51
|
Abstract
Cells adapt to their environment by linking external stimuli to an intricate network of transcriptional, post-transcriptional and translational processes. Among these, mechanisms that couple environmental cues to the regulation of protein translation are not well understood. Chemical modifications of RNA allow rapid cellular responses to external stimuli by modulating a wide range of fundamental biochemical properties and processes, including the stability, splicing and translation of messenger RNA. In this Review, we focus on the occurrence of N6-methyladenosine (m6A), 5-methylcytosine (m5C) and pseudouridine (Ψ) in RNA, and describe how these RNA modifications are implicated in regulating pluripotency, stem cell self-renewal and fate specification. Both post-transcriptional modifications and the enzymes that catalyse them modulate stem cell differentiation pathways and are essential for normal development.
Collapse
Affiliation(s)
- Michaela Frye
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Sandra Blanco
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, Derio, Bizkaia 48160, Spain
| |
Collapse
|
52
|
Ketele A, Kiss T, Jády BE. Human intron-encoded AluACA RNAs and telomerase RNA share a common element promoting RNA accumulation. RNA Biol 2016; 13:1274-1285. [PMID: 27726486 PMCID: PMC5207380 DOI: 10.1080/15476286.2016.1239689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Mammalian cells express hundreds of intron-encoded box H/ACA RNAs which fold into a common hairpin-hinge-hairpin-tail structure, interact with 4 evolutionarily conserved proteins, dyskerin, Nop10, Nhp2 and Gar1, and function mainly in RNA pseudouridylation. The human telomerase H/ACA RNA (hTR) directs telomeric DNA synthesis and it carries a 5'-terminal domain encompassing the telomeric template sequence. The primary hTR transcript is synthesized from an independent gene by RNA polymerase II and undergoes 3' end processing controlled by the 3'-terminal H/ACA domain. The apical stem-loop of the 3' hairpin of hTR carries a unique biogenesis-promoting element, the BIO motif that promotes hTR processing and RNP assembly. AluACA RNAs represent a distinct class of human H/ACA RNAs; they are processed from intronic Alu repetitive sequences. As compared to canonical H/ACA RNAs, the AluACA RNAs carry unusually short or long 5' hairpins and generally, they accumulate at low levels. Here, we demonstrate that the suboptimal 5' hairpins are responsible for the weak expression of AluACA RNAs. We also show that AluACA RNAs frequently carry a processing/stabilization element that is structurally and functionally indistinguishable from the hTR BIO motif. Both hTR and AluACA biogenesis-promoting elements are located in the terminal stem-loop of the 3'-terminal H/ACA hairpin, they show perfect structural conservation and are functionally interchangeable in in vivo RNA processing reactions. Our results demonstrate that the BIO motif, instead of being confined to hTR, is a more general H/ACA RNP biogenesis-facilitating element that can also promote processing/assembly of intron-encoded AluACA RNPs.
Collapse
Affiliation(s)
- Amandine Ketele
- a Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, Center de Biologie Intégrative, Université Paul Sabatier , Toulouse Cedex 9, France
| | - Tamás Kiss
- a Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, Center de Biologie Intégrative, Université Paul Sabatier , Toulouse Cedex 9, France.,b Biological Research Center, Hungarian Academy of Sciences , Szeged , Hungary
| | - Beáta E Jády
- a Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, Center de Biologie Intégrative, Université Paul Sabatier , Toulouse Cedex 9, France
| |
Collapse
|
53
|
Majumder M, Bosmeny MS, Gupta R. Structure-function relationships of archaeal Cbf5 during in vivo RNA-guided pseudouridylation. RNA (NEW YORK, N.Y.) 2016; 22:1604-1619. [PMID: 27539785 PMCID: PMC5029457 DOI: 10.1261/rna.057547.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/25/2016] [Indexed: 05/31/2023]
Abstract
In Eukarya and Archaea, in addition to protein-only pseudouridine (Ψ) synthases, complexes containing one guide RNA and four proteins can also produce Ψ. Cbf5 protein is the Ψ synthase in the complex. Previously, we showed that Ψ's at positions 1940, 1942, and 2605 of Haloferax volcanii 23S rRNA are absent in a cbf5-deleted strain, and a plasmid-borne copy of cbf5 can rescue the synthesis of these Ψ's. Based on published reports of the structure of archaeal Cbf5 complexed with other proteins and RNAs, we identified several potential residues and structures in H. volcanii Cbf5, which were expected to play important roles in pseudouridylation. We mutated these structures and determined their effects on Ψ production at the three rRNA positions under in vivo conditions. Mutations of several residues in the catalytic domain and certain residues in the thumb loop either abolished Ψ's or produced partial modification; the latter indicates a slower rate of Ψ formation. The universal catalytic aspartate of Ψ synthases could be replaced by glutamate in Cbf5. A conserved histidine, which is common to Cbf5 and TruB is not needed, but another conserved histidine of Cbf5 is required for the in vivo RNA-guided Ψ formation. We also identified a previously unreported novelty in the pseudouridylation activity of Cbf5 where a single stem-loop of a guide H/ACA RNA is used to produce two closely placed Ψ's and mutations of certain residues of Cbf5 abolished one of these two Ψ's. In summary, this first in vivo study identifies several structures of an archaeal Cbf5 protein that are important for its RNA-guided pseudouridylation activity.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Michael S Bosmeny
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| |
Collapse
|
54
|
Touw WG, van Beusekom B, Evers JMG, Vriend G, Joosten RP. Validation and correction of Zn-Cys xHis y complexes. Acta Crystallogr D Struct Biol 2016; 72:1110-1118. [PMID: 27710932 PMCID: PMC5053137 DOI: 10.1107/s2059798316013036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/12/2016] [Indexed: 11/10/2022] Open
Abstract
Many crystal structures in the Protein Data Bank contain zinc ions in a geometrically distorted tetrahedral complex with four Cys and/or His ligands. A method is presented to automatically validate and correct these zinc complexes. Analysis of the corrected zinc complexes shows that the average Zn-Cys distances and Cys-Zn-Cys angles are a function of the number of cysteines and histidines involved. The observed trends can be used to develop more context-sensitive targets for model validation and refinement.
Collapse
Affiliation(s)
- Wouter G. Touw
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Geert Grooteplein-Zuid 26-28, 6525 GA Nijmegen, The Netherlands
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Bart van Beusekom
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jochem M. G. Evers
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Geert Grooteplein-Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Gert Vriend
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Geert Grooteplein-Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Robbie P. Joosten
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
55
|
D'Ascenzo L, Leonarski F, Vicens Q, Auffinger P. 'Z-DNA like' fragments in RNA: a recurring structural motif with implications for folding, RNA/protein recognition and immune response. Nucleic Acids Res 2016; 44:5944-56. [PMID: 27151194 PMCID: PMC4937326 DOI: 10.1093/nar/gkw388] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/28/2016] [Indexed: 01/09/2023] Open
Abstract
Since the work of Alexander Rich, who solved the first Z-DNA crystal structure, we have known that d(CpG) steps can adopt a particular structure that leads to forming left-handed helices. However, it is still largely unrecognized that other sequences can adopt ‘left-handed’ conformations in DNA and RNA, in double as well as single stranded contexts. These ‘Z-like’ steps involve the coexistence of several rare structural features: a C2’-endo puckering, a syn nucleotide and a lone pair–π stacking between a ribose O4’ atom and a nucleobase. This particular arrangement induces a conformational stress in the RNA backbone, which limits the occurrence of Z-like steps to ≈0.1% of all dinucleotide steps in the PDB. Here, we report over 600 instances of Z-like steps, which are located within r(UNCG) tetraloops but also in small and large RNAs including riboswitches, ribozymes and ribosomes. Given their complexity, Z-like steps are probably associated with slow folding kinetics and once formed could lock a fold through the formation of unique long-range contacts. Proteins involved in immunologic response also specifically recognize/induce these peculiar folds. Thus, characterizing the conformational features of these motifs could be a key to understanding the immune response at a structural level.
