading requires binding of two ORC molecules to two ORC binding sites. The relative orientation of these sites, but not the distance between them, was found to be critical for MCM loading in vitro and origin function in vivo. We propose that quasi-symmetrical loading of individual MCM hexamers by ORC and directed MCM translocation into double hexamers acts as a unifying mechanism for the establishment of bidirectional replication in archaea and eukaryotes.
Collapse
|
64
|
Frigola J, He J, Kinkelin K, Pye VE, Renault L, Douglas ME, Remus D, Cherepanov P, Costa A, Diffley JFX. Cdt1 stabilizes an open MCM ring for helicase loading. Nat Commun 2017; 8:15720. [PMID: 28643783 PMCID: PMC5490006 DOI: 10.1038/ncomms15720] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/24/2017] [Indexed: 11/09/2022] Open
Abstract
ORC, Cdc6 and Cdt1 act together to load hexameric MCM, the motor of the eukaryotic replicative helicase, into double hexamers at replication origins. Here we show that Cdt1 interacts with MCM subunits Mcm2, 4 and 6, which both destabilizes the Mcm2-5 interface and inhibits MCM ATPase activity. Using X-ray crystallography, we show that Cdt1 contains two winged-helix domains in the C-terminal half of the protein and a catalytically inactive dioxygenase-related N-terminal domain, which is important for MCM loading, but not for subsequent replication. We used these structures together with single-particle electron microscopy to generate three-dimensional models of MCM complexes. These show that Cdt1 stabilizes MCM in a left-handed spiral open at the Mcm2-5 gate. We propose that Cdt1 acts as a brace, holding MCM open for DNA entry and bound to ATP until ORC-Cdc6 triggers ATP hydrolysis by MCM, promoting both Cdt1 ejection and MCM ring closure.
Collapse
Affiliation(s)
- Jordi Frigola
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Jun He
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Kerstin Kinkelin
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Valerie E. Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Ludovic Renault
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Max E. Douglas
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York
10065, USA
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - John F. X. Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| |
Collapse
|
65
|
Abstract
The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation.
Collapse
|
66
|
Trakselis MA, Seidman MM, Brosh RM. Mechanistic insights into how CMG helicase facilitates replication past DNA roadblocks. DNA Repair (Amst) 2017; 55:76-82. [PMID: 28554039 DOI: 10.1016/j.dnarep.2017.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 02/07/2023]
Abstract
Before leaving the house, it is a good idea to check for road closures that may affect the morning commute. Otherwise, one may encounter significant delays arriving at the destination. While this is commonly true, motorists may be able to consult a live interactive traffic map and pick an alternate route or detour to avoid being late. However, this is not the case if one needs to catch the train which follows a single track to the terminus; if something blocks the track, there is a delay. Such is the case for the DNA replisome responsible for copying the genetic information that provides the recipe of life. When the replication machinery encounters a DNA roadblock, the outcome can be devastating if the obstacle is not overcome in an efficient manner. Fortunately, the cell's DNA synthesis apparatus can bypass certain DNA obstructions, but the mechanism(s) are still poorly understood. Very recently, two papers from the O'Donnell lab, one structural (Georgescu et al., 2017 [1]) and the other biochemical (Langston and O'Donnell, 2017 [2]), have challenged the conventional thinking of how the replicative CMG helicase is arranged on DNA, unwinds double-stranded DNA, and handles barricades in its path. These new findings raise important questions in the search for mechanistic insights into how DNA is copied, particularly when the replication machinery encounters a roadblock.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States.
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| |
Collapse
|
67
|
Tatsumi R, Ishimi Y. An MCM4 mutation detected in cancer cells affects MCM4/6/7 complex formation. J Biochem 2017; 161:259-268. [PMID: 27794528 DOI: 10.1093/jb/mvw065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/20/2016] [Indexed: 02/01/2023] Open
Abstract
An MCM4 mutation detected in human cancer cells from endometrium was characterized. The mutation of G486D is located within MCM-box and the glycine at 486 in human MCM4 is conserved in Saccharomyces cerevisiae MCM4 and Sulfolobus solfataricus MCM. This MCM4 mutation affected human MCM4/6/7 complex formation, since the complex containing the mutant MCM4 protein is unstable and the mutant MCM4 protein is tend to be degraded. It is likely that the MCM4 mutation affects the interaction with MCM7 to destabilize the MCM4/6/7 complex. Cells with abnormal nuclear morphology were detected when the mutant MCM4 was expressed in HeLa cells, suggesting that DNA replication was perturbed in the presence of the mutant MCM4. Role of the conserved amino acid in MCM4 function is discussed.
Collapse
|
68
|
Yurieva O, O'Donnell M. Reconstitution of a eukaryotic replisome reveals the mechanism of asymmetric distribution of DNA polymerases. Nucleus 2017; 7:360-8. [PMID: 27416113 PMCID: PMC5039002 DOI: 10.1080/19491034.2016.1205774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Eukaryotes require 3 DNA polymerases for normal replisome operations, DNA polymerases (Pol) α, delta and epsilon. Recent biochemical and structural studies support the asymmetric use of these polymerases on the leading and lagging strands. Pol epsilon interacts with the 11-subunit CMG helicase, forming a 15-protein leading strand complex that acts processively in leading strand synthesis in vitro, but Pol epsilon is inactive on the lagging strand. The opposite results are observed for Pol delta with CMG. Pol delta is highly active on the lagging strand in vitro, but has only feeble activity with CMG on the leading strand. Pol α also functions with CMG to prime both strands, and is even capable of extending both strands with CMG present. However, extensive DNA synthesis by Pol α is sharply curtailed by the presence of either Pol epsilon or Pol delta, which limits the role of the low fidelity Pol α to the initial priming of synthesis.
Collapse
Affiliation(s)
- Olga Yurieva
- a Howard Hughes Medical Institute and DNA Replication Laboratory, The Rockefeller University , New York , NY , USA
| | - Mike O'Donnell
- a Howard Hughes Medical Institute and DNA Replication Laboratory, The Rockefeller University , New York , NY , USA
| |
Collapse
|
69
|
Sun J, Yuan Z, Georgescu R, Li H, O'Donnell M. The eukaryotic CMG helicase pumpjack and integration into the replisome. Nucleus 2017; 7:146-54. [PMID: 27310307 PMCID: PMC4916876 DOI: 10.1080/19491034.2016.1174800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The eukaryotic replisome is α multiprotein machine that contains DNA polymerases, sliding clamps, helicase, and primase along with several factors that participate in cell cycle and checkpoint control. The detailed structure of the 11-subunit CMG helicase (Cdc45/Mcm2-7/GINS) has been solved recently by cryoEM single-particle 3D reconstruction and reveals pumpjack motions that imply an unexpected mechanism of DNA translocation. CMG is also the organizing center of the replisome. Recent in vitro reconstitution of leading and lagging strand DNA synthesis has enabled structural analysis of the replisome. By building the replisome in stages from pure proteins, single-particle EM studies have identified the overall architecture of the eukaryotic replisome. Suprisingly leading and lagging strand polymerases bind to opposite faces of the CMG helicase, unlike the long-held view that DNA polymerases are located in back of the helicase to act on the unwound strands.
