51
|
Mutations in the Escherichia coli ribosomal protein L22 selectively suppress the expression of a secreted bacterial virulence factor. J Bacteriol 2013; 195:2991-9. [PMID: 23625843 DOI: 10.1128/jb.00211-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations in the ribosomal protein L22 that impair peptide-mediated translation arrest in Escherichia coli have been shown to reduce the expression of several genes, including secA, which encodes an ATPase that drives protein export via the Sec pathway. Here, we used a comparative proteomic approach to obtain insight into the global effects of the L22(Δ82-84) mutation on gene expression and protein synthesis. While the mutation did not affect or modestly affected the level of most soluble proteins, it dramatically reduced the level of antigen 43 (Ag43), a secreted virulence factor that promotes autoaggregation. The reduced protein concentration correlated with a sharp decrease in the abundance and stability of Ag43 mRNA. We found that the overexpression of secA or the inactivation of genes that encode presecretory and membrane proteins restored Ag43 production in the L22 mutant strain. Furthermore, impairment of the Sec pathway in a wild-type strain reduced Ag43 production but did not significantly affect the synthesis of other presecretory proteins. Taken together, these results indicate that Ag43 gene expression is exquisitely sensitive to the status of the Sec machinery and strongly suggest that the L22 mutation decreases the Ag43 concentration indirectly by reducing secA expression. Our results imply the existence of a novel regulatory mechanism in which the efficiency of protein export is coupled to gene expression and help to explain the modulation of SecA synthesis that has been observed in response to secretion stress.
Collapse
|
52
|
A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration. Nat Struct Mol Biol 2012; 19:1018-22. [PMID: 23001004 DOI: 10.1038/nsmb.2376] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 08/07/2012] [Indexed: 11/08/2022]
Abstract
Membrane proteins destined for insertion into the inner membrane of bacteria or the endoplasmic reticulum membrane in eukaryotic cells are synthesized by ribosomes bound to the bacterial SecYEG or the homologous eukaryotic Sec61 translocon. During co-translational membrane integration, transmembrane α-helical segments in the nascent chain exit the translocon through a lateral gate that opens toward the surrounding membrane, but the mechanism of lateral exit is not well understood. In particular, little is known about how a transmembrane helix behaves when entering and exiting the translocon. Using translation-arrest peptides from bacterial SecM proteins and from the mammalian Xbp1 protein as force sensors, we show that substantial force is exerted on a transmembrane helix at two distinct points during its transit through the translocon channel, providing direct insight into the dynamics of membrane integration.
Collapse
|
53
|
Chiba S, Ito K. Multisite ribosomal stalling: a unique mode of regulatory nascent chain action revealed for MifM. Mol Cell 2012; 47:863-72. [PMID: 22864117 DOI: 10.1016/j.molcel.2012.06.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/25/2012] [Accepted: 06/20/2012] [Indexed: 11/30/2022]
Abstract
Bacillus subtilis MifM uses polypeptide-instructed ribosomal stalling to control translation of YidC2, a membrane protein biogenesis factor. In contrast to other stalling systems involving a single arrest point, our in vitro translation/toeprint experiments show that the B. subtilis ribosome stalls consecutively at multiple codons of MifM. This mode of elongation arrest depends on nascent chain residues at the middle of the ribosomal exit tunnel and a few (four for the maximum functionality) negative charges residing proximally to the arrest points. The latter element does not require exact amino acid sequence, and this feature may underlie the multisite stalling. The arrested nascent chains were not efficiently transferred to puromycin, suggesting that growing MifM nascent chains inhibit peptidyl transferase center after acquiring an acidic residue(s). Multisite stalling seems to provide a unique means for MifM to achieve a sufficient duration of ribosomal stalling required for the regulatory function.
Collapse
Affiliation(s)
- Shinobu Chiba
- Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| | | |
Collapse
|
54
|
Gumbart J, Schreiner E, Wilson DN, Beckmann R, Schulten K. Mechanisms of SecM-mediated stalling in the ribosome. Biophys J 2012; 103:331-41. [PMID: 22853911 DOI: 10.1016/j.bpj.2012.06.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 06/01/2012] [Accepted: 06/05/2012] [Indexed: 02/05/2023] Open
Abstract
Nascent-peptide modulation of translation is a common regulatory mechanism of gene expression. In this mechanism, while the nascent peptide is still in the exit tunnel of the ribosome, it induces translational pausing, thereby controlling the expression of downstream genes. One example is SecM, which inhibits peptide-bond formation in the ribosome's peptidyl transferase center (PTC) during its own translation, upregulating the expression of the protein translocase SecA. Although biochemical experiments and cryo-electron microscopy data have led to the identification of some residues involved in SecM recognition, the full pathway of interacting residues that connect SecM to the PTC through the ribosome has not yet been conclusively established. Here, using the cryo-electron microscopy data, we derived the first (to our knowledge) atomic model of the SecM-stalled ribosome via molecular-dynamics flexible fitting, complete with P- and A-site tRNAs. Subsequently, we carried out simulations of native and mutated SecM-stalled ribosomes to investigate possible interaction pathways between a critical SecM residue, R163, and the PTC. In particular, the simulations reveal the role of SecM in altering the position of the tRNAs in the ribosome, and thus demonstrate how the presence of SecM in the exit tunnel induces stalling. Finally, steered molecular-dynamics simulations in which SecM was pulled toward the tunnel exit suggest how SecA interacting with SecM from outside the ribosome relieves stalling.