Collapse
Affiliation(s)
- Luigi D'Ascenzo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France
| | - Filip Leonarski
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Quentin Vicens
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France
| | - Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France
| |
Collapse
|
56
|
Toffano-Nioche C, Gautheret D, Leclerc F. Revisiting the structure/function relationships of H/ACA(-like) RNAs: a unified model for Euryarchaea and Crenarchaea. Nucleic Acids Res 2015; 43:7744-61. [PMID: 26240384 PMCID: PMC4652768 DOI: 10.1093/nar/gkv756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/22/2023] Open
Abstract
A structural and functional classification of H/ACA and H/ACA-like motifs is obtained from the analysis of the H/ACA guide RNAs which have been identified previously in the genomes of Euryarchaea (Pyrococcus) and Crenarchaea (Pyrobaculum). A unified structure/function model is proposed based on the common structural determinants shared by H/ACA and H/ACA-like motifs in both Euryarchaea and Crenarchaea. Using a computational approach, structural and energetic rules for the guide:target RNA-RNA interactions are derived from structural and functional data on the H/ACA RNP particles. H/ACA(-like) motifs found in Pyrococcus are evaluated through the classification and their biological relevance is discussed. Extra-ribosomal targets found in both Pyrococcus and Pyrobaculum might support the hypothesis of a gene regulation mediated by H/ACA(-like) guide RNAs in archaea.
Collapse
Affiliation(s)
- Claire Toffano-Nioche
- I2BC, Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris Sud, 1 avenue de la terrasse, 91198 Gif sur Yvette, France
| | - Daniel Gautheret
- I2BC, Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris Sud, 1 avenue de la terrasse, 91198 Gif sur Yvette, France
| | - Fabrice Leclerc
- I2BC, Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris Sud, 1 avenue de la terrasse, 91198 Gif sur Yvette, France
| |
Collapse
|
57
|
Wang P, Yang L, Gao YQ, Zhao XS. Accurate placement of substrate RNA by Gar1 in H/ACA RNA-guided pseudouridylation. Nucleic Acids Res 2015. [PMID: 26206671 PMCID: PMC4551948 DOI: 10.1093/nar/gkv757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
H/ACA RNA-guided ribonucleoprotein particle (RNP), the most complicated RNA pseudouridylase so far known, uses H/ACA guide RNA for substrate capture and four proteins (Cbf5, Nop10, L7Ae and Gar1) for pseudouridylation. Although it was shown that Gar1 not only facilitates the product release, but also enhances the catalytic activity, the chemical role that Gar1 plays in this complicated machinery is largely unknown. Kinetics measurement on Pyrococcus furiosus RNPs at different temperatures making use of fluorescence anisotropy showed that Gar1 reduces the catalytic barrier through affecting the activation entropy instead of enthalpy. Site-directed mutagenesis combined with molecular dynamics simulations demonstrated that V149 in the thumb loop of Cbf5 is critical in placing the target uridine to the right position toward catalytic D85 of Cbf5. The enzyme elegantly aligns the position of uridine in the catalytic site with the help of Gar1. In addition, conversion of uridine to pseudouridine results in a rigid syn configuration of the target nucleotide in the active site and causes Gar1 to pull out the thumb. Both factors guarantee the efficient release of the product.
Collapse
Affiliation(s)
- Peng Wang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Lijiang Yang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Yi Qin Gao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xin Sheng Zhao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| |
Collapse
|
58
|
Tillault AS, Fourmann JB, Loegler C, Wieden HJ, Kothe U, Charpentier B. Contribution of two conserved histidines to the dual activity of archaeal RNA guide-dependent and -independent pseudouridine synthase Cbf5. RNA (NEW YORK, N.Y.) 2015; 21:1233-1239. [PMID: 25990001 PMCID: PMC4478342 DOI: 10.1261/rna.051425.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/09/2015] [Indexed: 06/01/2023]
Abstract
In all organisms, several distinct stand-alone pseudouridine synthase (PUS) family enzymes are expressed to isomerize uridine into pseudouridine (Ψ) by specific recognition of RNAs. In addition, Ψs are generated in Archaea and Eukaryotes by PUS enzymes which are organized as ribonucleoprotein particles (RNP)--the box H/ACA s/snoRNPs. For this modification system, a unique TruB-like catalytic PUS subunit is associated with various RNA guides which specifically target and secure substrate RNAs by base-pairing. The archaeal Cbf5 PUS displays the special feature of exhibiting both RNA guide-dependent and -independent activities. Structures of substrate-bound TruB and H/ACA sRNP revealed the importance of histidines in positioning the target uridine in the active site. To analyze the respective role of H60 and H77, we have generated variants carrying alanine substitutions at these positions. The impact of the mutations was analyzed for unguided modifications U(55) in tRNA and U2603 in 23S rRNA, and for activity of the box H/ACA Pab91 sRNP enzyme. H77 (H43 in TruB), but not H60, appeared to be crucial for the RNA guide-independent activity. In contrast to earlier suggestions, H60 was found to be noncritical for the activity of the H/ACA sRNP, but contributes together with H77 to the full activity of H/ACA sRNPs. The data suggest that a similar catalytic process was conserved in the two divergent pseudouridylation systems.
Collapse
Affiliation(s)
- Anne-Sophie Tillault
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 54505 Vandœuvre-lès-Nancy, France
| | - Jean-Baptiste Fourmann
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 54505 Vandœuvre-lès-Nancy, France
| | - Christine Loegler
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 54505 Vandœuvre-lès-Nancy, France
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Ute Kothe
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Bruno Charpentier
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
59
|
Saliou JM, Manival X, Tillault AS, Atmanene C, Bobo C, Branlant C, Van Dorsselaer A, Charpentier B, Cianférani S. Combining native MS approaches to decipher archaeal box H/ACA ribonucleoprotein particle structure and activity. Proteomics 2015; 15:2851-61. [DOI: 10.1002/pmic.201400529] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/06/2015] [Accepted: 02/24/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Jean-Michel Saliou
- BioOrganic Mass Spectrometry Laboratory (LSMBO); IPHC; Université de Strasbourg; Strasbourg France
- IPHC; CNRS UMR 7178; Strasbourg France
| | - Xavier Manival
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA); UMR 7365 CNRS Université de Lorraine; Biopôle Vandœuvre-lès-Nancy France
| | - Anne-Sophie Tillault
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA); UMR 7365 CNRS Université de Lorraine; Biopôle Vandœuvre-lès-Nancy France
| | - Cédric Atmanene
- BioOrganic Mass Spectrometry Laboratory (LSMBO); IPHC; Université de Strasbourg; Strasbourg France
- IPHC; CNRS UMR 7178; Strasbourg France
| | - Claude Bobo
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA); UMR 7365 CNRS Université de Lorraine; Biopôle Vandœuvre-lès-Nancy France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA); UMR 7365 CNRS Université de Lorraine; Biopôle Vandœuvre-lès-Nancy France
| | - Alain Van Dorsselaer
- BioOrganic Mass Spectrometry Laboratory (LSMBO); IPHC; Université de Strasbourg; Strasbourg France
- IPHC; CNRS UMR 7178; Strasbourg France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA); UMR 7365 CNRS Université de Lorraine; Biopôle Vandœuvre-lès-Nancy France
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory (LSMBO); IPHC; Université de Strasbourg; Strasbourg France
- IPHC; CNRS UMR 7178; Strasbourg France
| |
Collapse
|
60
|
RNA size is a critical factor for U-containing substrate selectivity and permanent pseudouridylated product release during the RNA:Ψ-synthase reaction catalyzed by box H/ACA sRNP enzyme at high temperature. Biochimie 2015; 113:134-42. [PMID: 25896443 DOI: 10.1016/j.biochi.2015.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022]
Abstract
The box H/ACA small ribonucleoprotein particles (H/ACA sRNPs) are RNP enzymes that isomerize uridines (U) into pseudouridines (Ψ) in archaeal RNAs. The RNA component acts as a guide by forming base-pair interactions with the substrate RNA to specify the target nucleotide of the modification to the catalytic subunit Cbf5. Here, we have analyzed association of an H/ACA sRNP enzyme from the hyperthermophilic archaeon Pyrococcus abyssi with synthetic substrate RNAs of different length and with target nucleotide variants, and estimated their turnover at high temperature. In these conditions, we found that a short substrate, which length is restricted to the interaction with RNA guide sequence, has higher turnover rate. However, the longer substrate with additional 5' and 3' sequences non-complementary to the guide RNA is better discriminated by the U to Ψ conversion allowing the RNP enzyme to distinguish the modified product from the substrate. In addition, we identified that the conserved residue Y179 in the catalytic center of Cbf5 is crucial for substrate selectivity.