Collapse
Affiliation(s)
- Jingchuan Sun
- a Biology Department , Brookhaven National Laboratory , Upton , NY , USA
| | - Zuanning Yuan
- b Department of Biochemistry & Cell Biology , Stony Brook University , Stony Brook , NY , USA
| | - Roxanna Georgescu
- c Howard Hughes Medical Institute and the DNA Replication Laboratory , The Rockefeller University , New York , NY , USA
| | - Huilin Li
- a Biology Department , Brookhaven National Laboratory , Upton , NY , USA.,b Department of Biochemistry & Cell Biology , Stony Brook University , Stony Brook , NY , USA
| | - Mike O'Donnell
- c Howard Hughes Medical Institute and the DNA Replication Laboratory , The Rockefeller University , New York , NY , USA
| |
Collapse
|
70
|
Bruck I, Dhingra N, Martinez MP, Kaplan DL. Dpb11 may function with RPA and DNA to initiate DNA replication. PLoS One 2017; 12:e0177147. [PMID: 28467467 PMCID: PMC5415106 DOI: 10.1371/journal.pone.0177147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/21/2017] [Indexed: 01/27/2023] Open
Abstract
Dpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA, suggesting that Dpb11-interaction with DNA may promote the recruitment of RPA to melted DNA. We then characterized a mutant of Dpb11 that is specifically defective in DNA binding in budding yeast cells. Expression of dpb11-m1,2,3,5,ΔC results in a substantial decrease in RPA recruitment to origins, suggesting that Dpb11 interaction with DNA may be required for RPA recruitment to origins. Expression of dpb11-m1,2,3,5,ΔC also results in diminished GINS interaction with Mcm2-7 during S phase, while Cdc45 interaction with Mcm2-7 is like wild-type. The reduced GINS interaction with Mcm2-7 may be an indirect consequence of diminished origin melting. We propose that the tight interaction between Dpb11, CDK-phosphorylated RPA, and branched-DNA may be required for the essential function of stabilizing melted origin DNA in vivo. We also propose an alternative model, wherein Dpb11-DNA interaction is required for some other function in DNA replication initiation, such as helicase activation.
Collapse
Affiliation(s)
- Irina Bruck
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, United States of America
| | - Nalini Dhingra
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, United States of America
| | - Matthew P. Martinez
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, United States of America
| | - Daniel L. Kaplan
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
71
|
Eukaryotic Replicative Helicase Subunit Interaction with DNA and Its Role in DNA Replication. Genes (Basel) 2017; 8:genes8040117. [PMID: 28383499 PMCID: PMC5406864 DOI: 10.3390/genes8040117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/23/2017] [Accepted: 03/31/2017] [Indexed: 01/30/2023] Open
Abstract
The replicative helicase unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. In eukaryotes, the replicative helicase is composed of the Cdc45 protein, the heterohexameric ring-shaped Mcm2-7 complex, and the tetrameric GINS complex (CMG). The CMG proteins bind directly to DNA, as demonstrated by experiments with purified proteins. The mechanism and function of these DNA-protein interactions are presently being investigated, and a number of important discoveries relating to how the helicase proteins interact with DNA have been reported recently. While some of the protein-DNA interactions directly relate to the unwinding function of the enzyme complex, other protein-DNA interactions may be important for minichromosome maintenance (MCM) loading, origin melting or replication stress. This review describes our current understanding of how the eukaryotic replicative helicase subunits interact with DNA structures in vitro, and proposed models for the in vivo functions of replicative helicase-DNA interactions are also described.
Collapse
|
72
|
Abstract
Cellular DNA replication factories depend on ring-shaped hexameric helicases to aid DNA synthesis by processively unzipping the parental DNA helix. Replicative helicases are loaded onto DNA by dedicated initiator, loader, and accessory proteins during the initiation of DNA replication in a tightly regulated, multistep process. We discuss here the molecular choreography of DNA replication initiation across the three domains of life, highlighting similarities and differences in the strategies used to deposit replicative helicases onto DNA and to melt the DNA helix in preparation for replisome assembly. Although initiators and loaders are phylogenetically related, the mechanisms they use for accomplishing similar tasks have diverged considerably and in an unpredictable manner.
Collapse
Affiliation(s)
- Franziska Bleichert
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
73
|
Mcm10: A Dynamic Scaffold at Eukaryotic Replication Forks. Genes (Basel) 2017; 8:genes8020073. [PMID: 28218679 PMCID: PMC5333062 DOI: 10.3390/genes8020073] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
To complete the duplication of large genomes efficiently, mechanisms have evolved that coordinate DNA unwinding with DNA synthesis and provide quality control measures prior to cell division. Minichromosome maintenance protein 10 (Mcm10) is a conserved component of the eukaryotic replisome that contributes to this process in multiple ways. Mcm10 promotes the initiation of DNA replication through direct interactions with the cell division cycle 45 (Cdc45)-minichromosome maintenance complex proteins 2-7 (Mcm2-7)-go-ichi-ni-san GINS complex proteins, as well as single- and double-stranded DNA. After origin firing, Mcm10 controls replication fork stability to support elongation, primarily facilitating Okazaki fragment synthesis through recruitment of DNA polymerase-α and proliferating cell nuclear antigen. Based on its multivalent properties, Mcm10 serves as an essential scaffold to promote DNA replication and guard against replication stress. Under pathological conditions, Mcm10 is often dysregulated. Genetic amplification and/or overexpression of MCM10 are common in cancer, and can serve as a strong prognostic marker of poor survival. These findings are compatible with a heightened requirement for Mcm10 in transformed cells to overcome limitations for DNA replication dictated by altered cell cycle control. In this review, we highlight advances in our understanding of when, where and how Mcm10 functions within the replisome to protect against barriers that cause incomplete replication.