Collapse
Affiliation(s)
- James Gumbart
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, USA
| | | | | | | | | |
Collapse
|
55
|
Lin KF, Sun CS, Huang YC, Chan SI, Koubek J, Wu TH, Huang JJT. Cotranslational protein folding within the ribosome tunnel influences trigger-factor recruitment. Biophys J 2012; 102:2818-27. [PMID: 22735532 DOI: 10.1016/j.bpj.2012.04.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 11/26/2022] Open
Abstract
In recent years, various folding zones within the ribosome tunnel have been identified and explored through x-ray, cryo-electron microscopy (cryo-EM), and molecular biology studies. Here, we generated ribosome-bound nascent polypeptide complexes (RNCs) with different polyalanine (poly-A) inserts or signal peptides from membrane/secretory proteins to explore the influence of nascent chain compaction in the Escherichia coli ribosome tunnel on chaperone recruitment. By employing time-resolved fluorescence resonance energy transfer and immunoblotting, we were able to show that the poly-A inserts embedded in the passage tunnel can form a compacted structure (presumably helix) and reduce the recruitment of Trigger Factor (TF) when the helical motif is located in the region near the tunnel exit. Similar experiments on nascent chains containing signal sequences that may form compacted structural motifs within the ribosome tunnel and lure the signal recognition particle (SRP) to the ribosome, provided additional evidence that short, compacted nascent chains interfere with TF binding. These findings shed light on the possible controlling mechanism of nascent chains within the tunnel that leads to chaperone recruitment, as well as the function of L23, the ribosomal protein that serves as docking sites for both TF and SRP, in cotranslational protein targeting.
Collapse
Affiliation(s)
- Ku-Feng Lin
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
56
|
The arginine attenuator peptide interferes with the ribosome peptidyl transferase center. Mol Cell Biol 2012; 32:2396-406. [PMID: 22508989 DOI: 10.1128/mcb.00136-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungal arginine attenuator peptide (AAP) is encoded by a regulatory upstream open reading frame (uORF). The AAP acts as a nascent peptide within the ribosome tunnel to stall translation in response to arginine (Arg). The effect of AAP and Arg on ribosome peptidyl transferase center (PTC) function was analyzed in Neurospora crassa and wheat germ translation extracts using the transfer of nascent AAP to puromycin as an assay. In the presence of a high concentration of Arg, the wild-type AAP inhibited PTC function, but a mutated AAP that lacked stalling activity did not. While AAP of wild-type length was most efficient at stalling ribosomes, based on primer extension inhibition (toeprint) assays and reporter synthesis assays, a window of inhibitory function spanning four residues was observed at the AAP's C terminus. The data indicate that inhibition of PTC function by the AAP in response to Arg is the basis for the AAP's function of stalling ribosomes at the uORF termination codon. Arg could interfere with PTC function by inhibiting peptidyltransferase activity and/or by restricting PTC A-site accessibility. The mode of PTC inhibition appears unusual because neither specific amino acids nor a specific nascent peptide chain length was required for AAP to inhibit PTC function.
Collapse
|
57
|
Martínez AK, Shirole NH, Murakami S, Benedik MJ, Sachs MS, Cruz-Vera LR. Crucial elements that maintain the interactions between the regulatory TnaC peptide and the ribosome exit tunnel responsible for Trp inhibition of ribosome function. Nucleic Acids Res 2011; 40:2247-57. [PMID: 22110039 PMCID: PMC3299997 DOI: 10.1093/nar/gkr1052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Translation of the TnaC nascent peptide inhibits ribosomal activity in the presence of l-tryptophan, inducing expression of the tnaCAB operon in Escherichia coli. Using chemical methylation, this work reveals how interactions between TnaC and the ribosome are affected by mutations in both molecules. The presence of the TnaC-tRNAPro peptidyl-tRNA within the ribosome protects the 23S rRNA nucleotide U2609 against chemical methylation. Such protection was not observed in mutant ribosomes containing changes in 23S rRNA nucleotides of the A748–A752 region. Nucleotides A752 and U2609 establish a base-pair interaction. Most replacements of either A752 or U2609 affected Trp induction of a TnaC-regulated LacZ reporter. However, the single change A752G, or the dual replacements A752G and U2609C, maintained Trp induction. Replacements at the conserved TnaC residues W12 and D16 also abolished the protection of U2609 by TnaC-tRNAPro against chemical methylation. These data indicate that the TnaC nascent peptide in the ribosome exit tunnel interacts with the U2609 nucleotide when the ribosome is Trp responsive. This interaction is affected by mutational changes in exit tunnel nucleotides of 23S rRNA, as well as in conserved TnaC residues, suggesting that they affect the structure of the exit tunnel and/or the nascent peptide configuration in the tunnel.