Collapse
|
61
|
Silvers R, Keller H, Schwalbe H, Hengesbach M. Differential Scanning Fluorimetry for Monitoring RNA Stability. Chembiochem 2015; 16:1109-14. [DOI: 10.1002/cbic.201500046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 11/05/2022]
|
62
|
Lafontaine DLJ. Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nat Struct Mol Biol 2015; 22:11-9. [PMID: 25565028 DOI: 10.1038/nsmb.2939] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/26/2014] [Indexed: 12/22/2022]
Abstract
The ribosome, central to protein synthesis in all cells, is a complex multicomponent assembly with rRNA at its functional core. During the process of ribosome biogenesis, diverse noncoding RNAs participate in controlling the quantity and quality of this rRNA. In this Review, I discuss the multiple roles assumed by noncoding RNAs during the different steps of ribosome biogenesis and how they contribute to the generation of ribosome heterogeneity, which affects normal and pathophysiological processes.
Collapse
Affiliation(s)
- Denis L J Lafontaine
- RNA Molecular Biology, Fonds National de la Recherche Scientifique, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
63
|
McMahon M, Contreras A, Ruggero D. Small RNAs with big implications: new insights into H/ACA snoRNA function and their role in human disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:173-89. [PMID: 25363811 DOI: 10.1002/wrna.1266] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/25/2014] [Accepted: 08/07/2014] [Indexed: 12/26/2022]
Abstract
A myriad of structurally and functionally diverse noncoding RNAs (ncRNAs) have recently been implicated in numerous human diseases including cancer. Small nucleolar RNAs (snoRNAs), the most abundant group of intron-encoded ncRNAs, are classified into two families (box C/D snoRNAs and box H/ACA snoRNAs) and are required for post-transcriptional modifications on ribosomal RNA (rRNA). There is now a growing appreciation that nucleotide modifications on rRNA may impart regulatory potential to the ribosome; however, the functional consequence of site-specific snoRNA-guided modifications remains poorly defined. Discovered almost 20 years ago, H/ACA snoRNAs are required for the conversion of specific uridine residues to pseudouridine on rRNA. Interestingly, recent reports indicate that the levels of subsets of H/ACA snoRNAs required for pseudouridine modifications at specific sites on rRNA are altered in several diseases, particularly cancer. In this review, we describe recent advances in understanding the downstream consequences of H/ACA snoRNA-guided modifications on ribosome function, discuss the possible mechanism by which H/ACA snoRNAs may be regulated, and explore prospective expanding functions of H/ACA snoRNAs. Furthermore, we discuss the potential biological implications of alterations in H/ACA snoRNA expression in several human diseases.
Collapse
Affiliation(s)
- Mary McMahon
- School of Medicine and Department of Urology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
64
|
Rocchi L, Barbosa AJM, Onofrillo C, Del Rio A, Montanaro L. Inhibition of human dyskerin as a new approach to target ribosome biogenesis. PLoS One 2014; 9:e101971. [PMID: 25010840 PMCID: PMC4092089 DOI: 10.1371/journal.pone.0101971] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 06/13/2014] [Indexed: 11/19/2022] Open
Abstract
The product of the DKC1 gene, dyskerin, is required for both ribosome biogenesis and telomerase complex stabilization. Targeting these cellular processes has been explored for the development of drugs to selectively or preferentially kill cancer cells. Presently, intense research is conducted involving the identification of new biological targets whose modulation may simultaneously interfere with multiple cellular functions that are known to be hyper-activated by neoplastic transformations. Here, we report, for the first time, the computational identification of small molecules able to inhibit dyskerin catalytic activity. Different insilico techniques were applied to select compounds and analyze the binding modes and the interaction patterns of ligands in the human dyskerin catalytic site. We also describe a newly developed and optimized fast real-time PCR assay that was used to detect dyskerin pseudouridylation activity invitro. The identification of new dyskerin inhibitors constitutes the first proof of principle that the pseudouridylation activity can be modulated by means of small molecule agents. Therefore, the presented results, obtained through the usage of computational tools and experimental validation, indicate an alternative therapeutic strategy to target ribosome biogenesis pathway.
Collapse
Affiliation(s)
- Laura Rocchi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Surgical Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Arménio J. M. Barbosa
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Carmine Onofrillo
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- “Giorgio Prodi” Interdepartmental Cancer Research Centre, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alberto Del Rio
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Institute for Organic Chemistry and Photoreactivity, National Research Council, Bologna, Italy
- * E-mail: (ADR); (LM)
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- * E-mail: (ADR); (LM)
| |
Collapse
|
65
|
Yu YT, Meier UT. RNA-guided isomerization of uridine to pseudouridine--pseudouridylation. RNA Biol 2014; 11:1483-94. [PMID: 25590339 PMCID: PMC4615163 DOI: 10.4161/15476286.2014.972855] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Box H/ACA ribonucleoproteins (RNPs), each consisting of one unique guide RNA and 4 common core proteins, constitute a family of complex enzymes that catalyze, in an RNA-guided manner, the isomerization of uridines to pseudouridines (Ψs) in RNAs, a reaction known as pseudouridylation. Over the years, box H/ACA RNPs have been extensively studied revealing many important aspects of these RNA modifying machines. In this review, we focus on the composition, structure, and biogenesis of H/ACA RNPs. We explain the mechanism of how this enzyme family recognizes and specifies its target uridine in a substrate RNA. We discuss the substrates of box H/ACA RNPs, focusing on rRNA (rRNA) and spliceosomal small nuclear RNA (snRNA). We describe the modification product Ψ and its contribution to RNA function. Finally, we consider possible mechanisms of the bone marrow failure syndrome dyskeratosis congenita and of prostate and other cancers linked to mutations in H/ACA RNPs.
Collapse
Key Words
- DC, dyskeratosis congenita
- H/ACA
- HH, hoyeraal-hreidarsson syndrome
- PIKK, phosphatidylinositol 3-kinase-related kinase
- PUA, pseudouridylase and archaeosine transglycosylase
- RNA modification
- RNA-guided
- RNP, ribonucleoprotein
- SMN, survival of motor neuron protein
- SSD, SHQ1 specific domain
- U, uridine
- X-DC, X-linked dyskeratosis congenita
- dyskeratosis congenita
- prostate cancer
- pseudouridine
- rRNA
- rRNA, ribosomal RNA
- ribonucleoproteins
- sca, small Cajal body
- snRNA, small nuclear RNA
- sno, small nucleolar
- snoRNA
- snoRNA, small nucleolar RNA
- spliceosomal small nuclear RNA
- tRNA, transfer RNA
- ψ, pseudouridine, 5-ribosyluracil
Collapse
MESH Headings
- Dyskeratosis Congenita/genetics
- Dyskeratosis Congenita/metabolism
- Dyskeratosis Congenita/pathology
- Humans
- Isomerism
- Male
- Mutation
- Nucleic Acid Conformation
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Pseudouridine/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Uridine/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Yi-Tao Yu
- University of Rochester Medical Center; Department of Biochemistry and Biophysics; Center for RNA Biology; Rochester, NY USA
| | - U Thomas Meier
- Albert Einstein College of Medicine; Department of Anatomy and Structural Biology; Bronx, NY USA
| |
Collapse
|
66
|
Woolford JL, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013; 195:643-81. [PMID: 24190922 PMCID: PMC3813855 DOI: 10.1534/genetics.113.153197] [Citation(s) in RCA: 588] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/26/2013] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.