Collapse
|
74
|
Ticau S, Friedman LJ, Champasa K, Corrêa IR, Gelles J, Bell SP. Mechanism and timing of Mcm2-7 ring closure during DNA replication origin licensing. Nat Struct Mol Biol 2017; 24:309-315. [PMID: 28191892 PMCID: PMC5336523 DOI: 10.1038/nsmb.3375] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/09/2017] [Indexed: 11/09/2022]
Abstract
The opening and closing of two ring-shaped Mcm2-7 DNA helicases is necessary to license eukaryotic origins of replication, although the mechanisms controlling these events are unclear. The origin-recognition complex (ORC), Cdc6 and Cdt1 facilitate this process by establishing a topological link between each Mcm2-7 hexamer and origin DNA. Using colocalization single-molecule spectroscopy and single-molecule Förster resonance energy transfer (FRET), we monitored ring opening and closing of Saccharomyces cerevisiae Mcm2-7 during origin licensing. The two Mcm2-7 rings were open during initial DNA association and closed sequentially, concomitant with the release of their associated Cdt1. We observed that ATP hydrolysis by Mcm2-7 was coupled to ring closure and Cdt1 release, and failure to load the first Mcm2-7 prevented recruitment of the second Mcm2-7. Our findings identify key mechanisms controlling the Mcm2-7 DNA-entry gate during origin licensing, and reveal that the two Mcm2-7 complexes are loaded via a coordinated series of events with implications for bidirectional replication initiation and quality control.
Collapse
Affiliation(s)
- Simina Ticau
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Kanokwan Champasa
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Stephen P Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
75
|
Yuan Z, Riera A, Bai L, Sun J, Nandi S, Spanos C, Chen ZA, Barbon M, Rappsilber J, Stillman B, Speck C, Li H. Structural basis of Mcm2-7 replicative helicase loading by ORC-Cdc6 and Cdt1. Nat Struct Mol Biol 2017; 24:316-324. [PMID: 28191893 PMCID: PMC5503505 DOI: 10.1038/nsmb.3372] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
To start DNA replication, the Origin Recognition Complex (ORC) and Cdc6 load a Mcm2-7 double hexamer onto DNA. Without ATP hydrolysis, ORC-Cdc6 recruits one Cdt1-bound Mcm2-7 hexamer, forming an ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) helicase loading intermediate. Here we report a 3.9Å structure of the OCCM on DNA. Flexible Mcm2-7 winged-helix domains (WHD) engage ORC-Cdc6. A three-domain Cdt1 configuration embraces Mcm2, Mcm4, and Mcm6, nearly half of the hexamer. The Cdt1 C-terminal domain extends to the Mcm6 WHD, which binds Orc4 WHD. DNA passes through the ORC-Cdc6 and Mcm2-7 rings. Origin DNA interaction is mediated by an α-helix in Orc4 and positively charged loops in Orc2 and Cdc6. The Mcm2-7 C-tier AAA+ ring is topologically closed by a Mcm5 loop that embraces Mcm2, but the N-tier ring Mcm2-Mcm5 interface remains open. This structure suggests loading mechanics of the first Cdt1-bound Mcm2-7 hexamer by ORC-Cdc6.
Collapse
Affiliation(s)
- Zuanning Yuan
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Alberto Riera
- MRC London Institute of Medical Sciences (LMS), London, UK.,DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Lin Bai
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Jingchuan Sun
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Saikat Nandi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Zhuo Angel Chen
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Marta Barbon
- MRC London Institute of Medical Sciences (LMS), London, UK.,DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.,Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Christian Speck
- MRC London Institute of Medical Sciences (LMS), London, UK.,DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
76
|
Zhai Y, Cheng E, Wu H, Li N, Yung PYK, Gao N, Tye BK. Open-ringed structure of the Cdt1-Mcm2-7 complex as a precursor of the MCM double hexamer. Nat Struct Mol Biol 2017; 24:300-308. [PMID: 28191894 DOI: 10.1038/nsmb.3374] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022]
Abstract
The minichromosome maintenance complex (MCM) hexameric complex (Mcm2-7) forms the core of the eukaryotic replicative helicase. During G1 phase, two Cdt1-Mcm2-7 heptamers are loaded onto each replication origin by the origin-recognition complex (ORC) and Cdc6 to form an inactive MCM double hexamer (DH), but the detailed loading mechanism remains unclear. Here we examine the structures of the yeast MCM hexamer and Cdt1-MCM heptamer from Saccharomyces cerevisiae. Both complexes form left-handed coil structures with a 10-15-Å gap between Mcm5 and Mcm2, and a central channel that is occluded by the C-terminal domain winged-helix motif of Mcm5. Cdt1 wraps around the N-terminal regions of Mcm2, Mcm6 and Mcm4 to stabilize the whole complex. The intrinsic coiled structures of the precursors provide insights into the DH formation, and suggest a spring-action model for the MCM during the initial origin melting and the subsequent DNA unwinding.
Collapse
Affiliation(s)
- Yuanliang Zhai
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Erchao Cheng
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hao Wu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ningning Li
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Philip Yuk Kwong Yung
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ning Gao
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bik-Kwoon Tye
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
77
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
78
|
Origin DNA Melting-An Essential Process with Divergent Mechanisms. Genes (Basel) 2017; 8:genes8010026. [PMID: 28085061 PMCID: PMC5295021 DOI: 10.3390/genes8010026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
Origin DNA melting is an essential process in the various domains of life. The replication fork helicase unwinds DNA ahead of the replication fork, providing single-stranded DNA templates for the replicative polymerases. The replication fork helicase is a ring shaped-assembly that unwinds DNA by a steric exclusion mechanism in most DNA replication systems. While one strand of DNA passes through the central channel of the helicase ring, the second DNA strand is excluded from the central channel. Thus, the origin, or initiation site for DNA replication, must melt during the initiation of DNA replication to allow for the helicase to surround a single-DNA strand. While this process is largely understood for bacteria and eukaryotic viruses, less is known about how origin DNA is melted at eukaryotic cellular origins. This review describes the current state of knowledge of how genomic DNA is melted at a replication origin in bacteria and eukaryotes. We propose that although the process of origin melting is essential for the various domains of life, the mechanism for origin melting may be quite different among the different DNA replication initiation systems.
Collapse
|
79
|
Bai L, Yuan Z, Sun J, Georgescu R, O'Donnell ME, Li H. Architecture of the Saccharomyces cerevisiae Replisome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:207-228. [PMID: 29357060 DOI: 10.1007/978-981-10-6955-0_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eukaryotic replication proteins are highly conserved, and thus study of Saccharomyces cerevisiae replication can inform about this central process in higher eukaryotes including humans. The S. cerevisiae replisome is a large and dynamic assembly comprised of ~50 proteins. The core of the replisome is composed of 31 different proteins including the 11-subunit CMG helicase; RFC clamp loader pentamer; PCNA clamp; the heteroligomeric DNA polymerases ε, δ, and α-primase; and the RPA heterotrimeric single strand binding protein. Many additional protein factors either travel with or transiently associate with these replisome proteins at particular times during replication. In this chapter, we summarize several recent structural studies on the S. cerevisiae replisome and its subassemblies using single particle electron microscopy and X-ray crystallography. These recent structural studies have outlined the overall architecture of a core replisome subassembly and shed new light on the mechanism of eukaryotic replication.
Collapse
Affiliation(s)
- Lin Bai
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Zuanning Yuan
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Jingchuan Sun
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Roxana Georgescu
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA.
