51
|
Abstract
Telomeric DNA at eukaryotic chromosome ends terminates with single stranded 3' G-rich overhangs. The overhang is generated by the interplay of several dynamic processes including semiconservative DNA replication, 3' end elongation by telomerase, C-strand fill-in synthesis and nucleolytic processing. The mammalian CST (CTC1-STN1-TEN1) complex is directly involved at several stages of telomere end formation. Elucidation of its structural organization and identification of interaction partners support the notion that mammalian CST is, as its yeast counterpart, a RPA-like complex. CST binding at mammalian telomere 3' overhangs increases upon their elongation by telomerase. Formation of a trimeric CST complex at telomeric 3'overhangs leads to telomerase inhibition and at the same time mediates a physical interaction with DNA polymerase-α. Thus CST seems to play critical roles in coordinating telomerase elongation and fill-in synthesis to complete telomere replication.
Collapse
Affiliation(s)
- Liuh-Yow Chen
- Swiss Institute for Experimental Cancer Research (ISREC); School of Life Sciences; Frontiers in Genetics National Center of Competence in Research; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne, Switzerland
| | | |
Collapse
|
52
|
Webb CJ, Wu Y, Zakian VA. DNA repair at telomeres: keeping the ends intact. Cold Spring Harb Perspect Biol 2013; 5:5/6/a012666. [PMID: 23732473 DOI: 10.1101/cshperspect.a012666] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The molecular era of telomere biology began with the discovery that telomeres usually consist of G-rich simple repeats and end with 3' single-stranded tails. Enormous progress has been made in identifying the mechanisms that maintain and replenish telomeric DNA and the proteins that protect them from degradation, fusions, and checkpoint activation. Although telomeres in different organisms (or even in the same organism under different conditions) are maintained by different mechanisms, the disparate processes have the common goals of repairing defects caused by semiconservative replication through G-rich DNA, countering the shortening caused by incomplete replication, and postreplication regeneration of G tails. In addition, standard DNA repair mechanisms must be suppressed or modified at telomeres to prevent their being recognized and processed as DNA double-strand breaks. Here, we discuss the players and processes that maintain and regenerate telomere structure.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
53
|
Hukezalie KR, Wong JMY. Structure-function relationship and biogenesis regulation of the human telomerase holoenzyme. FEBS J 2013; 280:3194-204. [PMID: 23551398 DOI: 10.1111/febs.12272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 01/20/2023]
Abstract
Telomeres are nucleoprotein structures found at the ends of linear chromosomes. Telomeric DNA shortens with each cell division, effectively restricting the proliferative capacity of human cells. Telomerase, a specialized reverse transcriptase, is responsible for de novo synthesis of telomeric DNA, and is the major physiological means by which mammalian cells extend telomere length. Telomerase activity in human soma is developmentally regulated according to cell type. Failure to tightly regulate telomerase has dire consequences: dysregulated telomerase activity is observed in more than 90% of human cancers, while haplo-insufficient expression of telomerase components underlies several inherited premature aging syndromes. Over the past decade, we have significantly improved our understanding of the structure-activity relationships between the two core telomerase components: telomerase reverse transcriptase and telomerase RNA. Genetic screening for telomerase deficiency syndromes has identified new partners in the biogenesis of telomerase and its catalytic functions. These data revealed a level of regulation complexity that is unexpected when compared with the other cellular polymerases. In this review, we summarize current knowledge on the structure-activity relationships of telomerase reverse transcriptase and telomerase RNA, and discuss how the biogenesis of telomerase provides additional regulation of its actions.