Collapse
Affiliation(s)
- Allyson K Martínez
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
58
|
Identification of a hyperactive variant of the SecM motif involved in ribosomal arrest. Curr Microbiol 2011; 64:17-23. [PMID: 21971705 DOI: 10.1007/s00284-011-0027-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 09/17/2011] [Indexed: 10/17/2022]
Abstract
Recent studies in several organisms have shown that certain nascent sticky peptides stall in the ribosome during their own translation. Amino acid sequences present at the C-terminal part of Escherichia coli SecM ((150)FSTPVWISQAQGIRAGP(166)) have a well-characterized role in ribosome stalling. To investigate the determinants of the SecM motif responsible for ribosome stalling, we performed a genetic screen for mutants with an altered SecM motif that resulted in altered ribosome stalling. To do this, we used a cat fusion construct containing the SecM motif and a myc-tag (cat'-'myc-secM). This construct expresses cat'-'myc-secM mRNA transcripts predominantly translated by a subset of ribosomes called specialized ribosomes that recognize an altered ribosome binding sequence in the mRNA. While all of the isolated mutants containing mutations at the functionally conserved amino acid residues at positions between 161 and 166 showed decreased ribosome stalling, one mutant sequence containing an amino acid substitution from serine to lysine at position 157 (S157K) showed enhanced ribosome stalling that consequently increased mRNA cleavage. Our results reveal that a functionally not conserved amino acid residue at position 157 of SecM can also affect ribosome stalling and provide additional insight into the molecular mechanisms underlying sticky-peptide-induced ribosome arrest.
Collapse
|
59
|
The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr Opin Struct Biol 2011; 21:274-82. [PMID: 21316217 DOI: 10.1016/j.sbi.2011.01.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/16/2010] [Accepted: 01/19/2011] [Indexed: 12/14/2022]
Abstract
As the nascent polypeptide chain is being synthesized, it passes through a tunnel within the large ribosomal subunit and emerges at the solvent side where protein folding occurs. Despite the universality and conservation of dimensions of the ribosomal tunnel, a functional role for the ribosomal tunnel is only beginning to emerge: Rather than a passive conduit for the nascent chain, accumulating evidence indicates that the tunnel plays a more active role. In this article, we discuss recent structural insights into the role of the tunnel environment, and its implications for protein folding, co-translational targeting and translation regulation.
Collapse
|
60
|
Yap MN, Bernstein HD. The translational regulatory function of SecM requires the precise timing of membrane targeting. Mol Microbiol 2011; 81:540-53. [PMID: 21635582 DOI: 10.1111/j.1365-2958.2011.07713.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In Escherichia coli, secA expression is regulated at the translational level by an upstream gene (secM) that encodes a presecretory protein. SecM contains a C-terminal sequence motif that induces a transient translation arrest. Inhibition of SecM membrane targeting prolongs the translation arrest and increases SecA synthesis by concomitantly altering the structure of the secM-secA mRNA. Here we show that the SecM signal peptide plays an essential role in this regulatory process by acting as a molecular timer that co-ordinates membrane targeting with the synthesis of the arrest motif. We found that signal peptide mutations that alter targeting kinetics and insertions or deletions that change the distance between the SecM signal peptide and the arrest motif perturb the balance between the onset and release of arrest that is required to regulate SecA synthesis. Furthermore, we found that the strength of the interaction between the ribosome and the SecM arrest motif is calibrated to ensure the release of arrest upon membrane targeting. Our results strongly suggest that several distinctive features of the SecM protein evolved as a consequence of constraints imposed by the ribosome and the Sec machinery.
Collapse
Affiliation(s)
- Mee-Ngan Yap
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
61
|
Lu J, Hua Z, Kobertz WR, Deutsch C. Nascent peptide side chains induce rearrangements in distinct locations of the ribosomal tunnel. J Mol Biol 2011; 411:499-510. [PMID: 21663746 DOI: 10.1016/j.jmb.2011.05.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
Abstract
Although we have numerous structures of ribosomes, none disclose side-chain rearrangements of the nascent peptide during chain elongation. This study reports for the first time that rearrangement of the peptide and/or tunnel occurs in distinct regions of the tunnel and is directed by the unique primary sequence of each nascent peptide. In the tunnel mid-region, the accessibility of an introduced cysteine to a series of novel hydrophilic maleimide reagents increases with increasing volume of the adjacent chain residue, a sensitivity not manifest at the constriction and exit port. This surprising result reveals molecular movements not yet resolvable from structural studies. These findings map solvent-accessible volumes along the tunnel and provide novel insights critical to our understanding of allosteric communication within the ribosomal tunnel, translational arrest, chaperone interaction, folding, and rates of elongation.