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
80
|
Kelly T. Historical Perspective of Eukaryotic DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:1-41. [PMID: 29357051 DOI: 10.1007/978-981-10-6955-0_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The replication of the genome of a eukaryotic cell is a complex process requiring the ordered assembly of multiprotein replisomes at many chromosomal sites. The process is strictly controlled during the cell cycle to ensure the complete and faithful transmission of genetic information to progeny cells. Our current understanding of the mechanisms of eukaryotic DNA replication has evolved over a period of more than 30 years through the efforts of many investigators. The aim of this perspective is to provide a brief history of the major advances during this period.
Collapse
Affiliation(s)
- Thomas Kelly
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
81
|
Abstract
The machinery at the eukaryotic replication fork has seen many new structural advances using electron microscopy and crystallography. Recent structures of eukaryotic replisome components include the Mcm2-7 complex, the CMG helicase, DNA polymerases, a Ctf4 trimer hub and the first look at a core replisome of 20 different proteins containing the helicase, primase, leading polymerase and a lagging strand polymerase. The eukaryotic core replisome shows an unanticipated architecture, with one polymerase sitting above the helicase and the other below. Additionally, structures of Mcm2 bound to an H3/H4 tetramer suggest a direct role of the replisome in handling nucleosomes, which are important to DNA organization and gene regulation. This review provides a summary of some of the many recent advances in the structure of the eukaryotic replisome.
Collapse
Affiliation(s)
- Mike O'Donnell
- DNA Replication Lab, The Rockefeller University, 1230 York Avenue, New York, New York, USA; Howard Hughes Medical Institute.
| | - Huilin Li
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, New York, USA; Biology Department, Brookhaven National Laboratory, Upton, New York, USA.
| |
Collapse
|
82
|
Xu X, Wang JT, Li M, Liu Y. TIMELESS Suppresses the Accumulation of Aberrant CDC45·MCM2-7·GINS Replicative Helicase Complexes on Human Chromatin. J Biol Chem 2016; 291:22544-22558. [PMID: 27587400 PMCID: PMC5077192 DOI: 10.1074/jbc.m116.719963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/31/2016] [Indexed: 07/24/2023] Open
Abstract
The replication licensing factor CDC6 recruits the MCM2-7 replicative helicase to the replication origin, where MCM2-7 is activated to initiate DNA replication. MCM2-7 is activated by both the CDC7-Dbf4 kinase and cyclin-dependent kinase and via interactions with CDC45 and go-ichi-ni-san complex (GINS) to form the CDC45·MCM2-7·GINS (CMG) helicase complex. TIMELESS (TIM) is important for the subsequent coupling of CMG activity to DNA polymerases for efficient DNA synthesis. However, the mechanism by which TIM regulates CMG activity for proper replication fork progression remains unclear. Here we show that TIM interacts with MCM2-7 prior to the initiation of DNA replication. TIM depletion in various human cell lines results in the accumulation of aberrant CMG helicase complexes on chromatin. Importantly, the presence of these abnormal CMG helicase complexes is not restricted to cells undergoing DNA synthesis. Furthermore, even though these aberrant CMG complexes interact with the DNA polymerases on human chromatin, these complexes are not phosphorylated properly by cyclin-dependent kinase/CDC7-Dbf4 kinase and exhibit reduced DNA unwinding activity. This phenomenon coincides with a significant accumulation of the p27 and p21 replication inhibitors, reduced chromatin association of CDC6 and cyclin E, and a delay in S phase entry. Our results provide the first evidence that TIM is required for the correct chromatin association of the CMG complex to allow efficient DNA replication.
Collapse
Affiliation(s)
- Xiaohua Xu
- From the Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| | - Jiin-Tarng Wang
- From the Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| | - Min Li
- From the Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| | - Yilun Liu
- From the Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| |
Collapse
|
83
|
Perez-Arnaiz P, Kaplan DL. An Mcm10 Mutant Defective in ssDNA Binding Shows Defects in DNA Replication Initiation. J Mol Biol 2016; 428:4608-4625. [PMID: 27751725 DOI: 10.1016/j.jmb.2016.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/28/2016] [Accepted: 10/07/2016] [Indexed: 11/25/2022]
Abstract
Mcm10 is an essential protein that functions to initiate DNA replication after the formation of the replication fork helicase. In this manuscript, we identified a budding yeast Mcm10 mutant (Mcm10-m2,3,4) that is defective in DNA binding in vitro. Moreover, this Mcm10-m2,3,4 mutant does not stimulate the phosphorylation of Mcm2 by Dbf4-dependent kinase (DDK) in vitro. When we expressed wild-type levels of mcm10-m2,3,4 in budding yeast cells, we observed a severe growth defect and a substantially decreased DNA replication. We also observed a substantially reduced replication protein A- chromatin immunoprecipitation signal at origins of replication, reduced levels of DDK-phosphorylated Mcm2, and diminished Go, Ichi, Ni, and San (GINS) association with Mcm2-7 in vivo. mcm5-bob1 bypasses the growth defect conferred by DDK-phosphodead Mcm2 in budding yeast. However, the growth defect observed by expressing mcm10-m2,3,4 is not bypassed by the mcm5-bob1 mutation. Furthermore, origin melting and GINS association with Mcm2-7 are substantially decreased for cells expressing mcm10-m2,3,4 in the mcm5-bob1 background. Thus, the origin melting and GINS-Mcm2-7 interaction defects we observed for mcm10-m2,3,4 are not explained by decreased Mcm2 phosphorylation by DDK, since the defects persist in an mcm5-bob1 background. These data suggest that DNA binding by Mcm10 is essential for the initiation of DNA replication.
Collapse
Affiliation(s)
- Patricia Perez-Arnaiz
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Daniel L Kaplan
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
84
|
Joshi K, Shah VJ, Maddika S. GINS complex protein Sld5 recruits SIK1 to activate MCM helicase during DNA replication. Cell Signal 2016; 28:1852-1862. [PMID: 27592030 DOI: 10.1016/j.cellsig.2016.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022]
Abstract
In eukaryotes, proper loading and activation of MCM helicase at chromosomal origins plays a central role in DNA replication. Activation of MCM helicase requires its association with CDC45-GINS complex, but the mechanism of how this complex activates MCM helicase is poorly understood. Here we identified SIK1 (salt-inducible kinase 1), an AMPK related protein kinase, as a molecular link that connects GINS complex with MCM helicase activity. We demonstrated that Sld5 a component of GINS complex interacts with SIK1 and recruits it to the sites of DNA replication at the onset of S phase. Depletion of SIK1 leads to defective DNA replication. Further, we showed that SIK1 phosphorylates MCM2 at five conserved residues at its N-terminus, which is essential for the activation of MCM helicase. Collectively, our results suggest SIK1 as a novel integral component of CMG replicative helicase during eukaryotic DNA replication.
