51
|
Olazabal-Herrero A, García-Santisteban I, Rodríguez JA. Structure-function analysis of USP1: insights into the role of Ser313 phosphorylation site and the effect of cancer-associated mutations on autocleavage. Mol Cancer 2015; 14:33. [PMID: 25744535 PMCID: PMC4326527 DOI: 10.1186/s12943-015-0311-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 01/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In complex with its cofactor UAF1, the USP1 deubiquitinase plays an important role in cellular processes related to cancer, including the response to DNA damage. The USP1/UAF1 complex is emerging as a novel target in cancer therapy, but several aspects of its function and regulation remain to be further clarified. These include the role of the serine 313 phosphorylation site, the relative contribution of different USP1 sequence motifs to UAF1 binding, and the potential effect of cancer-associated mutations on USP1 regulation by autocleavage. METHODS We have generated a large set of USP1 structural variants, including a catalytically inactive form (C90S), non-phosphorylatable (S313A) and phosphomimetic (S313D) mutants, deletion mutants lacking potential UAF1 binding sites, a mutant (GG/AA) unable to undergo autocleavage at the well-characterized G670/G671 diglycine motif, and four USP1 mutants identified in tumor samples that cluster around this cleavage site (G667A, L669P, K673T and A676T). Using cell-based assays, we have determined the ability of these mutants to bind UAF1, to reverse DNA damage-induced monoubiquitination of PCNA, and to undergo autocleavage. RESULTS A non-phosphorylatable S313A mutant of USP1 retained the ability to bind UAF1 and to reverse PCNA ubiquitination in cell-based assays. Regardless of the presence of a phosphomimetic S313D mutation, deletion of USP1 fragment 420-520 disrupted UAF1 binding, as determined using a nuclear relocation assay. The UAF1 binding site in a second UAF1-interacting DUB, USP46, was mapped to a region homologous to USP1(420-520). Regarding USP1 autocleavage, co-expression of the C90S and GG/AA mutants did not result in cleavage, while the cancer-associated mutation L669P was found to reduce cleavage efficiency. CONCLUSIONS USP1 phosphorylation at S313 is not critical for PCNA deubiquitination, neither for binding to UAF1 in a cellular environment. In this context, USP1 amino acid motif 420-520 is necessary and sufficient for UAF1 binding. This motif, and a homologous amino acid segment that mediates USP46 binding to UAF1, map to the Fingers sub-domain of these DUBs. On the other hand, our results support the view that USP1 autocleavage may occur in cis, and can be altered by a cancer-associated mutation.
Collapse
Affiliation(s)
- Anne Olazabal-Herrero
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain.
| | - Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain.
| | - Jose Antonio Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain.
| |
Collapse
|
52
|
Gibbs DJ, Bacardit J, Bachmair A, Holdsworth MJ. The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends Cell Biol 2014; 24:603-11. [DOI: 10.1016/j.tcb.2014.05.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 12/30/2022]
|
53
|
Abstract
Fanconi anemia (FA) represents a paradigm of rare genetic diseases, where the quest for cause and cure has led to seminal discoveries in cancer biology. Although a total of 16 FA genes have been identified thus far, the biochemical function of many of the FA proteins remains to be elucidated. FA is rare, yet the fact that 5 FA genes are in fact familial breast cancer genes and FA gene mutations are found frequently in sporadic cancers suggest wider applicability in hematopoiesis and oncology. Establishing the interaction network involving the FA proteins and their associated partners has revealed an intersection of FA with several DNA repair pathways, including homologous recombination, DNA mismatch repair, nucleotide excision repair, and translesion DNA synthesis. Importantly, recent studies have shown a major involvement of the FA pathway in the tolerance of reactive aldehydes. Moreover, despite improved outcomes in stem cell transplantation in the treatment of FA, many challenges remain in patient care.
Collapse
|
54
|
Gallagher PS, Oeser ML, Abraham AC, Kaganovich D, Gardner RG. Cellular maintenance of nuclear protein homeostasis. Cell Mol Life Sci 2014; 71:1865-79. [PMID: 24305949 PMCID: PMC3999211 DOI: 10.1007/s00018-013-1530-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/04/2013] [Accepted: 11/19/2013] [Indexed: 12/11/2022]
Abstract
The accumulation and aggregation of misfolded proteins is the primary hallmark for more than 45 human degenerative diseases. These devastating disorders include Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. Over 15 degenerative diseases are associated with the aggregation of misfolded proteins specifically in the nucleus of cells. However, how the cell safeguards the nucleus from misfolded proteins is not entirely clear. In this review, we discuss what is currently known about the cellular mechanisms that maintain protein homeostasis in the nucleus and protect the nucleus from misfolded protein accumulation and aggregation. In particular, we focus on the chaperones found to localize to the nucleus during stress, the ubiquitin-proteasome components enriched in the nucleus, the signaling systems that might be present in the nucleus to coordinate folding and degradation, and the sites of misfolded protein deposition associated with the nucleus.