Collapse
Affiliation(s)
- Jianli Lu
- Department of Physiology, University of Pennsylvania, PA 19104, USA
| | | | | | | |
Collapse
|
62
|
Jha S, Komar AA. Birth, life and death of nascent polypeptide chains. Biotechnol J 2011; 6:623-40. [PMID: 21538896 PMCID: PMC3130931 DOI: 10.1002/biot.201000327] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/26/2011] [Accepted: 03/15/2011] [Indexed: 01/16/2023]
Abstract
The journey of nascent polypeptides from synthesis at the peptidyl transferase center of the ribosome (“birth”) to full function (“maturity”) involves multiple interactions, constraints, modifications and folding events. Each step of this journey impacts the ultimate expression level and functional capacity of the translated protein. It has become clear that the kinetics of protein translation is predominantly modulated by synonymous codon usage along the mRNA, and that this provides an active mechanism for coordinating the synthesis, maturation and folding of nascent polypeptides. Multiple quality control systems ensure that proteins achieve their native, functional form. Unproductive co-translational folding intermediates that arise during protein synthesis may undergo enhanced interaction with components of these systems, such as chaperones, and/or be subjects of co-translational degradation (“death”). This review provides an overview of our current understanding of the complex co-translational events that accompany the synthesis, maturation, folding and degradation of nascent polypeptide chains.
Collapse
Affiliation(s)
- Sujata Jha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | |
Collapse
|
63
|
|
64
|
Ramu H, Vázquez-Laslop N, Klepacki D, Dai Q, Piccirilli J, Micura R, Mankin AS. Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center. Mol Cell 2011; 41:321-30. [PMID: 21292164 DOI: 10.1016/j.molcel.2010.12.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 10/30/2010] [Accepted: 11/11/2010] [Indexed: 11/28/2022]
Abstract
The ability to monitor the nascent peptide structure and to respond functionally to specific nascent peptide sequences is a fundamental property of the ribosome. An extreme manifestation of such response is nascent peptide-dependent ribosome stalling, involved in the regulation of gene expression. The molecular mechanisms of programmed translation arrest are unclear. By analyzing ribosome stalling at the regulatory cistron of the antibiotic resistance gene ermA, we uncovered a carefully orchestrated cooperation between the ribosomal exit tunnel and the A-site of the peptidyl transferase center (PTC) in halting translation. The presence of an inducing antibiotic and a specific nascent peptide in the exit tunnel abrogate the ability of the PTC to catalyze peptide bond formation with a particular subset of amino acids. The extent of the conferred A-site selectivity is modulated by the C-terminal segment of the nascent peptide, where the third-from-last residue plays a critical role.
Collapse
Affiliation(s)
- Haripriya Ramu
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, IL 60607, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
In this issue of Molecular Cell, Ramu et al. demonstrate that nascent peptides located within the ribosomal tunnel can talk back to the peptidyl transferase center to induce translational stalling by restricting the species of aminoacyl-tRNAs that can bind there.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department for Biochemistry, Center for Protein Science-Munich (CiPS-M), University of Munich, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany.
| |
Collapse
|
66
|
Orchestrating ribosomal activity from inside: effects of the nascent chain on the peptidyltransferase centre. Biochem Soc Trans 2011; 38:1576-80. [PMID: 21118129 DOI: 10.1042/bst0381576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ribosomal progression through the open reading frames within mRNAs is frequently considered as uneventful when compared with the highly regulated initiation step. However, both RNA and nascent peptide can interact with the ribosome to influence how translation proceeds and can modify gene expression in several ways. 2A peptides are a class of sequences that, as nascent chains, pause ribosomes and drive a translation-termination reaction on a sense (proline) codon, followed by continued downstream translation. In the present paper, what is known about the 2A reaction is discussed, and 2A is compared with other sequences that, as nascent peptides, pause or stall translation.
Collapse
|
67
|
Nascent polypeptide sequences that influence ribosome function. Curr Opin Microbiol 2011; 14:160-6. [PMID: 21342782 DOI: 10.1016/j.mib.2011.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/28/2011] [Indexed: 11/23/2022]
Abstract
Ribosomes catalyze protein synthesis using transfer RNAs and auxiliary proteins. Historically, ribosomes have been considered nonspecific translational machines, having no regulatory functions. However, a new class of regulatory mechanisms has been discovered that is based on interactions occurring within the ribosomal peptide exit tunnel that result in ribosome stalling during translation of an appropriate mRNA segment. These discoveries reveal an unexpectedly dynamic role ribosomes play in regulating their own activity. By using nascent leader peptides in combination with bound specific amino acids or antibiotics, ribosome functions can be altered significantly resulting in regulated expression of downstream coding regions. This review summarizes relevant findings in recent articles and outlines our current understanding of nascent peptide-induced ribosome stalling in regulating gene expression.