Collapse
Affiliation(s)
- Kiranmai Joshi
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India
| | - Varun Jayeshkumar Shah
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India; Manipal University, Manipal 576104, India
| | - Subbareddy Maddika
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India.
| |
Collapse
|
85
|
Abe S, Yamamoto K, Kurata M, Abe-Suzuki S, Horii R, Akiyama F, Kitagawa M. Targeting MCM2 function as a novel strategy for the treatment of highly malignant breast tumors. Oncotarget 2016; 6:34892-909. [PMID: 26430873 PMCID: PMC4741497 DOI: 10.18632/oncotarget.5408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/18/2015] [Indexed: 12/23/2022] Open
Abstract
Highly malignant tumors express high levels of the minichromosome maintenance 2 (MCM2) protein, which is associated with advanced tumor grade, advanced stage, and poor prognosis. In a previous study, we showed that Friend leukemia virus (FLV) envelope protein gp70 bound MCM2, impaired its nuclear translocation, and enhanced DNA-damage-induced apoptosis in FLV-infected hematopoietic cells when the cells expressed high levels of MCM2. Here, we show that MCM2 is highly expressed in clinical samples of invasive carcinoma of the breast, especially triple-negative breast cancer (TNBC), and in cancer stem cell (CSC) marker-positive breast cancer cells. To generate a cancer therapy model using gp70, we introduced the gp70 protein into the cytoplasm of murine breast cancer cells that express high levels of MCM2 by conjugating the protein transduction domain (PTD) of Hph-1 to gp70 (Hph- 1-gp70). Hph-1-gp70 was successfully transduced into the cytoplasm of breast cancer cells. The transduced protein enhanced the DNA damage-induced apoptosis of cancer cells in vitro and in vivo. Therefore, an MCM2-targeted strategy using Hph-1-gp70 treatment to induce DNA damage might be a successful therapy for highly malignant breast cancers such as TNBC and for the eradication of CSC-like cells from breast cancer tissue.
Collapse
Affiliation(s)
- Shinya Abe
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiho Abe-Suzuki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rie Horii
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Futoshi Akiyama
- Department of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
86
|
Vijayraghavan S, Tsai FL, Schwacha A. A Checkpoint-Related Function of the MCM Replicative Helicase Is Required to Avert Accumulation of RNA:DNA Hybrids during S-phase and Ensuing DSBs during G2/M. PLoS Genet 2016; 12:e1006277. [PMID: 27556397 PMCID: PMC4996524 DOI: 10.1371/journal.pgen.1006277] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/04/2016] [Indexed: 01/10/2023] Open
Abstract
The Mcm2-7 complex is the catalytic core of the eukaryotic replicative helicase. Here, we identify a new role for this complex in maintaining genome integrity. Using both genetic and cytological approaches, we find that a specific mcm allele (mcm2DENQ) causes elevated genome instability that correlates with the appearance of numerous DNA-damage associated foci of γH2AX and Rad52. We further find that the triggering events for this genome instability are elevated levels of RNA:DNA hybrids and an altered DNA topological state, as over-expression of either RNaseH (an enzyme specific for degradation of RNA in RNA:DNA hybrids) or Topoisomerase 1 (an enzyme that relieves DNA supercoiling) can suppress the mcm2DENQ DNA-damage phenotype. Moreover, the observed DNA damage has several additional unusual properties, in that DNA damage foci appear only after S-phase, in G2/M, and are dependent upon progression into metaphase. In addition, we show that the resultant DNA damage is not due to spontaneous S-phase fork collapse. In total, these unusual mcm2DENQ phenotypes are markedly similar to those of a special previously-studied allele of the checkpoint sensor kinase ATR/MEC1, suggesting a possible regulatory interplay between Mcm2-7 and ATR during unchallenged growth. As RNA:DNA hybrids primarily result from transcription perturbations, we suggest that surveillance-mediated modulation of the Mcm2-7 activity plays an important role in preventing catastrophic conflicts between replication forks and transcription complexes. Possible relationships among these effects and the recently discovered role of Mcm2-7 in the DNA replication checkpoint induced by HU treatment are discussed.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Feng-Ling Tsai
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anthony Schwacha
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
87
|
Juríková M, Danihel Ľ, Polák Š, Varga I. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochem 2016; 118:544-52. [PMID: 27246286 DOI: 10.1016/j.acthis.2016.05.002] [Citation(s) in RCA: 429] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/05/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022]
Abstract
The proliferative activity of tumour cells represents an important prognostic marker in the diagnosis of cancer. One of the methods for assessing the proliferative activity of cells is the immunohistochemical detection of cell cycle-specific antigens. For example, Ki67, proliferating cell nuclear antigen (PCNA), and minichromosome maintenance (MCM) proteins are standard markers of proliferation that are commonly used to assess the growth fraction of a cell population. The function of Ki67, the widely used marker of proliferation, still remains unclear. In contrast, PCNA and MCM proteins have been identified as important participants of DNA replication. All three proteins only manifest their expression during the cell division of normal and neoplastic cells. Since the expression of these proliferative markers was confirmed in several malignant tumours, their prognostic and predictive values have been evaluated to determine their significance in the diagnosis of cancer. This review offers insight into the discovery of the abovementioned proteins, as well as their current molecular and biological importance. In addition, the functions and properties of all three proteins and their use as markers of proliferation in the diagnosis of breast cancer are described. This work also reveals new findings about the role of Ki67 during the mitotic phase of the cell cycle. Finally, information is provided about the advantages and disadvantages of using all three antigens in the diagnosis of cancer.
Collapse
Affiliation(s)
- Miroslava Juríková
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia.
| | - Ľudovít Danihel
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia
| | - Štefan Polák
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia
| |
Collapse
|
88
|
Boskovic J, Bragado-Nilsson E, Saligram Prabhakar B, Yefimenko I, Martínez-Gago J, Muñoz S, Méndez J, Montoya G. Molecular architecture of the recombinant human MCM2-7 helicase in complex with nucleotides and DNA. Cell Cycle 2016; 15:2431-40. [PMID: 27249176 DOI: 10.1080/15384101.2016.1191712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
DNA replication is a key biological process that involves different protein complexes whose assembly is rigorously regulated in a successive order. One of these complexes is a replicative hexameric helicase, the MCM complex, which is essential for the initiation and elongation phases of replication. After the assembly of a double heterohexameric MCM2-7 complex at replication origins in G1, the 2 heterohexamers separate from each other and associate with Cdc45 and GINS proteins in a CMG complex that is capable of unwinding dsDNA during S phase. Here, we have reconstituted and characterized the purified human MCM2-7 (hMCM2-7) hexameric complex by co-expression of its 6 different subunits in insect cells. The conformational variability of the complex has been analyzed by single particle electron microscopy in the presence of different nucleotide analogs and DNA. The interaction with nucleotide stabilizes the complex while DNA introduces conformational changes in the hexamer inducing a cylindrical shape. Our studies suggest that the assembly of GINS and Cdc45 to the hMCM2-7 hexamer would favor conformational changes on the hexamer bound to ssDNA shifting the cylindrical shape of the complex into a right-handed spiral conformation as observed in the CMG complex bound to DNA.