Collapse
Affiliation(s)
- John L. Woolford
- Department of Biological Sciences, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Susan J. Baserga
- Molecular Biophysics and Biochemistry, Genetics and Therapeutic Radiology, Yale University, New Haven, Connecticut 06520-8024
| |
Collapse
|
67
|
Fourmann JB, Tillault AS, Blaud M, Leclerc F, Branlant C, Charpentier B. Comparative study of two box H/ACA ribonucleoprotein pseudouridine-synthases: relation between conformational dynamics of the guide RNA, enzyme assembly and activity. PLoS One 2013; 8:e70313. [PMID: 23922977 PMCID: PMC3726423 DOI: 10.1371/journal.pone.0070313] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/18/2013] [Indexed: 11/22/2022] Open
Abstract
Multiple RNA-guided pseudouridine synthases, H/ACA ribonucleoprotein particles (RNPs) which contain a guide RNA and four proteins, catalyze site-specific post-transcriptional isomerization of uridines into pseudouridines in substrate RNAs. In archaeal particles, the guide small RNA (sRNA) is anchored by the pseudouridine synthase aCBF5 and the ribosomal protein L7Ae. Protein aNOP10 interacts with both aCBF5 and L7Ae. The fourth protein, aGAR1, interacts with aCBF5 and enhances catalytic efficiency. Here, we compared the features of two H/ACA sRNAs, Pab21 and Pab91, from Pyrococcus abyssi. We found that aCBF5 binds much more weakly to Pab91 than to Pab21. Surprisingly, the Pab91 sRNP exhibits a higher catalytic efficiency than the Pab21 sRNP. We thus investigated the molecular basis of the differential efficiencies observed for the assembly and catalytic activity of the two enzymes. For this, we compared profiles of the extent of lead-induced cleavages in these sRNAs during a stepwise reconstitution of the sRNPs, and analyzed the impact of the absence of the aNOP10–L7Ae interaction. Such probing experiments indicated that the sRNAs undergo a series of conformational changes upon RNP assembly. These changes were also evaluated directly by circular dichroism (CD) spectroscopy, a tool highly adapted to analyzing RNA conformational dynamics. In addition, our results reveal that the conformation of helix P1 formed at the base of the H/ACA sRNAs is optimized in Pab21 for efficient aCBF5 binding and RNP assembly. Moreover, P1 swapping improved the assembly of the Pab91 sRNP. Nonetheless, efficient aCBF5 binding probably also relies on the pseudouridylation pocket which is not optimized for high activity in the case of Pab21.
Collapse
Affiliation(s)
- Jean-Baptiste Fourmann
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Anne-Sophie Tillault
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Magali Blaud
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Fabrice Leclerc
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Christiane Branlant
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Bruno Charpentier
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
68
|
Ge J, Yu YT. RNA pseudouridylation: new insights into an old modification. Trends Biochem Sci 2013; 38:210-8. [PMID: 23391857 PMCID: PMC3608706 DOI: 10.1016/j.tibs.2013.01.002] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/22/2012] [Accepted: 01/07/2013] [Indexed: 12/18/2022]
Abstract
Pseudouridine is the most abundant post-transcriptionally modified nucleotide in various stable RNAs of all organisms. Pseudouridine is derived from uridine via base-specific isomerization, resulting in an extra hydrogen-bond donor that distinguishes it from other nucleotides. In eukaryotes, uridine-to-pseudouridine isomerization is catalyzed primarily by box H/ACA RNPs, ribonucleoproteins that act as pseudouridylases. When introduced into RNA, pseudouridine contributes significantly to RNA-mediated cellular processes. It was recently discovered that pseudouridylation can be induced by stress, suggesting a regulatory role for pseudouridine. It has also been reported that pseudouridine can be artificially introduced into mRNA by box H/ACA RNPs and that such introduction can mediate nonsense-to-sense codon conversion, thus demonstrating a new means of generating coding or protein diversity.
Collapse
Affiliation(s)
- Junhui Ge
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
69
|
Ribonucleoproteins in archaeal pre-rRNA processing and modification. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:614735. [PMID: 23554567 PMCID: PMC3608112 DOI: 10.1155/2013/614735] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/09/2013] [Accepted: 01/15/2013] [Indexed: 12/27/2022]
Abstract
Given that ribosomes are one of the most important cellular macromolecular machines, it is not surprising that there is intensive research in ribosome biogenesis. Ribosome biogenesis is a complex process. The maturation of ribosomal RNAs (rRNAs) requires not only the precise cleaving and folding of the pre-rRNA but also extensive nucleotide modifications. At the heart of the processing and modifications of pre-rRNAs in Archaea and Eukarya are ribonucleoprotein (RNP) machines. They are called small RNPs (sRNPs), in Archaea, and small nucleolar RNPs (snoRNPs), in Eukarya. Studies on ribosome biogenesis originally focused on eukaryotic systems. However, recent studies on archaeal sRNPs have provided important insights into the functions of these RNPs. This paper will introduce archaeal rRNA gene organization and pre-rRNA processing, with a particular focus on the discovery of the archaeal sRNP components, their functions in nucleotide modification, and their structures.
Collapse
|
70
|
Yang X, Duan J, Li S, Wang P, Ma S, Ye K, Zhao XS. Kinetic and thermodynamic characterization of the reaction pathway of box H/ACA RNA-guided pseudouridine formation. Nucleic Acids Res 2012; 40:10925-36. [PMID: 23012266 PMCID: PMC3510513 DOI: 10.1093/nar/gks882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/20/2022] Open
Abstract
The box H/ACA RNA-guided pseudouridine synthase is a complicated ribonucleoprotein enzyme that recruits substrate via both the guide RNA and the catalytic subunit Cbf5. Structural studies have revealed multiple conformations of the enzyme, but a quantitative description of the reaction pathway is still lacking. Using fluorescence correlation spectroscopy, we here measured the equilibrium dissociation constants and kinetic association and dissociation rates of substrate and product complexes mimicking various reaction intermediate states. These data support a sequential model for substrate loading and product release regulated by the thumb loop of Cbf5. The uridine substrate is first bound primarily through interaction with the guide RNA and then loaded into the active site while progressively interacted with the thumb. After modification, the subtle chemical structure change from uridine to pseudouridine at the target site triggers the release of the thumb, resulting in an intermediate complex with the product bound mainly by the guide RNA. By dissecting the role of Gar1 in individual steps of substrate turnover, we show that Gar1 plays a major role in catalysis and also accelerates product release about 2-fold. Our biophysical results integrate with previous structural knowledge into a coherent reaction pathway of H/ACA RNA-guided pseudouridylation.