Collapse
Affiliation(s)
- Kyle R Hukezalie
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
54
|
Pfeiffer V, Lingner J. Replication of telomeres and the regulation of telomerase. Cold Spring Harb Perspect Biol 2013; 5:a010405. [PMID: 23543032 DOI: 10.1101/cshperspect.a010405] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Telomeres are the physical ends of eukaryotic chromosomes. They protect chromosome ends from DNA degradation, recombination, and DNA end fusions, and they are important for nuclear architecture. Telomeres provide a mechanism for their replication by semiconservative DNA replication and length maintenance by telomerase. Through telomerase repression and induced telomere shortening, telomeres provide the means to regulate cellular life span. In this review, we introduce the current knowledge on telomere composition and structure. We then discuss in depth the current understanding of how telomere components mediate their function during semiconservative DNA replication and how telomerase is regulated at the end of the chromosome. We focus our discussion on the telomeres from mammals and the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Verena Pfeiffer
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Frontiers in Genetics National Center of Competence in Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | |
Collapse
|
55
|
D'Souza Y, Chu TW, Autexier C. A translocation-defective telomerase with low levels of activity and processivity stabilizes short telomeres and confers immortalization. Mol Biol Cell 2013; 24:1469-79. [PMID: 23447707 PMCID: PMC3639057 DOI: 10.1091/mbc.e12-12-0889] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Short, repetitive, G-rich telomeric sequences are synthesized by telomerase, a ribonucleoprotein consisting of telomerase reverse transcriptase (TERT) and an integrally associated RNA. Human TERT (hTERT) can repetitively reverse transcribe its RNA template, acting processively to add multiple telomeric repeats onto the same substrate. We investigated whether certain threshold levels of telomerase activity and processivity are required to maintain telomere function and immortalize human cells with limited lifespan. We assessed hTERT variants with mutations in motifs implicated in processivity and interaction with DNA, namely the insertion in fingers domain (V791Y), and the E primer grip motif (W930F). hTERT-W930F and hTERT-V791Y reconstitute reduced levels of DNA synthesis and processivity compared with wild-type telomerase. Of interest, hTERT-W930F is more defective in translocation than hTERT-V791Y. Nonetheless, hTERT-W930F, but not hTERT-V791Y, immortalizes limited-lifespan human cells. Both hTERT-W930F- and hTERT-V791Y-expressing cells harbor short telomeres, measured as signal free ends (SFEs), yet SFEs persist only in hTERT-V791Y cells, which undergo apoptosis, likely as a consequence of a defect in recruitment of hTERT-V791Y to telomeres. Our study is the first to demonstrate that low levels of DNA synthesis--on the order of 20% of wild-type telomerase levels--and extension of as few as three telomeric repeats are sufficient to maintain functional telomeres and immortalize limited-lifespan human cells.
Collapse
Affiliation(s)
- Yasmin D'Souza
- Department of Anatomy and Cell Biology, McGill University, Montréal, PQ H3A 2B2, Canada
| | | | | |
Collapse
|
56
|
Abstract
The genome is dynamically organized in the nuclear space in a manner that reflects and influences nuclear functions. Developmental processes that govern the formation and maintenance of epigenetic memories are also tightly linked to adaptive changes in the physical and functional landscape of the nuclear architecture. Biological and biophysical principles governing the three-dimensional folding of chromatin are therefore central to our understanding of epigenetic regulation during adaptive responses and in complex diseases, such as cancer. Accumulating evidence points to the direction that global alterations in nuclear architecture and chromatin folding conspire with unstable epigenetic states of the primary chromatin fiber to drive the phenotypic plasticity of cancer cells.