Collapse
Affiliation(s)
- Jasminka Boskovic
- a Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group , c/Melchor Fdez. Almagro 3, Madrid , Spain
| | - Elisabeth Bragado-Nilsson
- b Protein Structure & Function Programme, Novo Nordisk Foundation Centre for Protein Research, Faculty of Heath and Medical Sciences, University of Copenhagen , Denmark
| | - Bhargrav Saligram Prabhakar
- b Protein Structure & Function Programme, Novo Nordisk Foundation Centre for Protein Research, Faculty of Heath and Medical Sciences, University of Copenhagen , Denmark
| | - Igor Yefimenko
- a Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group , c/Melchor Fdez. Almagro 3, Madrid , Spain
| | - Jaime Martínez-Gago
- a Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group , c/Melchor Fdez. Almagro 3, Madrid , Spain
| | - Sergio Muñoz
- c DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Juan Méndez
- c DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Guillermo Montoya
- b Protein Structure & Function Programme, Novo Nordisk Foundation Centre for Protein Research, Faculty of Heath and Medical Sciences, University of Copenhagen , Denmark
| |
Collapse
|
89
|
Simon AC, Sannino V, Costanzo V, Pellegrini L. Structure of human Cdc45 and implications for CMG helicase function. Nat Commun 2016; 7:11638. [PMID: 27189187 PMCID: PMC4873980 DOI: 10.1038/ncomms11638] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/14/2016] [Indexed: 01/05/2023] Open
Abstract
Cell division cycle protein 45 (Cdc45) is required for DNA synthesis during genome duplication, as a component of the Cdc45-MCM-GINS (CMG) helicase. Despite its essential biological function, its biochemical role in DNA replication has remained elusive. Here we report the 2.1-Å crystal structure of human Cdc45, which confirms its evolutionary link with the bacterial RecJ nuclease and reveals several unexpected features that underpin its function in eukaryotic DNA replication. These include a long-range interaction between N- and C-terminal DHH domains, blocking access to the DNA-binding groove of its RecJ-like fold, and a helical insertion in its N-terminal DHH domain, which appears poised for replisome interactions. In combination with available electron microscopy data, we validate by mutational analysis the mechanism of Cdc45 association with the MCM ring and GINS co-activator, critical for CMG assembly. These findings provide an indispensable molecular basis to rationalize the essential role of Cdc45 in genomic duplication. The cell cycle division protein Cdc45 is required for genome duplication in eukaryotes. Here, the authors determine the crystal structure of human Cdc45 and combine it with functional data to improve our understanding of its role in DNA replication.
Collapse
Affiliation(s)
- Aline C Simon
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Vincenzo Sannino
- DNA Metabolism Laboratory, FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy
| | - Vincenzo Costanzo
- DNA Metabolism Laboratory, FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
90
|
Abid Ali F, Costa A. The MCM Helicase Motor of the Eukaryotic Replisome. J Mol Biol 2016; 428:1822-32. [PMID: 26829220 DOI: 10.1016/j.jmb.2016.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
The MCM motor of the CMG helicase powers ahead of the eukaryotic replication machinery to unwind DNA, in a process that requires ATP hydrolysis. The reconstitution of DNA replication in vitro has established the succession of events that lead to replication origin activation by the MCM and recent studies have started to elucidate the structural basis of duplex DNA unwinding. Despite the exciting progress, how the MCM translocates on DNA remains a matter of debate.
Collapse
Affiliation(s)
- Ferdos Abid Ali
- Architecture and Dynamics of Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, United Kingdom
| | - Alessandro Costa
- Architecture and Dynamics of Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, United Kingdom.
| |
Collapse
|
91
|
Abstract
The cellular replicating machine, or "replisome," is composed of numerous different proteins. The core replication proteins in all cell types include a helicase, primase, DNA polymerases, sliding clamp, clamp loader, and single-strand binding (SSB) protein. The core eukaryotic replisome proteins evolved independently from those of bacteria and thus have distinct architectures and mechanisms of action. The core replisome proteins of the eukaryote include: an 11-subunit CMG helicase, DNA polymerase alpha-primase, leading strand DNA polymerase epsilon, lagging strand DNA polymerase delta, PCNA clamp, RFC clamp loader, and the RPA SSB protein. There are numerous other proteins that travel with eukaryotic replication forks, some of which are known to be involved in checkpoint regulation or nucleosome handling, but most have unknown functions and no bacterial analogue. Recent studies have revealed many structural and functional insights into replisome action. Also, the first structure of a replisome from any cell type has been elucidated for a eukaryote, consisting of 20 distinct proteins, with quite unexpected results. This review summarizes the current state of knowledge of the eukaryotic core replisome proteins, their structure, individual functions, and how they are organized at the replication fork as a machine.
Collapse
Affiliation(s)
- D Zhang
- The Rockefeller University, New York, NY, United States
| | - M O'Donnell
- The Rockefeller University, New York, NY, United States; Howard Hughes Medical Institute, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
92
|
Deegan TD, Diffley JFX. MCM: one ring to rule them all. Curr Opin Struct Biol 2016; 37:145-51. [PMID: 26866665 DOI: 10.1016/j.sbi.2016.01.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 11/25/2022]
Abstract
Precise replication of the eukaryotic genome is achieved primarily through strict regulation of the enzyme responsible for DNA unwinding, the replicative helicase. The motor of this helicase is a hexameric AAA+ ATPase called MCM. The loading of MCM onto DNA and its subsequent activation and disassembly are each restricted to separate cell cycle phases; this ensures that a functional replisome is only built once at any replication origin. In recent years, biochemical and structural studies have shown that distinct conformational changes in MCM, each requiring post-translational modifications and/or the activity of other replication proteins, define the various stages of the chromosome replication cycle. Here, we review recent progress in this area.