Collapse
|
68
|
Onoue N, Yamashita Y, Nagao N, Goto DB, Onouchi H, Naito S. S-adenosyl-L-methionine induces compaction of nascent peptide chain inside the ribosomal exit tunnel upon translation arrest in the Arabidopsis CGS1 gene. J Biol Chem 2011; 286:14903-12. [PMID: 21335553 PMCID: PMC3083191 DOI: 10.1074/jbc.m110.211656] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the Arabidopsis CGS1 gene, encoding the first committed enzyme of methionine biosynthesis, is feedback-regulated in response to S-adenosyl-L-methionine (AdoMet) at the mRNA level. This regulation is first preceded by temporal arrest of CGS1 translation elongation at the Ser-94 codon. AdoMet is specifically required for this translation arrest, although the mechanism by which AdoMet acts with the CGS1 nascent peptide remained elusive. We report here that the nascent peptide of CGS1 is induced to form a compact conformation within the exit tunnel of the arrested ribosome in an AdoMet-dependent manner. Cysteine residues introduced into CGS1 nascent peptide showed reduced ability to react with polyethyleneglycol maleimide in the presence of AdoMet, consistent with a shift into the ribosomal exit tunnel. Methylation protection and UV cross-link assays of 28 S rRNA revealed that induced compaction of nascent peptide is associated with specific changes in methylation protection and UV cross-link patterns in the exit tunnel wall. A 14-residue stretch of amino acid sequence, termed the MTO1 region, has been shown to act in cis for CGS1 translation arrest and mRNA degradation. This regulation is lost in the presence of mto1 mutations, which cause single amino acid alterations within MTO1. In this study, both the induced peptide compaction and exit tunnel change were found to be disrupted by mto1 mutations. These results suggest that the MTO1 region participates in the AdoMet-induced arrest of CGS1 translation by mediating changes of the nascent peptide and the exit tunnel wall.
Collapse
Affiliation(s)
- Noriyuki Onoue
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
69
|
Bhushan S, Hoffmann T, Seidelt B, Frauenfeld J, Mielke T, Berninghausen O, Wilson DN, Beckmann R. SecM-stalled ribosomes adopt an altered geometry at the peptidyl transferase center. PLoS Biol 2011; 9:e1000581. [PMID: 21267063 PMCID: PMC3022528 DOI: 10.1371/journal.pbio.1000581] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/02/2010] [Indexed: 11/18/2022] Open
Abstract
A structure of a ribosome stalled during translation of the SecM peptide provides insight into the mechanism by which the large subunit active site is inactivated. As nascent polypeptide chains are synthesized, they pass through a tunnel in the large ribosomal subunit. Interaction between specific nascent chains and the ribosomal tunnel is used to induce translational stalling for the regulation of gene expression. One well-characterized example is the Escherichia coli SecM (secretion monitor) gene product, which induces stalling to up-regulate translation initiation of the downstream secA gene, which is needed for protein export. Although many of the key components of SecM and the ribosomal tunnel have been identified, understanding of the mechanism by which the peptidyl transferase center of the ribosome is inactivated has been lacking. Here we present a cryo-electron microscopy reconstruction of a SecM-stalled ribosome nascent chain complex at 5.6 Å. While no cascade of rRNA conformational changes is evident, this structure reveals the direct interaction between critical residues of SecM and the ribosomal tunnel. Moreover, a shift in the position of the tRNA–nascent peptide linkage of the SecM-tRNA provides a rationale for peptidyl transferase center silencing, conditional on the simultaneous presence of a Pro-tRNAPro in the ribosomal A-site. These results suggest a distinct allosteric mechanism of regulating translational elongation by the SecM stalling peptide. In all cells, ribosomes perform the job of making proteins. As the proteins are synthesized they pass through a tunnel in the ribosome, and some growing proteins interact with the tunnel, leading to stalling of protein synthesis. Here, we used cryo-electron microscopy to determine the structure of a ribosome stalled during the translation of the Escherichia coli secretion monitor (SecM) polypeptide chain. The structure reveals the path of the SecM peptide through the tunnel as well as the sites of interaction with the tunnel components. Interestingly, the structure shows a shift in the position of the transfer RNA (tRNA) to which the growing SecM polypeptide chain is attached. Since peptide bond formation during protein synthesis requires precise placement of the substrates, namely, the peptidyl-tRNA and the incoming amino acyl-tRNA, it is proposed that this shift in the SecM-tRNA explains why peptide bond formation cannot occur and translation stalls.