Collapse
Affiliation(s)
- Anita Göndör
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, KI Solna Campus, Box 280, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
57
|
Nandakumar J, Cech TR. Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol 2013; 14:69-82. [PMID: 23299958 DOI: 10.1038/nrm3505] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Telomeres, the ends of linear eukaryotic chromosomes, are characterized by the presence of multiple repeats of a short DNA sequence. This telomeric DNA is protected from illicit repair by telomere-associated proteins, which in mammals form the shelterin complex. Replicative polymerases are unable to synthesize DNA at the extreme ends of chromosomes, but in unicellular eukaryotes such as yeast and in mammalian germ cells and stem cells, telomere length is maintained by a ribonucleoprotein enzyme known as telomerase. Recent work has provided insights into the mechanisms of telomerase recruitment to telomeres, highlighting the contribution of telomere-associated proteins, including TPP1 in humans, Ccq1 in Schizosaccharomyces pombe and Cdc13 and Ku70-Ku80 in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Jayakrishnan Nandakumar
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309-0596, USA
| | | |
Collapse
|
58
|
Centenarians, but not octogenarians, up-regulate the expression of microRNAs. Sci Rep 2012; 2:961. [PMID: 23233880 PMCID: PMC3518811 DOI: 10.1038/srep00961] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/07/2012] [Indexed: 11/08/2022] Open
Abstract
Centenarians exhibit extreme longevity and a remarkable compression of morbidity. They have a unique capacity to maintain homeostatic mechanisms. Since small non-coding RNAs (including microRNAs) are implicated in the regulation of gene expression, we hypothesised that longevity of centenarians may reflect alterations in small non-coding RNA expression. We report the first comparison of microRNAs expression profiles in mononuclear cells from centenarians, octogenarians and young individuals resident near Valencia, Spain. Principal Component Analysis of the expression of 15,644 mature microRNAs and, 2,334 snoRNAs and scaRNAs in centenarians revealed a significant overlap with profiles in young individuals but not with octogenarians and a significant up-regulation of 7 small non-coding RNAs in centenarians compared to young persons and notably 102 small non-coding RNAs when compared with octogenarians. We suggest that the small non-coding RNAs signature in centenarians may provide insights into the underlying molecular mechanisms endowing centenarians with extreme longevity.
Collapse
|
59
|
Abstract
Telomerase adds simple-sequence repeats to the ends of linear chromosomes to counteract the loss of end sequence inherent in conventional DNA replication. Catalytic activity for repeat synthesis results from the cooperation of the telomerase reverse transcriptase protein (TERT) and the template-containing telomerase RNA (TER). TERs vary widely in sequence and structure but share a set of motifs required for TERT binding and catalytic activity. Species-specific TER motifs play essential roles in RNP biogenesis, stability, trafficking, and regulation. Remarkably, the biogenesis pathways that generate mature TER differ across eukaryotes. Furthermore, the cellular processes that direct the assembly of a biologically functional telomerase holoenzyme and its engagement with telomeres are evolutionarily varied and regulated. This review highlights the diversity of strategies for telomerase RNP biogenesis, RNP assembly, and telomere recruitment among ciliates, yeasts, and vertebrates and suggests common themes in these pathways and their regulation.
Collapse
Affiliation(s)
- Emily D. Egan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
- Corresponding authorE-mail
| |
Collapse
|
60
|
The human CST complex is a terminator of telomerase activity. Nature 2012; 488:540-4. [PMID: 22763445 DOI: 10.1038/nature11269] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 05/29/2012] [Indexed: 01/13/2023]
Abstract
The lengths of human telomeres, which protect chromosome ends from degradation and end fusions, are crucial determinants of cell lifespan. During embryogenesis and in cancer, the telomerase enzyme counteracts telomeric DNA shortening. As shown in cancer cells, human telomerase binds the shelterin component TPP1 at telomeres during the S phase of the cell cycle, and adds ~60 nucleotides in a single round of extension, after which telomerase is turned off by unknown mechanisms. Here we show that the human CST (CTC1, STN1 and TEN1) complex, previously implicated in telomere protection and DNA metabolism, inhibits telomerase activity through primer sequestration and physical interaction with the protection of telomeres 1 (POT1)–TPP1 telomerase processivity factor. CST competes with POT1–TPP1 for telomeric DNA, and CST–telomeric-DNA binding increases during late S/G2 phase only on telomerase action, coinciding with telomerase shut-off. Depletion of CST allows excessive telomerase activity, promoting telomere elongation. We propose that through binding of the telomerase-extended telomere, CST limits telomerase action at individual telomeres to approximately one binding and extension event per cell cycle. Our findings define the sequence of events that occur to first enable and then terminate telomerase-mediated telomere elongation.