Collapse
Affiliation(s)
- Tom D Deegan
- The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Herts EN6 3LD, United Kingdom
| | - John F X Diffley
- The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Herts EN6 3LD, United Kingdom.
| |
Collapse
|
93
|
Rizvi I, Choudhury NR, Tuteja N. Arabidopsis thaliana MCM3 single subunit of MCM2-7 complex functions as 3' to 5' DNA helicase. PROTOPLASMA 2016; 253:467-75. [PMID: 25944245 DOI: 10.1007/s00709-015-0825-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/27/2015] [Indexed: 05/09/2023]
Abstract
Minichromosome maintenance 2-7 (MCM2-7) proteins are conserved eukaryotic replicative factors essential for the DNA replication at its initiation and elongation step, and act as a licensing factor. The MCM2-7 and MCM4/6/7subcomplex exhibit DNA helicase activity, and are therefore regarded as the replicative helicase. The MCM proteins have not been studied in detail in plant system. Here, we present the biochemical characterization of Arabidopsis thaliana MCM3 single subunit and show that it exhibits in vitro unwinding and ATPase activities. AtMCM3 shows a greater unwinding activity with 5' forked partial DNA duplex substrate as compared to 3' forked and non-forked substrates. ATP and magnesium ion are indispensable for its DNA helicase activity. Specifically, ATP and dATP are the preferred nucleotides for its unwinding activity. The directionality of the AtMCM3 has been determined to be in 3' to 5' direction. The oligomerization status of AtMCM3 single subunit protein indicates that it is present in different multimeric forms. The unraveling of the helicase activity of AtMCM3 will provide better insights into the plant DNA replication.
Collapse
Affiliation(s)
- Irum Rizvi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nirupam Roy Choudhury
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
94
|
Investigating Diagnostic Problems of CIN1 and CIN2 Associated With High-risk HPV by Combining the Novel Molecular Biomarker PanHPVE4 With P16INK4a. Am J Surg Pathol 2016; 39:1518-1528. [PMID: 26379150 DOI: 10.1097/pas.0000000000000498] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Grading cervical intraepithelial neoplasia (CIN) determines clinical management of women after abnormal cytology with potential for overdiagnosis and overtreatment. We studied a novel biomarker of human papillomavirus (HPV) life-cycle completion (panHPVE4), in combination with the minichromosome maintenance (MCM) protein cell-cycle marker and the p16INK4a transformation marker, to improve CIN diagnosis and categorization. Scoring these biomarkers alongside CIN grading by 3 pathologists was performed on 114 cervical specimens with high-risk (HR) HPV. Interobserver agreement for histopathology was moderate (κ=0.43 for CIN1/negative, 0.54 for CIN2/≤CIN1, and 0.36 for CIN3). Agreement was good or excellent for biomarker scoring (E4: κ=0.896; 95% confidence interval [CI]: 0.763-0.969; p16INK4a : κ=0.798; 95% CI: 0.712-0.884; MCM: κ=0.894; 95% CI: NC (this quantity cannot be calculated). Biomarker expression was studied by immunofluorescence and immunohistochemistry and was correlated with 104 final CIN diagnoses after histologic review. All 25 histologically negative specimens were p16INK4a and panHPVE4 negative, although 9 were MCM-positive. There were variable extents of p16INK4a positivity in 11/11 CIN1 and extensive panHPVE4 staining in 9/11. Ten CIN2 lesions expressed panHPVE4 and p16INK4a, and 13 CIN2 expressed only p16INK4a. CIN3 showed extensive p16INK4a positivity with no/minimal panHPVE4 staining. PanHPVE4, unlike MCM, distinguished CIN1 from negative. PanHPVE4 with p16INK4a separated CIN2/3 showing only expression of p16INK4a, indicating transforming HR-HPV E7 expression, from CIN1/2 showing completion of HR-HPV life cycle by E4 expression and variable p16INK4a expression. PanHPVE4 and p16INK4a staining are complementary markers that could provide simple, reliable support for diagnosing CIN. Their value in distinguishing CIN1/2 that supports HR-HPV life-cycle completion (and which might ultimately regress) from purely transforming CIN2/3 needing treatment warrants further research.
Collapse
|
95
|
Bai G, Smolka MB, Schimenti JC. Chronic DNA Replication Stress Reduces Replicative Lifespan of Cells by TRP53-Dependent, microRNA-Assisted MCM2-7 Downregulation. PLoS Genet 2016; 12:e1005787. [PMID: 26765334 PMCID: PMC4713100 DOI: 10.1371/journal.pgen.1005787] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/15/2015] [Indexed: 11/18/2022] Open
Abstract
Circumstances that compromise efficient DNA replication, such as disruptions to replication fork progression, cause a state known as DNA replication stress (RS). Whereas normally proliferating cells experience low levels of RS, excessive RS from intrinsic or extrinsic sources can trigger cell cycle arrest and senescence. Here, we report that a key driver of RS-induced senescence is active downregulation of the Minichromosome Maintenance 2–7 (MCM2-7) factors that are essential for replication origin licensing and which constitute the replicative helicase core. Proliferating cells produce high levels of MCM2-7 that enable formation of dormant origins that can be activated in response to acute, experimentally-induced RS. However, little is known about how physiological RS levels impact MCM2-7 regulation. We found that chronic exposure of primary mouse embryonic fibroblasts (MEFs) to either genetically-encoded or environmentally-induced RS triggered gradual MCM2-7 repression, followed by inhibition of replication and senescence that could be accelerated by MCM hemizygosity. The MCM2-7 reduction in response to RS is TRP53-dependent, and involves a group of Trp53-dependent miRNAs, including the miR-34 family, that repress MCM expression in replication-stressed cells before they undergo terminal cell cycle arrest. miR-34 ablation partially rescued MCM2-7 downregulation and genomic instability in mice with endogenous RS. Together, these data demonstrate that active MCM2-7 repression is a physiologically important mechanism for RS-induced cell cycle arrest and genome maintenance on an organismal level. Duplication of the genome by DNA replication is essential for cell proliferation. DNA replication is initiated from many sites (“origins”) along chromosomes that are bound by replication licensing proteins, including MCM2-7. They are also core components of the replication helicase complex that unwinds double stranded DNA to expose single stranded DNA that is the template for DNA polymerase. Eukaryotic DNA replication machinery faces many challenges to duplicate the complex and massive genome. Circumstances that inhibit progression of the replication machinery cause “replication stress” (RS). Cells can counteract RS by utilizing “dormant” or “backup” origins. Abundant MCM2-7 expression sufficiently licenses dormant origins, but reducing MCMs compromises cellular responses to RS. We show that MCM2-7 expression is downregulated in cells experiencing chronic RS, and this depends on the TRP53 tumor suppressor and microRNAs it regulates. Extended RS eventually reduces MCMs to a point that terminal cell cycle arrest occurs. We propose that this mechanism is a crucial protection against neoplasia.