Collapse
Affiliation(s)
- Xinxing Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Jingqi Duan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Shuang Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Peng Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Shoucai Ma
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Keqiong Ye
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Xin Sheng Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
71
|
Kamalampeta R, Kothe U. Archaeal proteins Nop10 and Gar1 increase the catalytic activity of Cbf5 in pseudouridylating tRNA. Sci Rep 2012; 2:663. [PMID: 22993689 PMCID: PMC3443816 DOI: 10.1038/srep00663] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/03/2012] [Indexed: 02/05/2023] Open
Abstract
Cbf5 is a pseudouridine synthase that usually acts in a guide RNA-dependent manner as part of H/ACA small ribonucleoproteins; however archaeal Cbf5 can also act independently of guide RNA in modifying uridine 55 in tRNA. This guide-independent activity of Cbf5 is enhanced by proteins Nop10 and Gar1 which are also found in H/ACA small ribonucleoproteins. Here, we analyzed the specific contribution of Nop10 and Gar1 for Cbf5-catalyzed pseudouridylation of tRNA. Interestingly, both Nop10 and Gar1 not only increase Cbf5's affinity for tRNA, but they also directly enhance Cbf5's catalytic activity by increasing the k(cat) of the reaction. In contrast to the guide RNA-dependent reaction, Gar1 is not involved in product release after tRNA modification. These results in conjunction with structural information suggest that Nop10 and Gar1 stabilize Cbf5 in its active conformation; we hypothesize that this might also be true for guide-RNA dependent pseudouridine formation by Cbf5.
Collapse
Affiliation(s)
- Rajashekhar Kamalampeta
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Ute Kothe
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
72
|
Jády BE, Ketele A, Kiss T. Human intron-encoded Alu RNAs are processed and packaged into Wdr79-associated nucleoplasmic box H/ACA RNPs. Genes Dev 2012; 26:1897-910. [PMID: 22892240 PMCID: PMC3435494 DOI: 10.1101/gad.197467.112] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/16/2012] [Indexed: 11/25/2022]
Abstract
Alu repetitive sequences are the most abundant short interspersed DNA elements in the human genome. Full-length Alu elements are composed of two tandem sequence monomers, the left and right Alu arms, both derived from the 7SL signal recognition particle RNA. Since Alu elements are common in protein-coding genes, they are frequently transcribed into pre-mRNAs. Here, we demonstrate that the right arms of nascent Alu transcripts synthesized within pre-mRNA introns are processed into metabolically stable small RNAs. The intron-encoded Alu RNAs, termed AluACA RNAs, are structurally highly reminiscent of box H/ACA small Cajal body (CB) RNAs (scaRNAs). They are composed of two hairpin units followed by the essential H (AnAnnA) and ACA box motifs. The mature AluACA RNAs associate with the four H/ACA core proteins: dyskerin, Nop10, Nhp2, and Gar1. Moreover, the 3' hairpin of AluACA RNAs carries two closely spaced CB localization motifs, CAB boxes (UGAG), which bind Wdr79 in a cumulative fashion. In contrast to canonical H/ACA scaRNPs, which concentrate in CBs, the AluACA RNPs accumulate in the nucleoplasm. Identification of 348 human AluACA RNAs demonstrates that intron-encoded AluACA RNAs represent a novel, large subgroup of H/ACA RNAs, which are apparently confined to human or primate cells.
Collapse
Affiliation(s)
- Beáta E Jády
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 31062 Toulouse Cedex 9, France
| | | | | |
Collapse
|
73
|
Egan ED, Collins K. An enhanced H/ACA RNP assembly mechanism for human telomerase RNA. Mol Cell Biol 2012; 32:2428-39. [PMID: 22527283 PMCID: PMC3434483 DOI: 10.1128/mcb.00286-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/12/2012] [Indexed: 11/20/2022] Open
Abstract
The integral telomerase RNA subunit templates the synthesis of telomeric repeats. The biological accumulation of human telomerase RNA (hTR) requires hTR H/ACA domain assembly with the same proteins that assemble on other human H/ACA RNAs. Despite this shared RNP composition, hTR accumulation is particularly sensitized to disruption by disease-linked H/ACA protein variants. We show that contrary to expectation, hTR-specific sequence requirements for biological accumulation do not act at an hTR-specific step of H/ACA RNP biogenesis; instead, they enhance hTR binding to the shared, chaperone-bound scaffold of H/ACA core proteins that mediates initial RNP assembly. We recapitulate physiological H/ACA RNP assembly with a preassembled NAF1/dyskerin/NOP10/NHP2 scaffold purified from cell extract and demonstrate that distributed sequence features of the hTR 3' hairpin synergize to improve scaffold binding. Our findings reveal that the hTR H/ACA domain is distinguished from other human H/ACA RNAs not by a distinct set of RNA-protein interactions but by an increased efficiency of RNP assembly. Our findings suggest a unifying mechanism for human telomerase deficiencies associated with H/ACA protein variants.
Collapse
Affiliation(s)
- Emily D Egan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| | | |
Collapse
|
74
|
Snyder DA, Aramini JM, Yu B, Huang YJ, Xiao R, Cort JR, Shastry R, Ma LC, Liu J, Rost B, Acton TB, Kennedy MA, Montelione GT. Solution NMR structure of the ribosomal protein RP-L35Ae from Pyrococcus furiosus. Proteins 2012; 80:1901-6. [PMID: 22422653 DOI: 10.1002/prot.24071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/03/2012] [Indexed: 11/08/2022]
Abstract
The ribosome consists of small and large subunits each composed of dozens of proteins and RNA molecules. However, the functions of many of the individual protomers within the ribosome are still unknown. In this article, we describe the solution NMR structure of the ribosomal protein RP-L35Ae from the archaeon Pyrococcus furiosus. RP-L35Ae is buried within the large subunit of the ribosome and belongs to Pfam protein domain family PF01247, which is highly conserved in eukaryotes, present in a few archaeal genomes, but absent in bacteria. The protein adopts a six-stranded anti-parallel β-barrel analogous to the "tRNA binding motif" fold. The structure of the P. furiosus RP-L35Ae presented in this article constitutes the first structural representative from this protein domain family.
Collapse
Affiliation(s)
- David A Snyder
- Department of Chemistry, College of Science and Health, William Paterson University, Wayne, New Jersey 07470, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Li S, Duan J, Li D, Yang B, Dong M, Ye K. Reconstitution and structural analysis of the yeast box H/ACA RNA-guided pseudouridine synthase. Genes Dev 2011; 25:2409-21. [PMID: 22085967 DOI: 10.1101/gad.175299.111] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Box H/ACA ribonucleoprotein particles (RNPs) mediate pseudouridine synthesis, ribosome formation, and telomere maintenance. The structure of eukaryotic H/ACA RNPs remains poorly understood. We reconstituted functional Saccharomyces cerevisiae H/ACA RNPs with recombinant proteins Cbf5, Nop10, Gar1, and Nhp2 and a two-hairpin H/ACA RNA; determined the crystal structure of a Cbf5, Nop10, and Gar1 ternary complex at 1.9 Å resolution; and analyzed the structure-function relationship of the yeast complex. Although eukaryotic H/ACA RNAs have a conserved two-hairpin structure, isolated single-hairpin RNAs are also active in guiding pseudouridylation. Nhp2, unlike its archaeal counterpart, is largely dispensable for the activity, reflecting a functional adaptation of eukaryotic H/ACA RNPs to the variable RNA structure that Nhp2 binds. The N-terminal extension of Cbf5, a hot spot for dyskeratosis congenita mutation, forms an extra structural layer on the PUA domain. Gar1 is distinguished from the assembly factor Naf1 by containing a C-terminal extension that controls substrate turnover and the Gar1-Naf1 exchange during H/ACA RNP maturation. Our results reveal significant novel features of eukaryotic H/ACA RNPs.