Collapse
|
61
|
Sexton AN, Youmans DT, Collins K. Specificity requirements for human telomere protein interaction with telomerase holoenzyme. J Biol Chem 2012; 287:34455-64. [PMID: 22893708 DOI: 10.1074/jbc.m112.394767] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human telomeres are maintained by the enzyme telomerase, which uses a template within its integral RNA subunit (hTR) and telomerase reverse transcriptase protein (TERT) to accomplish the synthesis of single-stranded DNA repeats. Many questions remain unresolved about the cellular regulation of telomerase subunits and the fully assembled telomerase holoenzyme, including the basis for the specificity of binding and acting on telomeres. Previous studies have revealed that the telomere protein TPP1 is necessary for stable TERT and hTR association with telomeres in vivo. Here, we expand the biochemical characterization and understanding of TPP1 interaction with TERT and the catalytically active telomerase holoenzyme. Using extracts from human cells, we show that TPP1 interacts sequence-specifically with TERT when TERT is assembled into holoenzyme context. In holoenzyme context, the TERT N-terminal domain mediates a TPP1 interaction. Assays of stable subunit complexes purified after their cellular assembly suggest that other telomere proteins do not necessarily influence TPP1 association with telomerase holoenzyme or alter its impact on elongation processivity. We show that a domain of recombinant TPP1 comprised of an oligonucleotide/oligosaccharide binding fold recapitulates the full-length protein interaction specificity for the TERT N-terminal domain assembled into telomerase holoenzyme. By global analysis of TPP1 side chain requirements for holoenzyme association, we demonstrate a selective requirement for the amino acids in one surface-exposed protein loop. Our results reveal the biochemical determinants of a sequence-specific TPP1-TERT interaction in human cells, with implications for the mechanisms of TPP1 function in recruiting telomerase subunits to telomeres and in promoting telomere elongation.
Collapse
Affiliation(s)
- Alec N Sexton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | | | | |
Collapse
|
62
|
Hirai Y, Masutomi K, Ishikawa F. Kinetics of DNA replication and telomerase reaction at a single-seeded telomere in human cells. Genes Cells 2012; 17:186-204. [PMID: 22353550 DOI: 10.1111/j.1365-2443.2012.01581.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In most cancer cells, telomerase is activated to elongate telomere DNA, thereby ensuring numerous rounds of cell divisions. It is thus important to understand how telomerase and the replication fork react with telomeres in human cells. However, the highly polymorphic and repetitive nature of the nucleotide sequences in human subtelomeric regions hampers the precise analysis of sequential events taking place at telomeres in S phase. Here, we have established HeLa cells harboring a single-seeded telomere abutted by a unique subtelomere DNA sequence, which has enabled us to specifically focus on the seeded telomere. We have also developed a modified chromatin immunoprecipitation (ChIP) method that uses restriction digestion instead of sonication to fragment chromatin DNA (RES-ChIP), and a method for immunoprecipitating 5-bromo-2'-deoxyuridine (BrdU)-labeled single-stranded DNA by incubating DNA with anti-BrdU antibody in the nondenaturing condition. We have shown that DNA replication of the seeded telomere takes place during a relatively narrow time window in S phase, and telomerase synthesizes telomere DNA after the replication. Moreover, we have demonstrated that the telomerase catalytic subunit TERT associates with telomeres before telomere DNA replication. These results provide a temporal and spatial framework for understanding DNA replication and telomerase reaction at human telomeres.
Collapse
Affiliation(s)
- Yugo Hirai
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
63
|
Londoño-Vallejo JA, Wellinger RJ. Telomeres and telomerase dance to the rhythm of the cell cycle. Trends Biochem Sci 2012; 37:391-9. [PMID: 22727244 DOI: 10.1016/j.tibs.2012.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 11/27/2022]
Abstract
The stability of the ends of linear eukaryotic chromosomes is ensured by functional telomeres, which are composed of short, species-specific direct repeat sequences. The maintenance of telomeres depends on a specialized ribonucleoprotein (RNP) called telomerase. Both telomeres and telomerase are dynamic entities with different physical behaviors and, given their substrate-enzyme relation, they must establish a productive interaction. Regulatory mechanisms controlling this interaction are key missing elements in our understanding of telomere functions. Here, we review the dynamic properties of telomeres and the maturing telomerase RNPs, and summarize how tracking the timing of their dance during the cell cycle will yield insights into chromosome stability mechanisms. Cancer cells often display loss of genome integrity; therefore, these issues are of particular interest for our understanding of cancer initiation or progression.