Collapse
Affiliation(s)
- Gongshi Bai
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Marcus B. Smolka
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cellular and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Center for Vertebrate Genomics, Cornell University, Ithaca, New York, United States of America
| | - John C. Schimenti
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Center for Vertebrate Genomics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
96
|
Bruck I, Perez-Arnaiz P, Colbert MK, Kaplan DL. Insights into the Initiation of Eukaryotic DNA Replication. Nucleus 2015; 6:449-54. [PMID: 26710261 DOI: 10.1080/19491034.2015.1115938] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The initiation of DNA replication is a highly regulated event in eukaryotic cells to ensure that the entire genome is copied once and only once during S phase. The primary target of cellular regulation of eukaryotic DNA replication initiation is the assembly and activation of the replication fork helicase, the 11-subunit assembly that unwinds DNA at a replication fork. The replication fork helicase, called CMG for Cdc45-Mcm2-7, and GINS, assembles in S phase from the constituent Cdc45, Mcm2-7, and GINS proteins. The assembly and activation of the CMG replication fork helicase during S phase is governed by 2 S-phase specific kinases, CDK and DDK. CDK stimulates the interaction between Sld2, Sld3, and Dpb11, 3 initiation factors that are each required for the initiation of DNA replication. DDK, on the other hand, phosphorylates the Mcm2, Mcm4, and Mcm6 subunits of the Mcm2-7 complex. Sld3 recruits Cdc45 to Mcm2-7 in a manner that depends on DDK, and recent work suggests that Sld3 binds directly to Mcm2-7 and also to single-stranded DNA. Furthermore, recent work demonstrates that Sld3 and its human homolog Treslin substantially stimulate DDK phosphorylation of Mcm2. These data suggest that the initiation factor Sld3/Treslin coordinates the assembly and activation of the eukaryotic replication fork helicase by recruiting Cdc45 to Mcm2-7, stimulating DDK phosphorylation of Mcm2, and binding directly to single-stranded DNA as the origin is melted.
Collapse
Affiliation(s)
- Irina Bruck
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Patricia Perez-Arnaiz
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Max K Colbert
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Daniel L Kaplan
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| |
Collapse
|
97
|
Samson RY, Abeyrathne PD, Bell SD. Mechanism of Archaeal MCM Helicase Recruitment to DNA Replication Origins. Mol Cell 2015; 61:287-96. [PMID: 26725007 DOI: 10.1016/j.molcel.2015.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/13/2015] [Accepted: 11/18/2015] [Indexed: 11/25/2022]
Abstract
Cellular DNA replication origins direct the recruitment of replicative helicases via the action of initiator proteins belonging to the AAA+ superfamily of ATPases. Archaea have a simplified subset of the eukaryotic DNA replication machinery proteins and possess initiators that appear ancestral to both eukaryotic Orc1 and Cdc6. We have reconstituted origin-dependent recruitment of the homohexameric archaeal MCM in vitro with purified recombinant proteins. Using this system, we reveal that archaeal Orc1-1 fulfills both Orc1 and Cdc6 functions by binding to a replication origin and directly recruiting MCM helicase. We identify the interaction interface between these proteins and reveal how ATP binding by Orc1-1 modulates recruitment of MCM. Additionally, we provide evidence that an open-ring form of the archaeal MCM homohexamer is loaded at origins.
Collapse
Affiliation(s)
- Rachel Y Samson
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall MSB, 212 S Hawthorne Drive, Bloomington, IN 47405, USA
| | | | - Stephen D Bell
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall MSB, 212 S Hawthorne Drive, Bloomington, IN 47405, USA; Department of Biology, Indiana University, Simon Hall MSB, 212 S Hawthorne Drive, Bloomington, IN 47405, USA.
| |
Collapse
|
98
|
Abstract
The machines that decode and regulate genetic information require the translation, transcription and replication pathways essential to all living cells. Thus, it might be expected that all cells share the same basic machinery for these pathways that were inherited from the primordial ancestor cell from which they evolved. A clear example of this is found in the translation machinery that converts RNA sequence to protein. The translation process requires numerous structural and catalytic RNAs and proteins, the central factors of which are homologous in all three domains of life, bacteria, archaea and eukarya. Likewise, the central actor in transcription, RNA polymerase, shows homology among the catalytic subunits in bacteria, archaea and eukarya. In contrast, while some "gears" of the genome replication machinery are homologous in all domains of life, most components of the replication machine appear to be unrelated between bacteria and those of archaea and eukarya. This review will compare and contrast the central proteins of the "replisome" machines that duplicate DNA in bacteria, archaea and eukarya, with an eye to understanding the issues surrounding the evolution of the DNA replication apparatus.
Collapse
Affiliation(s)
- Nina Y Yao
- a DNA Replication Laboratory, The Rockefeller University , New York , NY , USA and
| | - Mike E O'Donnell
- a DNA Replication Laboratory, The Rockefeller University , New York , NY , USA and.,b Howard Hughes Medical Institute, The Rockefeller University , New York , NY , USA
| |
Collapse
|
99
|
Xia Y, Niu Y, Cui J, Fu Y, Chen XS, Lou H, Cao Q. The Helicase Activity of Hyperthermophilic Archaeal MCM is Enhanced at High Temperatures by Lysine Methylation. Front Microbiol 2015; 6:1247. [PMID: 26617586 PMCID: PMC4639711 DOI: 10.3389/fmicb.2015.01247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022] Open
Abstract
Lysine methylation and methyltransferases are widespread in the third domain of life, archaea. Nevertheless, the effects of methylation on archaeal proteins wait to be defined. Here, we report that recombinant sisMCM, an archaeal homolog of Mcm2-7 eukaryotic replicative helicase, is methylated by aKMT4 in vitro. Mono-methylation of these lysine residues occurs coincidently in the endogenous sisMCM protein purified from the hyperthermophilic Sulfolobus islandicus cells as indicated by mass spectra. The helicase activity of mini-chromosome maintenance (MCM) is stimulated by methylation, particularly at temperatures over 70°C. The methylated MCM shows optimal DNA unwinding activity after heat-treatment between 76 and 82°C, which correlates well with the typical growth temperatures of hyperthermophilic Sulfolobus. After methylation, the half life of MCM helicase is dramatically extended at 80°C. The methylated sites are located on the accessible protein surface, which might modulate the intra- and inter- molecular interactions through changing the hydrophobicity and surface charge. Furthermore, the methylation-mimic mutants of MCM show heat resistance helicase activity comparable to the methylated MCM. These data provide the biochemical evidence that posttranslational modifications such as methylation may enhance kinetic stability of proteins under the elevated growth temperatures of hyperthermophilic archaea.
Collapse
Affiliation(s)
- Yisui Xia
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Yanling Niu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Jiamin Cui
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Yang Fu
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles CA, USA ; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles CA, USA ; Department of Chemistry, University of Southern California, Los Angeles CA, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles CA, USA ; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles CA, USA ; Department of Chemistry, University of Southern California, Los Angeles CA, USA
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Qinhong Cao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| |
Collapse
|
100
|
PTEN Controls the DNA Replication Process through MCM2 in Response to Replicative Stress. Cell Rep 2015; 13:1295-1303. [DOI: 10.1016/j.celrep.2015.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/08/2015] [Accepted: 10/05/2015] [Indexed: 01/07/2023] Open
|