Collapse
Affiliation(s)
- Pamela S Gallagher
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | | | | | | | | |
Collapse
|
55
|
Calpain-generated natural protein fragments as short-lived substrates of the N-end rule pathway. Proc Natl Acad Sci U S A 2014; 111:E817-26. [PMID: 24550490 DOI: 10.1073/pnas.1401639111] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calpains are Ca(2+)-dependent intracellular proteases. We show here that calpain-generated natural C-terminal fragments of proteins that include G protein-coupled receptors, transmembrane ion channels, transcriptional regulators, apoptosis controllers, kinases, and phosphatases (Phe-GluN2a, Lys-Ica512, Arg-Ankrd2, Tyr-Grm1, Arg-Atp2b2, Glu-Bak, Arg-Igfbp2, Glu-IκBα, and Arg-c-Fos), are short-lived substrates of the Arg/N-end rule pathway, which targets destabilizing N-terminal residues. We also found that the identity of a fragment's N-terminal residue can change during evolution, but the residue's destabilizing activity is virtually always retained, suggesting selection pressures that favor a short half-life of the calpain-generated fragment. It is also shown that a self-cleavage of a calpain can result in an N-end rule substrate. Thus, the autoprocessing of calpains can control them by making active calpains short-lived. These and related results indicate that the Arg/N-end rule pathway mediates the remodeling of oligomeric complexes by eliminating protein fragments that are produced in these complexes through cleavages by calpains or other nonprocessive proteases. We suggest that this capability of the Arg/N-end rule pathway underlies a multitude of its previously known but mechanistically unclear functions.
Collapse
|
56
|
Kim HK, Kim RR, Oh JH, Cho H, Varshavsky A, Hwang CS. The N-terminal methionine of cellular proteins as a degradation signal. Cell 2013; 156:158-69. [PMID: 24361105 DOI: 10.1016/j.cell.2013.11.031] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 09/26/2013] [Accepted: 11/20/2013] [Indexed: 11/28/2022]
Abstract
The Arg/N-end rule pathway targets for degradation proteins that bear specific unacetylated N-terminal residues while the Ac/N-end rule pathway targets proteins through their N(α)-terminally acetylated (Nt-acetylated) residues. Here, we show that Ubr1, the ubiquitin ligase of the Arg/N-end rule pathway, recognizes unacetylated N-terminal methionine if it is followed by a hydrophobic residue. This capability of Ubr1 expands the range of substrates that can be targeted for degradation by the Arg/N-end rule pathway because virtually all nascent cellular proteins bear N-terminal methionine. We identified Msn4, Sry1, Arl3, and Pre5 as examples of normal or misfolded proteins that can be destroyed through the recognition of their unacetylated N-terminal methionine. Inasmuch as proteins bearing the Nt-acetylated N-terminal methionine residue are substrates of the Ac/N-end rule pathway, the resulting complementarity of the Arg/N-end rule and Ac/N-end rule pathways enables the elimination of protein substrates regardless of acetylation state of N-terminal methionine in these substrates.
Collapse
Affiliation(s)
- Heon-Ki Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Ryu-Ryun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Jang-Hyun Oh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hanna Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, South Korea.
| |
Collapse
|
57
|
Mistry H, Hsieh G, Buhrlage SJ, Huang M, Park E, Cuny GD, Galinsky I, Stone RM, Gray NS, D'Andrea AD, Parmar K. Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells. Mol Cancer Ther 2013; 12:2651-62. [PMID: 24130053 PMCID: PMC4089878 DOI: 10.1158/1535-7163.mct-13-0103-t] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitor of DNA binding 1 (ID1) transcription factor is essential for the proliferation and progression of many cancer types, including leukemia. However, the ID1 protein has not yet been therapeutically targeted in leukemia. ID1 is normally polyubiquitinated and degraded by the proteasome. Recently, it has been shown that USP1, a ubiquitin-specific protease, deubiquitinates ID1 and rescues it from proteasome degradation. Inhibition of USP1 therefore offers a new avenue to target ID1 in cancer. Here, using a ubiquitin-rhodamine-based high-throughput screening, we identified small-molecule inhibitors of USP1 and investigated their therapeutic potential for leukemia. These inhibitors blocked the deubiquitinating enzyme activity of USP1 in vitro in a dose-dependent manner with an IC50 in the high nanomolar range. USP1 inhibitors promoted the degradation of ID1 and, concurrently, inhibited the growth of leukemic cell lines in a dose-dependent manner. A known USP1 inhibitor, pimozide, also promoted ID1 degradation and inhibited growth of leukemic cells. In addition, the growth of primary acute myelogenous leukemia (AML) patient-derived leukemic cells was inhibited by a USP1 inhibitor. Collectively, these results indicate that the novel small-molecule inhibitors of USP1 promote ID1 degradation and are cytotoxic to leukemic cells. The identification of USP1 inhibitors therefore opens up a new approach for leukemia therapy.