Collapse
Affiliation(s)
- Shuang Li
- National Institute of Biological Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
76
|
Walbott H, Machado-Pinilla R, Liger D, Blaud M, Réty S, Grozdanov PN, Godin K, van Tilbeurgh H, Varani G, Meier UT, Leulliot N. The H/ACA RNP assembly factor SHQ1 functions as an RNA mimic. Genes Dev 2011; 25:2398-408. [PMID: 22085966 DOI: 10.1101/gad.176834.111] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SHQ1 is an essential assembly factor for H/ACA ribonucleoproteins (RNPs) required for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. SHQ1 binds dyskerin/NAP57, the catalytic subunit of human H/ACA RNPs, and this interaction is modulated by mutations causing X-linked dyskeratosis congenita. We report the crystal structure of the C-terminal domain of yeast SHQ1, Shq1p, and its complex with yeast dyskerin/NAP57, Cbf5p, lacking its catalytic domain. The C-terminal domain of Shq1p interacts with the RNA-binding domain of Cbf5p and, through structural mimicry, uses the RNA-protein-binding sites to achieve a specific protein-protein interface. We propose that Shq1p operates as a Cbf5p chaperone during RNP assembly by acting as an RNA placeholder, thereby preventing Cbf5p from nonspecific RNA binding before association with an H/ACA RNA and the other core RNP proteins.
Collapse
Affiliation(s)
- Hélène Walbott
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud, Orsay Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Li S, Duan J, Li D, Ma S, Ye K. Structure of the Shq1-Cbf5-Nop10-Gar1 complex and implications for H/ACA RNP biogenesis and dyskeratosis congenita. EMBO J 2011; 30:5010-20. [PMID: 22117216 DOI: 10.1038/emboj.2011.427] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/07/2011] [Indexed: 12/22/2022] Open
Abstract
Shq1 is a conserved protein required for the biogenesis of eukaryotic H/ACA ribonucleoproteins (RNPs), including human telomerase. We report the structure of the Shq1-specific domain alone and in complex with H/ACA RNP proteins Cbf5, Nop10 and Gar1. The Shq1-specific domain adopts a novel helical fold and primarily contacts the PUA domain and the otherwise disordered C-terminal extension (CTE) of Cbf5. The structure shows that dyskeratosis congenita mutations found in the CTE of human Cbf5 likely interfere with Shq1 binding. However, most mutations in the PUA domain are not located at the Shq1-binding surface and also have little effect on the yeast Cbf5-Shq1 interaction. Shq1 binds Cbf5 independently of the H/ACA RNP proteins Nop10, Gar1 and Nhp2 and the assembly factor Naf1, but shares an overlapping binding surface with H/ACA RNA. Shq1 point mutations that disrupt Cbf5 interaction suppress yeast growth particularly at elevated temperatures. Our results suggest that Shq1 functions as an assembly chaperone that protects the Cbf5 protein complexes from non-specific RNA binding and aggregation before assembly of H/ACA RNA.
Collapse
Affiliation(s)
- Shuang Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | | | | | | | | |
Collapse
|
78
|
Watkins NJ, Bohnsack MT. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:397-414. [DOI: 10.1002/wrna.117] [Citation(s) in RCA: 347] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
79
|
Koo BK, Park CJ, Fernandez CF, Chim N, Ding Y, Chanfreau G, Feigon J. Structure of H/ACA RNP protein Nhp2p reveals cis/trans isomerization of a conserved proline at the RNA and Nop10 binding interface. J Mol Biol 2011; 411:927-42. [PMID: 21708174 PMCID: PMC3156286 DOI: 10.1016/j.jmb.2011.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 11/28/2022]
Abstract
H/ACA small nucleolar and Cajal body ribonucleoproteins (RNPs) function in site-specific pseudouridylation of eukaryotic rRNA and snRNA, rRNA processing, and vertebrate telomerase biogenesis. Nhp2, one of four essential protein components of eukaryotic H/ACA RNPs, forms a core trimer with the pseudouridylase Cbf5 and Nop10 that binds to H/ACA RNAs specifically. Crystal structures of archaeal H/ACA RNPs have revealed how the protein components interact with each other and with the H/ACA RNA. However, in place of Nhp2p, archaeal H/ACA RNPs contain L7Ae, which binds specifically to an RNA K-loop motif absent from eukaryotic H/ACA RNPs, while Nhp2 binds a broader range of RNA structures. We report solution NMR studies of Saccharomyces cerevisiae Nhp2 (Nhp2p), which reveal that Nhp2p exhibits two major conformations in solution due to cis/trans isomerization of the evolutionarily conserved Pro83. The equivalent proline is in the cis conformation in all reported structures of L7Ae and other homologous proteins. Nhp2p has the expected α-β-α fold, but the solution structures of the major conformation of Nhp2p with trans Pro83 and of Nhp2p-S82W with cis Pro83 reveal that Pro83 cis/trans isomerization affects the positions of numerous residues at the Nop10 and RNA binding interface. An S82W substitution, which stabilizes the cis conformation, also stabilizes the association of Nhp2p with H/ACA snoRNPs expressed in vivo. We propose that Pro83 plays a key role in the assembly of the eukaryotic H/ACA RNP, with the cis conformation locking in a stable Cbf5-Nop10-Nhp2 ternary complex and positioning the protein backbone to interact with the H/ACA RNA.
Collapse
Affiliation(s)
- Bon-Kyung Koo
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, PO Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | - Chin-Ju Park
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, PO Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | - Cesar F. Fernandez
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, PO Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | - Nicholas Chim
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, PO Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | - Yi Ding
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, PO Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | - Guillaume Chanfreau
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, PO Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, PO Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
80
|
Yu AT, Ge J, Yu YT. Pseudouridines in spliceosomal snRNAs. Protein Cell 2011; 2:712-25. [PMID: 21976061 PMCID: PMC4722041 DOI: 10.1007/s13238-011-1087-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/22/2011] [Indexed: 01/14/2023] Open
Abstract
Spliceosomal RNAs are a family of small nuclear RNAs (snRNAs) that are essential for pre-mRNA splicing. All vertebrate spliceosomal snRNAs are extensively pseudouridylated after transcription. Pseudouridines in spliceosomal snRNAs are generally clustered in regions that are functionally important during splicing. Many of these modified nucleotides are conserved across species lines. Recent studies have demonstrated that spliceosomal snRNA pseudouridylation is catalyzed by two different mechanisms: an RNA-dependent mechanism and an RNA-independent mechanism. The functions of the pseudouridines in spliceosomal snRNAs (U2 snRNA in particular) have also been extensively studied. Experimental data indicate that virtually all pseudouridines in U2 snRNA are functionally important. Besides the currently known pseudouridines (constitutive modifications), recent work has also indicated that pseudouridylation can be induced at novel positions under stress conditions, thus strongly suggesting that pseudouridylation is also a regulatory modification.
Collapse
Affiliation(s)
- Andrew T. Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Junhui Ge
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003 China
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 USA
| |
Collapse
|
81
|
Abstract
Telomerase is a unique reverse transcriptase that catalyzes the addition of telomere DNA repeats onto the 3' ends of linear chromosomes and plays a critical role in maintaining genome stability. Unlike other reverse transcriptases, telomerase is unique in that it is a ribonucleoprotein complex, where the RNA component [telomerase RNA (TR)] not only provides the template for the synthesis of telomere DNA repeats but also plays essential roles in catalysis, accumulation, TR 3'-end processing, localization, and holoenzyme assembly. Biochemical studies have identified TR elements essential for catalysis that share remarkably conserved secondary structures across different species as well as species-specific domains for other functions, paving the way for high-resolution structure determination of TRs. Over the past decade, structures of key elements from the core, conserved regions 4 and 5, and small Cajal body specific RNA domains of human TR have emerged, providing significant insights into the roles of these RNA elements in telomerase function. Structures of all helical elements of the core domain have been recently reported, providing the basis for a high-resolution model of the complete core domain. We review this progress to determine the overall architecture of human telomerase RNA.