Collapse
Affiliation(s)
- Shashi Bhushan
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - Thomas Hoffmann
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - Birgit Seidelt
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - Jens Frauenfeld
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - Thorsten Mielke
- UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institut für Medizinische Physik und Biophysik, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Otto Berninghausen
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - Daniel N. Wilson
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, Munich, Germany
- * E-mail: (DNW); (RB)
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, Munich, Germany
- * E-mail: (DNW); (RB)
| |
Collapse
|
70
|
Bogdanov AA, Sumbatyan NV, Shishkina AV, Karpenko VV, Korshunova GA. Ribosomal tunnel and translation regulation. BIOCHEMISTRY (MOSCOW) 2011; 75:1501-16. [DOI: 10.1134/s0006297910130018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
71
|
Gurvich OL, Näsvall SJ, Baranov PV, Björk GR, Atkins JF. Two groups of phenylalanine biosynthetic operon leader peptides genes: a high level of apparently incidental frameshifting in decoding Escherichia coli pheL. Nucleic Acids Res 2010; 39:3079-92. [PMID: 21177642 PMCID: PMC3082878 DOI: 10.1093/nar/gkq1272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bacterial pheL gene encodes the leader peptide for the phenylalanine biosynthetic operon. Translation of pheL mRNA controls transcription attenuation and, consequently, expression of the downstream pheA gene. Fifty-three unique pheL genes have been identified in sequenced genomes of the gamma subdivision. There are two groups of pheL genes, both of which are short and contain a run(s) of phenylalanine codons at an internal position. One group is somewhat diverse and features different termination and 5'-flanking codons. The other group, mostly restricted to Enterobacteria and including Escherichia coli pheL, has a conserved nucleotide sequence that ends with UUC_CCC_UGA. When these three codons in E. coli pheL mRNA are in the ribosomal E-, P- and A-sites, there is an unusually high level, 15%, of +1 ribosomal frameshifting due to features of the nascent peptide sequence that include the penultimate phenylalanine. This level increases to 60% with a natural, heterologous, nascent peptide stimulator. Nevertheless, studies with different tRNA(Pro) mutants in Salmonella enterica suggest that frameshifting at the end of pheL does not influence expression of the downstream pheA. This finding of incidental, rather than utilized, frameshifting is cautionary for other studies of programmed frameshifting.
Collapse
Affiliation(s)
- Olga L Gurvich
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | | | | | | | | |
Collapse
|
72
|
Bhushan S, Meyer H, Starosta AL, Becker T, Mielke T, Berninghausen O, Sattler M, Wilson DN, Beckmann R. Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide. Mol Cell 2010; 40:138-46. [PMID: 20932481 DOI: 10.1016/j.molcel.2010.09.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/28/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
Abstract
Specific regulatory nascent chains establish direct interactions with the ribosomal tunnel, leading to translational stalling. Despite a wealth of biochemical data, structural insight into the mechanism of translational stalling in eukaryotes is still lacking. Here we use cryo-electron microscopy to visualize eukaryotic ribosomes stalled during the translation of two diverse regulatory peptides: the fungal arginine attenuator peptide (AAP) and the human cytomegalovirus (hCMV) gp48 upstream open reading frame 2 (uORF2). The C terminus of the AAP appears to be compacted adjacent to the peptidyl transferase center (PTC). Both nascent chains interact with ribosomal proteins L4 and L17 at tunnel constriction in a distinct fashion. Significant changes at the PTC were observed: the eukaryotic-specific loop of ribosomal protein L10e establishes direct contact with the CCA end of the peptidyl-tRNA (P-tRNA), which may be critical for silencing of the PTC during translational stalling. Our findings provide direct structural insight into two distinct eukaryotic stalling processes.
Collapse
Affiliation(s)
- Shashi Bhushan
- Gene Center and Department of Biochemistry and Center for integrated Protein Science Munich, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Peterson JH, Woolhead CA, Bernstein HD. The conformation of a nascent polypeptide inside the ribosome tunnel affects protein targeting and protein folding. Mol Microbiol 2010; 78:203-17. [PMID: 20804452 DOI: 10.1111/j.1365-2958.2010.07325.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this report, we describe insights into the function of the ribosome tunnel that were obtained through an analysis of an unusual 25 residue N-terminal motif (EspP(1-25) ) associated with the signal peptide of the Escherichia coli EspP protein. It was previously shown that EspP(1-25) inhibits signal peptide recognition by the signal recognition particle, and we now show that fusion of EspP(1-25) to a cytoplasmic protein causes it to aggregate. We obtained two lines of evidence that both of these effects are attributable to the conformation of EspP(1-25) inside the ribosome tunnel. First, we found that mutations in EspP(1-25) that abolished its effects on protein targeting and protein folding altered the cross-linking of short nascent chains to ribosomal components. Second, we found that a mutation in L22 that distorts the tunnel mimicked the effects of the EspP(1-25) mutations on protein biogenesis. Our results provide evidence that the conformation of a polypeptide inside the ribosome tunnel can influence protein folding under physiological conditions and suggest that ribosomal mutations might increase the solubility of at least some aggregation-prone proteins produced in E. coli.