Collapse
Affiliation(s)
- J Arturo Londoño-Vallejo
- Laboratoire Télomères et Cancer, UMR3244, Institut Curie, 26 rue d'Ulm, 75248 Paris, France; UPMC Université Paris 06, F-75005 Paris, France
| | | |
Collapse
|
64
|
Dundr M. Nuclear bodies: multifunctional companions of the genome. Curr Opin Cell Biol 2012; 24:415-22. [PMID: 22541757 DOI: 10.1016/j.ceb.2012.03.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 03/16/2012] [Accepted: 03/29/2012] [Indexed: 01/22/2023]
Abstract
It has become increasingly apparent that gene expression is regulated by the functional interplay between spatial genome organization and nuclear architecture. Within the nuclear environment a variety of distinct nuclear bodies exist. They are dynamic, self-organizing structures that do not assemble as pre-formed entities but rather emerge as a direct reflection of specific activities associated with gene expression and genome maintenance. Here I summarize recent findings on functions of some of the most prominent nuclear bodies, including the nucleolus, Cajal body, PML nuclear body, Polycomb group body and the 53BP1 nuclear body. The emerging view is that their organization is orchestrated by similar principles, and they function in fundamental cellular processes involved in homeostasis, differentiation, development and disease.
Collapse
Affiliation(s)
- Miroslav Dundr
- Department of Cell Biology, Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, United States.
| |
Collapse
|
65
|
Eckert B, Collins K. Roles of telomerase reverse transcriptase N-terminal domain in assembly and activity of Tetrahymena telomerase holoenzyme. J Biol Chem 2012; 287:12805-14. [PMID: 22367200 DOI: 10.1074/jbc.m112.339853] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Telomerase extends chromosome ends by the addition of single-stranded telomeric repeats. To support processive repeat synthesis, it has been proposed that coordination occurs between DNA interactions with the telomerase RNA template, the active site in the telomerase reverse transcriptase (TERT) core, a TERT N-terminal (TEN) domain, and additional subunits of the telomerase holoenzyme required for telomere elongation in vivo. The roles of TEN domain surface residues in primer binding and product elongation have been studied largely using assays of minimal recombinant telomerase enzymes, which lack holoenzyme subunits that properly fold and conformationally stabilize the ribonucleoprotein and/or control its association with telomere substrates in vivo. Here, we use Tetrahymena telomerase holoenzyme reconstitution in vitro to assess TEN domain sequence requirements in the physiological enzyme context. We find that TEN domain sequence substitutions in the Tetrahymena telomerase holoenzyme influence synthesis initiation and elongation rate but not processivity. Functional and direct physical interaction assays pinpoint a conserved TEN domain surface required for holoenzyme subunit association and for high repeat addition processivity. Our results add to the understanding of telomerase holoenzyme architecture and TERT domain functions with direct implications for the unique mechanism of single-stranded repeat synthesis.