Collapse
|
82
|
Zhou J, Liang B, Li H. Structural and functional evidence of high specificity of Cbf5 for ACA trinucleotide. RNA (NEW YORK, N.Y.) 2011; 17:244-250. [PMID: 21149572 PMCID: PMC3022274 DOI: 10.1261/rna.2415811] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 11/07/2010] [Indexed: 05/28/2023]
Abstract
Cbf5 is the catalytic subunit of the H/ACA small nucleolar/Cajal body ribonucleoprotein particles (RNPs) responsible for site specific isomerization of uridine in ribosomal and small nuclear RNA. Recent evidence from studies on archaeal Cbf5 suggests its second functional role in modifying tRNA U55 independent of guide RNA. In order to act both as a stand-alone and a RNP pseudouridine synthase, Cbf5 must differentiate features in H/ACA RNA from those in tRNA or rRNA. Most H/ACA RNAs contain a hallmark ACA trinucleotide downstream of the H/ACA motif. Here we challenged an archaeal Cbf5 (in the form of a ternary complex with its accessory proteins Nop10 and Gar1) with T-stem-loop RNAs with or without ACA trinucleotide in the stem. Although these substrates were previously shown to be substrates for the bacterial stand-alone pseudouridine synthase TruB, the Cbf5-Nop10-Gar1 complex was only able to modify those without ACA trinucleotide. A crystal structure of Cbf5-Nop10-Gar1 trimer bound with an ACA-containing T-stem-loop revealed that the ACA trinucleotide detracted Cbf5 from the stand-alone binding mode, thereby suggesting that the H/ACA RNP-associated function of Cbf5 likely supersedes its stand-alone function.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | | | | |
Collapse
|
83
|
Abstract
Small nucleolar and Cajal body ribonucleoprotein particles (RNPs) are required for the maturation of ribosomes and spliceosomes. They consist of small nucleolar RNA or Cajal body RNA combined with partner proteins and represent the most complex RNA modification enzymes. Recent advances in structure and function studies have revealed detailed information regarding ribonucleoprotein assembly and substrate binding. These enzymes form intertwined RNA-protein assemblies that facilitate reversible binding of the large ribosomal RNA or small nuclear RNA. These revelations explain the specificity among the components in enzyme assembly and substrate modification. The multiple conformations of individual components and those of complete RNPs suggest a dynamic assembly process and justify the requirement of many assembly factors in vivo.
Collapse
|
84
|
Spacková N, Réblová K, Sponer J. Structural dynamics of the box C/D RNA kink-turn and its complex with proteins: the role of the A-minor 0 interaction, long-residency water bridges, and structural ion-binding sites revealed by molecular simulations. J Phys Chem B 2010; 114:10581-93. [PMID: 20701388 DOI: 10.1021/jp102572k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Kink-turns (K-turns) are recurrent elbow-like RNA motifs that participate in protein-assisted RNA folding and contribute to RNA dynamics. We carried out a set of molecular dynamics (MD) simulations using parm99 and parmbsc0 force fields to investigate structural dynamics of the box C/D RNA and its complexes with two proteins: native archaeal L7ae protein and human 15.5 kDa protein, originally bound to very similar structure of U4 snRNA. The box C/D RNA forms K-turn with A-minor 0 tertiary interaction between its canonical (C) and noncanonical (NC) stems. The local K-turn architecture is thus different from the previously studied ribosomal K-turns 38 and 42 having A-minor I interaction. The simulations reveal visible structural dynamics of this tertiary interaction involving altogether six substates which substantially contribute to the elbow-like flexibility of the K-turn. The interaction can even temporarily shift to the A-minor I type pattern; however, this is associated with distortion of the G/A base pair in the NC-stem of the K-turn. The simulations show reduction of the K-turn flexibility upon protein binding. The protein interacts with the apex of the K-turn and with the NC-stem. The protein-RNA interface includes long-residency hydration sites. We have also found long-residency hydration sites and major ion-binding sites associated with the K-turn itself. The overall topology of the K-turn remains stable in all simulations. However, in simulations of free K-turn, we observed instability of the key C16(O2')-A7(N1) H-bond, which is a signature interaction of K-turns and which was visibly more stable in simulations of K-turns possessing A-minor I interaction. It may reflect either some imbalance of the force field or it may be a correct indication of early stages of unfolding since this K-turn requires protein binding for its stabilization. Interestingly, the 16(O2')-7(N1) H- bond is usually not fully lost since it is replaced by a water bridge with a tightly bound water, which is adenine-specific similarly as the original interaction. The 16(O2')-7(N1) H-bond is stabilized by protein binding. The stabilizing effect is more visible with the human 15.5 kDa protein, which is attributed to valine to arginine substitution in the binding site. The behavior of the A-minor interaction is force-field-dependent because the parmbsc0 force field attenuates the A-minor fluctuations compared to parm99 simulations. Behavior of other regions of the box C/D RNA is not sensitive to the force field choice. Simulation with net-neutralizing Na(+) and 0.2 M excess salt conditions appear in all aspects equivalent. The simulations show loss of a hairpin tetraloop, which is not part of the K-turn. This was attributed to force field limitations.
Collapse
Affiliation(s)
- Nad'a Spacková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | |
Collapse
|
85
|
Zhou J, Lv C, Liang B, Chen M, Yang W, Li H. Glycosidic bond conformation preference plays a pivotal role in catalysis of RNA pseudouridylation: a combined simulation and structural study. J Mol Biol 2010; 401:690-5. [PMID: 20615421 PMCID: PMC2938745 DOI: 10.1016/j.jmb.2010.06.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/26/2010] [Accepted: 06/29/2010] [Indexed: 11/18/2022]
Abstract
The most abundant chemical modification on RNA is isomerization of uridine (or pseudouridylation) catalyzed by pseudouridine synthases. The catalytic mechanism of this essential process remains largely speculative, partly due to lack of knowledge of the pre-reactive state that is important to the identification of reactive chemical moieties. In the present study, we showed, using orthogonal space random-walk free-energy simulation, that the pre-reactive states of uridine and its reactive derivative 5-fluorouridine, bound to a ribonucleoprotein particle pseudouridine synthase, strongly prefer the syn glycosidic bond conformation, while that of the nonreactive 5-bromouridine-containing substrate is largely populated in the anti conformation state. A high-resolution crystal structure of the 5-bromouridine-containing substrate bound to the ribonucleoprotein particle pseudouridine synthase and enzyme activity assay confirmed the anti nonreactive conformation and provided the molecular basis for its confinement. The observed preference for the syn pre-reactive state by the enzyme-bound uridine may help to distinguish among currently proposed mechanisms.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Chao Lv
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Bo Liang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Mengen Chen
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Wei Yang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Hong Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
86
|
Zhou J, Liang B, Li H. Functional and structural impact of target uridine substitutions on the H/ACA ribonucleoprotein particle pseudouridine synthase. Biochemistry 2010; 49:6276-81. [PMID: 20575532 PMCID: PMC2928259 DOI: 10.1021/bi1006699] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Box H/ACA ribonucleoprotein protein particles catalyze the majority of pseudouridylation in functional RNA. Different from stand alone pseudouridine synthases, the RNP pseudouridine synthase comprises multiple protein subunits and an RNA subunit. Previous studies showed that each subunit, regardless its location, is sensitive to the step of subunit placement at the catalytic center and potentially to the reaction status of the substrate. Here we describe the impact of chemical substitutions of target uridine on enzyme activity and structure. We found that 3-methyluridine in place of uridine inhibited its isomerization while 2'-deoxyuridine or 4-thiouridine did not. Significantly, crystal structures of an archaeal box H/ACA RNP bound with the nonreactive and the two postreactive substrate analogues showed only subtle structural changes throughout the assembly except for a conserved tyrosine and a substrate anchoring loop of Cbf5. Our results suggest a potential role of these elements and the subunit that contacts them in substrate binding and product release.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | | | | |
Collapse
|
87
|
A flexible RNA backbone within the polypyrimidine tract is required for U2AF65 binding and pre-mRNA splicing in vivo. Mol Cell Biol 2010; 30:4108-19. [PMID: 20606010 DOI: 10.1128/mcb.00531-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polypyrimidine tract near the 3' splice site is important for pre-mRNA splicing. Using pseudouridine incorporation and in vivo RNA-guided RNA pseudouridylation, we have identified two important uridines in the polypyrimidine tract of adenovirus pre-mRNA. Conversion of either uridine into pseudouridine leads to a splicing defect in Xenopus oocytes. Using a variety of molecular biology methodologies, we show that the splicing defect is due to the failure of U2AF(65) to recognize the pseudouridylated polypyrimidine tract. This negative impact on splicing is pseudouridine specific, as no effect is observed when the uridine is changed to other naturally occurring nucleotides. Given that pseudouridine favors a C-3'-endo structure, our results suggest that it is backbone flexibility that is key to U2AF binding. Indeed, locking the key uridine in the C-3'-endo configuration while maintaining its uridine identity blocks U2AF(65) binding and splicing. This pseudouridine effect can also be applied to other pre-mRNA polypyrimidine tracts. Thus, our work demonstrates that in vivo binding of U2AF(65) to a polypyrimidine tract requires a flexible RNA backbone.