Collapse
Affiliation(s)
- Janine H Peterson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0538, USA
| | | | | |
Collapse
|
74
|
Vázquez-Laslop N, Ramu H, Klepacki D, Kannan K, Mankin AS. The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide. EMBO J 2010; 29:3108-17. [PMID: 20676057 DOI: 10.1038/emboj.2010.180] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 07/06/2010] [Indexed: 11/09/2022] Open
Abstract
The ribosome is able to monitor the structure of the nascent peptide and can stall in response to specific peptide sequences. Such programmed stalling is used for the regulation of gene expression. The molecular mechanisms of the nascent-peptide recognition and ribosome stalling are unknown. We identified the conserved and posttranscriptionally modified 23S rRNA nucleotide m(2)A2503 located at the entrance of the ribosome exit tunnel as a key component of the ribosomal response mechanism. A2503 mutations abolish nascent-peptide-dependent stalling at the leader cistrons of several inducible antibiotic resistance genes and at the secM regulatory gene. Remarkably, lack of the C2 methylation of A2503 significantly function induction of expression of the ermC gene, indicating that the functional role of posttranscriptional modification is to fine-tune ribosome-nascent peptide interactions. Structural and biochemical evidence suggest that m(2)A2503 may act in concert with the previously identified nascent-peptide sensor, A2062, in the ribosome exit tunnel to relay the stalling signal to the peptidyl transferase centre.
Collapse
Affiliation(s)
- Nora Vázquez-Laslop
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL, USA.
| | | | | | | | | |
Collapse
|
75
|
Ito K, Chiba S, Pogliano K. Divergent stalling sequences sense and control cellular physiology. Biochem Biophys Res Commun 2010; 393:1-5. [PMID: 20117091 DOI: 10.1016/j.bbrc.2010.01.073] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 01/16/2010] [Indexed: 10/19/2022]
Abstract
Recent studies have identified several amino acid sequences that interact with the ribosomal interior components and arrest their own elongation. Whereas stalling of the inducible class depends on specific low-molecular weight compounds, that of the intrinsic class is released when the nascent chain is transported across or inserted into the membrane. The stalled ribosome alters messenger RNA secondary structure and thereby contributes to regulation of the cis-located target gene expression at different levels. The stalling sequences are divergent but likely to utilize non-uniform nature of the peptide bond formation reactions and are recruited relatively recently to different biological systems, possibly including those to be identified in forthcoming studies.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.
| | | | | |
Collapse
|
76
|
Clark PL, Ugrinov KG. Measuring cotranslational folding of nascent polypeptide chains on ribosomes. Methods Enzymol 2009; 466:567-90. [PMID: 21609877 DOI: 10.1016/s0076-6879(09)66024-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein folding has been studied extensively in vitro, but much less is known about how folding proceeds in vivo. A particular distinction of folding in vivo is that folding begins while the nascent polypeptide chain is still undergoing synthesis by the ribosome. Studies of cotranslational protein folding are inherently much more complex than classical in vitro protein folding studies, and historically there have been few methods available to produce the quantities of pure material required for biophysical studies of the nascent chain, or assays to specifically interrogate its conformation. However, the past few years have produced dramatic methodological advances, which now place cotranslational folding studies within reach of more biochemists, enabling a detailed comparison of the earliest stages of protein folding on the ribosome to the wealth of information available for the refolding of full-length polypeptide chains in vitro.
Collapse
Affiliation(s)
- Patricia L Clark
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | | |
Collapse
|
77
|
Seidelt B, Innis CA, Wilson DN, Gartmann M, Armache JP, Villa E, Trabuco LG, Becker T, Mielke T, Schulten K, Steitz TA, Beckmann R. Structural insight into nascent polypeptide chain-mediated translational stalling. Science 2009; 326:1412-5. [PMID: 19933110 DOI: 10.1126/science.1177662] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Expression of the Escherichia coli tryptophanase operon depends on ribosome stalling during translation of the upstream TnaC leader peptide, a process for which interactions between the TnaC nascent chain and the ribosomal exit tunnel are critical. We determined a 5.8 angstrom-resolution cryo-electron microscopy and single-particle reconstruction of a ribosome stalled during translation of the tnaC leader gene. The nascent chain was extended within the exit tunnel, making contacts with ribosomal components at distinct sites. Upon stalling, two conserved residues within the peptidyltransferase center adopted conformations that preclude binding of release factors. We propose a model whereby interactions within the tunnel are relayed to the peptidyltransferase center to inhibit translation. Moreover, we show that nascent chains adopt distinct conformations within the ribosomal exit tunnel.