Collapse
Affiliation(s)
- Barbara Eckert
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | |
Collapse
|
66
|
Boltz KA, Leehy K, Song X, Nelson AD, Shippen DE. ATR cooperates with CTC1 and STN1 to maintain telomeres and genome integrity in Arabidopsis. Mol Biol Cell 2012; 23:1558-68. [PMID: 22357613 PMCID: PMC3327312 DOI: 10.1091/mbc.e11-12-1002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Telomeres protect chromosome ends from DNA damage. CTC1/STN1/TEN1 (CST), a core telomere-capping complex in plant and vertebrates, suppresses an ATR-dependent DNA damage response in Arabidopsis. Protracted ATR inactivation inhibits telomerase, hastening the onset of telomere dysfunction in CST mutants. The CTC1/STN1/TEN1 (CST) complex is an essential constituent of plant and vertebrate telomeres. Here we show that CST and ATR (ataxia telangiectasia mutated [ATM] and Rad3-related) act synergistically to maintain telomere length and genome stability in Arabidopsis. Inactivation of ATR, but not ATM, temporarily rescued severe morphological phenotypes associated with ctc1 or stn1. Unexpectedly, telomere shortening accelerated in plants lacking CST and ATR. In first-generation (G1) ctc1 atr mutants, enhanced telomere attrition was modest, but in G2 ctc1 atr, telomeres shortened precipitously, and this loss coincided with a dramatic decrease in telomerase activity in G2 atr mutants. Zeocin treatment also triggered a reduction in telomerase activity, suggesting that the prolonged absence of ATR leads to a hitherto-unrecognized DNA damage response (DDR). Finally, our data indicate that ATR modulates DDR in CST mutants by limiting chromosome fusions and transcription of DNA repair genes and also by promoting programmed cell death in stem cells. We conclude that the absence of CST in Arabidopsis triggers a multifaceted ATR-dependent response to facilitate maintenance of critically shortened telomeres and eliminate cells with severe telomere dysfunction.
Collapse
Affiliation(s)
- Kara A Boltz
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
67
|
Cifuentes-Rojas C, Shippen DE. Telomerase regulation. Mutat Res 2012; 730:20-7. [PMID: 22032831 PMCID: PMC3256259 DOI: 10.1016/j.mrfmmm.2011.10.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/15/2011] [Accepted: 10/12/2011] [Indexed: 02/05/2023]
Abstract
The intimate connection between telomerase regulation and human disease is now well established. The molecular basis for telomerase regulation is highly complex and entails multiple layers of control. While the major target of enzyme regulation is the catalytic subunit TERT, the RNA subunit of telomerase is also implicated in telomerase control. In addition, alterations in gene dosage and alternative isoforms of core telomerase components have been described. Finally, telomerase localization, recruitment to the telomere and enzymology at the chromosome terminus are all subject to modulation. In this review we summarize recent advances in understanding fundamental mechanisms of telomerase regulation.
Collapse
Affiliation(s)
| | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| |
Collapse
|
68
|
Stewart JA, Chaiken MF, Wang F, Price CM. Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation. Mutat Res 2012; 730:12-9. [PMID: 21945241 PMCID: PMC3256267 DOI: 10.1016/j.mrfmmm.2011.08.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/15/2011] [Accepted: 08/17/2011] [Indexed: 11/16/2022]
Abstract
Chromosome end protection is essential to protect genome integrity. Telomeres, tracts of repetitive DNA sequence and associated proteins located at the chromosomal terminus, serve to safeguard the ends from degradation and unwanted double strand break repair. Due to the essential nature of telomeres in protecting the genome, a number of unique proteins have evolved to ensure that telomere length and structure are preserved. The inability to properly maintain telomeres can lead to diseases such as dyskeratosis congenita, pulmonary fibrosis and cancer. In this review, we will discuss the known functions of mammalian telomere-associated proteins, their role in telomere replication and length regulation and how these processes relate to genome instability and human disease.