Collapse
|
88
|
Kiss T, Fayet-Lebaron E, Jády BE. Box H/ACA small ribonucleoproteins. Mol Cell 2010; 37:597-606. [PMID: 20227365 DOI: 10.1016/j.molcel.2010.01.032] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/06/2010] [Accepted: 01/12/2010] [Indexed: 11/25/2022]
Abstract
Box H/ACA RNAs represent an abundant, evolutionarily conserved class of small noncoding RNAs. All H/ACA RNAs associate with a common set of proteins, and they function as ribonucleoprotein (RNP) enzymes mainly in the site-specific pseudouridylation of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). Some H/ACA RNPs function in the nucleolytic processing of precursor rRNA (pre-rRNA) and synthesis of telomeric DNA. Thus, H/ACA RNPs are essential for three fundamental cellular processes: protein synthesis, mRNA splicing, and maintenance of genome integrity. Recently, great progress has been made toward understanding of the biogenesis, intracellular trafficking, structure, and function of H/ACA RNPs.
Collapse
Affiliation(s)
- Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | | | | |
Collapse
|
89
|
Specificity and stoichiometry of subunit interactions in the human telomerase holoenzyme assembled in vivo. Mol Cell Biol 2010; 30:2775-86. [PMID: 20351177 DOI: 10.1128/mcb.00151-10] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H/ACA motif of human telomerase RNA (hTR) directs specific pathways of endogenous telomerase holoenzyme assembly, function, and regulation. Similarities between hTR and other H/ACA RNAs have been established, but differences have not been explored even though unique features of hTR H/ACA RNP assembly give rise to telomerase deficiency in human disease. Here, we define hTR H/ACA RNA and RNP architecture using RNA accumulation, RNP affinity purification, and primer extension activity assays. First, we evaluate alternative folding models for the hTR H/ACA motif 5' hairpin. Second, we demonstrate an unanticipated and surprisingly general asymmetry of 5' and 3' hairpin requirements for H/ACA RNA accumulation. Third, we establish that hTR assembles not one but two sets of all four of the H/ACA RNP core proteins, dyskerin, NOP10, NHP2, and GAR1. Fourth, we address a difference in predicted specificities of hTR association with the holoenzyme subunit WDR79/TCAB1. Together, these results complete the analysis of hTR elements required for active RNP biogenesis and define the interaction specificities and stoichiometries of all functionally essential human telomerase holoenzyme subunits. This study uncovers unexpected similarities but also differences between telomerase and other H/ACA RNPs that allow a unique specificity of telomerase biogenesis and regulation.
Collapse
|
90
|
Hengesbach M, Voigts-Hoffmann F, Hofmann B, Helm M. Formation of a stalled early intermediate of pseudouridine synthesis monitored by real-time FRET. RNA (NEW YORK, N.Y.) 2010; 16:610-620. [PMID: 20106954 PMCID: PMC2822925 DOI: 10.1261/rna.1832510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 12/03/2009] [Indexed: 05/28/2023]
Abstract
Pseudouridine is the most abundant of more than 100 chemically distinct natural ribonucleotide modifications. Its synthesis consists of an isomerization reaction of a uridine residue in the RNA chain and is catalyzed by pseudouridine synthases. The unusual reaction mechanism has become the object of renewed research effort, frequently involving replacement of the substrate uridines with 5-fluorouracil (f(5)U). f(5)U is known to be a potent inhibitor of pseudouridine synthase activity, but the effect varies among the target pseudouridine synthases. Derivatives of f(5)U have previously been detected, which are thought to be either hydrolysis products of covalent enzyme-RNA adducts, or isomerization intermediates. Here we describe the interaction of pseudouridine synthase 1 (Pus1p) with f(5)U-containing tRNA. The interaction described is specific to Pus1p and position 27 in the tRNA anticodon stem, but the enzyme neither forms a covalent adduct nor stalls at a previously identified reaction intermediate of f(5)U. The f(5)U27 residue, as analyzed by a DNAzyme-based assay using TLC and mass spectrometry, displayed physicochemical properties unaltered by the reversible interaction with Pus1p. Thus, Pus1p binds an f(5)U-containing substrate, but, in contrast to other pseudouridine synthases, leaves the chemical structure of f(5)U unchanged. The specific, but nonproductive, interaction demonstrated here thus constitutes an intermediate of Pus turnover, stalled by the presence of f(5)U in an early state of catalysis. Observation of the interaction of Pus1p with fluorescence-labeled tRNA by a real-time readout of fluorescence anisotropy and FRET revealed significant structural distortion of f(5)U-tRNA structure in the stalled intermediate state of pseudouridine catalysis.
Collapse
Affiliation(s)
- Martin Hengesbach
- Institute of Pharmacy and Molecular Biotechnology, Department of Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
91
|
Targeting the translational machinery as a novel treatment strategy for hematologic malignancies. Blood 2010; 115:2127-35. [PMID: 20075156 DOI: 10.1182/blood-2009-09-220020] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The dysregulation of protein synthesis evident in the transformed phenotype has opened up a burgeoning field of research in cancer biology. Translation initiation has recently been shown to be a common downstream target of signal transduction pathways deregulated in cancer and initiated by mutated/overexpressed oncogenes and tumor suppressors. The overexpression and/or activation of proteins involved in translation initiation such as eIF4E, mTOR, and eIF4G have been shown to induce a malignant phenotype. Therefore, understanding the mechanisms that control protein synthesis is emerging as an exciting new research area with significant potential for developing innovative therapies. This review highlights molecules that are activated or dysregulated in hematologic malignancies, and promotes the transformed phenotype through the deregulation of protein synthesis. Targeting these proteins with small molecule inhibitors may constitute a novel therapeutic approach in the treatment of cancer.
Collapse
|
92
|
Hamma T, Ferré-D'Amaré AR. The box H/ACA ribonucleoprotein complex: interplay of RNA and protein structures in post-transcriptional RNA modification. J Biol Chem 2009; 285:805-9. [PMID: 19917616 DOI: 10.1074/jbc.r109.076893] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The box H/ACA ribonucleoproteins (RNPs) are protein-RNA complexes responsible for pseudouridylation, the most abundant post-transcriptional modification of cellular RNAs. Integrity of its box H/ACA domain is also essential for assembly and stability of the human telomerase RNP. The recent publication of the complete box H/ACA RNP structures combined with the previously reported structures of the protein and RNA components makes it possible to deduce the structural accommodation that accompanies assembly of the full particle. This analysis reveals how the protein components distort the RNA component of the RNP, enabling productive docking of the substrate RNA into the enzymatic active site.
Collapse
Affiliation(s)
- Tomoko Hamma
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|