Collapse
Affiliation(s)
- Birgit Seidelt
- Gene Center and Center for Integrated Protein Science Munich (CIPSM), Department for Chemistry and Biochemistry, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Tanner DR, Cariello DA, Woolstenhulme CJ, Broadbent MA, Buskirk AR. Genetic identification of nascent peptides that induce ribosome stalling. J Biol Chem 2009; 284:34809-18. [PMID: 19840930 DOI: 10.1074/jbc.m109.039040] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several nascent peptides stall ribosomes during their own translation in both prokaryotes and eukaryotes. Leader peptides that induce stalling can regulate downstream gene expression. Interestingly, stalling peptides show little sequence similarity and interact with the ribosome through distinct mechanisms. To explore the scope of regulation by stalling peptides and to better understand the mechanism of stalling, we identified and characterized new examples from random libraries. We created a genetic selection that ties the life of Escherichia coli cells to stalling at a specific site. This selection relies on the natural bacterial system that rescues arrested ribosomes. We altered transfer-messenger RNA, a key component of this rescue system, to direct the completion of a necessary protein if and only if stalling occurs. We identified three classes of stalling peptides: C-terminal Pro residues, SecM-like peptides, and the novel stalling sequence FXXYXIWPP. Like the leader peptides SecM and TnaC, the FXXYXIWPP peptide induces stalling efficiently by inhibiting peptidyl transfer. The nascent peptide exit tunnel and peptidyltransferase center are implicated in this stalling event, although mutations in the ribosome affect stalling on SecM and FXXYXIWPP differently. We conclude that ribosome stalling can be caused by numerous sequences and is more common than previously believed.
Collapse
Affiliation(s)
- Douglas R Tanner
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | | | | | | | | |
Collapse
|
79
|
Chiba S, Lamsa A, Pogliano K. A ribosome-nascent chain sensor of membrane protein biogenesis in Bacillus subtilis. EMBO J 2009; 28:3461-75. [PMID: 19779460 DOI: 10.1038/emboj.2009.280] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 08/12/2009] [Indexed: 11/09/2022] Open
Abstract
Proteins in the YidC/Oxa1/Alb3 family have essential functions in membrane protein insertion and folding. Bacillus subtilis encodes two YidC homologs, one that is constitutively expressed (spoIIIJ/yidC1) and a second (yqjG/yidC2) that is induced in spoIIIJ mutants. Regulated induction of yidC2 allows B. subtilis to maintain capacity of the membrane protein insertion pathway. We here show that a gene located upstream of yidC2 (mifM/yqzJ) serves as a sensor of SpoIIIJ activity that regulates yidC2 translation. Decreased SpoIIIJ levels or deletion of the MifM transmembrane domain arrests mifM translation and unfolds an mRNA hairpin that otherwise blocks initiation of yidC2 translation. This regulated translational arrest and yidC2 induction require a specific interaction between the MifM C-terminus and the ribosomal polypeptide exit tunnel. MifM therefore acts as a ribosome-nascent chain complex rather than as a fully synthesized protein. B. subtilis MifM and the previously described secretion monitor SecM in Escherichia coli thereby provide examples of the parallel evolution of two regulatory nascent chains that monitor different protein export pathways by a shared molecular mechanism.
Collapse
Affiliation(s)
- Shinobu Chiba
- Division of Biological Sciences, University of California, San Diego, CA, USA
| | | | | |
Collapse
|
80
|
Tryptophan inhibits Proteus vulgaris TnaC leader peptide elongation, activating tna operon expression. J Bacteriol 2009; 191:7001-6. [PMID: 19767424 DOI: 10.1128/jb.01002-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the tna operon of Escherichia coli and of Proteus vulgaris is induced by L-tryptophan. In E. coli, tryptophan action is dependent on the presence of several critical residues (underlined) in the newly synthesized TnaC leader peptide, WFNIDXXL/IXXXXP. These residues are conserved in TnaC of P. vulgaris and of other bacterial species. TnaC of P. vulgaris has one additional feature, distinguishing it from TnaC of E. coli; it contains two C-terminal lysine residues following the conserved proline residue. In the present study, we investigated L-tryptophan induction of the P. vulgaris tna operon, transferred on a plasmid into E. coli. Induction was shown to be L-tryptophan dependent; however, the range of induction was less than that observed for the E. coli tna operon. We compared the genetic organization of both operons and predicted similar folding patterns for their respective leader mRNA segments. However, additional analyses revealed that L-tryptophan action in the P. vulgaris tna operon involves inhibition of TnaC elongation, following addition of proline, rather than inhibition of leader peptide termination. Our findings also establish that the conserved residues in TnaC of P. vulgaris are essential for L-tryptophan induction, and for inhibition of peptide elongation. TnaC synthesis is thus an excellent model system for studies of regulation of both peptide termination and peptide elongation, and for studies of ribosome recognition of the features of a nascent peptide.
Collapse
|