Collapse
Affiliation(s)
- Jason A. Stewart
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Mary F. Chaiken
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Feng Wang
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Carolyn M. Price
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| |
Collapse
|
69
|
D'Souza Y, Lauzon C, Chu TW, Autexier C. Regulation of telomere length and homeostasis by telomerase enzyme processivity. J Cell Sci 2012. [PMID: 23178942 DOI: 10.1242/jcs.119297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Telomerase is a ribonucleoprotein consisting of a catalytic subunit, the telomerase reverse transcriptase, TERT, and an integrally associated RNA, TR, which contains a template for the synthesis of short repetitive G-rich DNA sequences at the ends of telomeres. Telomerase can repetitively reverse transcribe its short RNA template, acting processively to add multiple telomeric repeats onto the same DNA substrate. The contribution of enzyme processivity to telomere length regulation in human cells is not well characterized. In cancer cells, under homeostatic telomere length-maintenance conditions, telomerase acts processively, while under nonequilibrium conditions, telomerase acts distributively on the shortest telomeres. To investigate the role of increased telomerase processivity on telomere length regulation in human cells with limited lifespan that are dependent on human TERT (hTERT) for lifespan extension and immortalization, we mutated the leucine at position 866 in the reverse transcriptase C motif of hTERT to a tyrosine (L866Y), which is the amino acid found at a similar position in HIV-1 reverse transcriptase. We report that, similar to the previously reported ‘gain of function’ Tetrahymena telomerase mutant (L813Y), the human telomerase variant displays increased processivity. hTERT-L866Y, like wild-type hTERT can immortalize and extend the lifespan of limited lifespan cells. Moreover, hTERT-L866Y expressing cells display heterogenous telomere lengths, telomere elongation, multiple telomeric signals indicative of fragile sites and replicative stress, and an increase in short telomeres, which is accompanied by telomere trimming events. Our results suggest that telomere length and homeostasis in human cells may be regulated by telomerase enzyme processivity.
Collapse
Affiliation(s)
- Yasmin D'Souza
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, Québec H3A 2B2, Canada
| | | | | | | |
Collapse
|
70
|
Houghtaling BR, Canudas S, Smith S. A role for sister telomere cohesion in telomere elongation by telomerase. Cell Cycle 2012; 11:19-25. [PMID: 22157096 DOI: 10.4161/cc.11.1.18633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Telomere length homeostasis is achieved by a balance of telomere shortening caused by DNA replication and nucleolytic attack and telomere lengthening by telomerase. The importance of telomere length maintenance to human health is best illustrated by dyskeratosis congenita (DC) a disease of telomere shortening caused by mutations in telomerase subunits. DC patients suffer stem cell depletion and die of bone marrow stem cell failure. Recently a new class of particularly severe DC patients was found to harbor mutations in the shelterin subunit TIN2. The DC-TIN2 mutations were clustered in small domain of unknown function. In a recently published study we showed that the DC mutation cluster in TIN2 harbored a binding site for heterochromatin protein 1 (HP1) and further, that HP1 binding to TIN2 was required for sister telomere cohesion in S phase and for telomere length maintenance by telomerase. We briefly review and discuss the implications of our findings in this Extra View, and present some new data that may shed light on how sister telomere cohesion could influence telomere elongation by telomerase.
Collapse
Affiliation(s)
- Benjamin R Houghtaling
- Molecular Pathogenesis Program and Department of Pathology, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
71
|
Canudas S, Houghtaling BR, Bhanot M, Sasa G, Savage SA, Bertuch AA, Smith S. A role for heterochromatin protein 1γ at human telomeres. Genes Dev 2011; 25:1807-19. [PMID: 21865325 DOI: 10.1101/gad.17325211] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human telomere function is mediated by shelterin, a six-subunit complex that is required for telomere replication, protection, and cohesion. TIN2, the central component of shelterin, has binding sites to three subunits: TRF1, TRF2, and TPP1. Here we identify a fourth partner, heterochromatin protein 1γ (HP1γ), that binds to a conserved canonical HP1-binding motif, PXVXL, in the C-terminal domain of TIN2. We show that HP1γ localizes to telomeres in S phase, where it is required to establish/maintain cohesion. We further demonstrate that the HP1-binding site in TIN2 is required for sister telomere cohesion and can impact telomere length maintenance by telomerase. Remarkably, the PTVML HP1-binding site is embedded in the recently identified cluster of mutations in TIN2 that gives rise to dyskeratosis congenita (DC), an inherited bone marrow failure syndrome caused by defects in telomere maintenance. We show that DC-associated mutations in TIN2 abrogate binding to HP1γ and that DC patient cells are defective in sister telomere cohesion. Our data indicate a novel requirement for HP1γ in the establishment/maintenance of cohesion at human telomeres and, furthermore, may provide insight into the mechanism of pathogenesis in TIN2-mediated DC.
Collapse
Affiliation(s)
- Silvia Canudas
- Molecular Pathogenesis Program, Department of Pathology, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|