Collapse
Affiliation(s)
- Helena Mistry
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Grace Hsieh
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Sara J. Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Min Huang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Eunmi Park
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Gregory D. Cuny
- Laboratory for Drug Discovery in Neurodegeneration, Harvard Center for Neurodegeneration and Repair, Brigham and Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Ilene Galinsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Alan D. D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Kalindi Parmar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
58
|
García-Santisteban I, Peters GJ, Giovannetti E, Rodríguez JA. USP1 deubiquitinase: cellular functions, regulatory mechanisms and emerging potential as target in cancer therapy. Mol Cancer 2013; 12:91. [PMID: 23937906 PMCID: PMC3750636 DOI: 10.1186/1476-4598-12-91] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/30/2013] [Indexed: 01/12/2023] Open
Abstract
Reversible protein ubiquitination is emerging as a key process for maintaining cell homeostasis, and the enzymes that participate in this process, in particular E3 ubiquitin ligases and deubiquitinases (DUBs), are increasingly being regarded as candidates for drug discovery. Human DUBs are a group of approximately 100 proteins, whose cellular functions and regulatory mechanisms remain, with some exceptions, poorly characterized. One of the best-characterized human DUBs is ubiquitin-specific protease 1 (USP1), which plays an important role in the cellular response to DNA damage. USP1 levels, localization and activity are modulated through several mechanisms, including protein-protein interactions, autocleavage/degradation and phosphorylation, ensuring that USP1 function is carried out in a properly regulated spatio-temporal manner. Importantly, USP1 expression is deregulated in certain types of human cancer, suggesting that USP1 could represent a valid target in cancer therapy. This view has gained recent support with the finding that USP1 inhibition may contribute to revert cisplatin resistance in an in vitro model of non-small cell lung cancer (NSCLC). Here, we describe the current knowledge on the cellular functions and regulatory mechanisms of USP1. We also summarize USP1 alterations found in cancer, combining data from the literature and public databases with our own data. Finally, we discuss the emerging potential of USP1 as a target, integrating published data with our novel findings on the effects of the USP1 inhibitor pimozide in combination with cisplatin in NSCLC cells.
Collapse
Affiliation(s)
- Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jose Antonio Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
59
|
Piatkov K, Graciet E, Varshavsky A. Ubiquitin reference technique and its use in ubiquitin-lacking prokaryotes. PLoS One 2013; 8:e67952. [PMID: 23825692 PMCID: PMC3692480 DOI: 10.1371/journal.pone.0067952] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/23/2013] [Indexed: 11/30/2022] Open
Abstract
In a pulse-chase assay, the in vivo degradation of a protein is measured through a brief labeling of cells with, for example, a radioactive amino acid, followed by cessation of labeling and analysis of cell extracts prepared at different times afterward (“chase”), using immunoprecipitation, electrophoresis and autoradiography of a labeled protein of interest. A conventional pulse-chase assay is fraught with sources of data scatter, as the efficacy of labeling and immunoprecipitation can vary, and sample volumes can vary as well. The ubiquitin reference technique (URT), introduced in 1996, addresses these problems. In eukaryotes, a DNA-encoded linear fusion of ubiquitin to another protein is cleaved by deubiquitylases at the ubiquitin-protein junction. A URT assay uses a fusion in which the ubiquitin moiety is located between a downstream polypeptide (test protein) and an upstream polypeptide (a long-lived reference protein). The cotranslational cleavage of a URT fusion by deubiquitylases after the last residue of ubiquitin produces, at the initially equimolar ratio, a test protein with a desired N-terminal residue and a reference protein containing C-terminal ubiquitin moiety. In addition to being more accurate than pulse-chases without a reference, URT makes it possible to detect and measure the degradation of a test protein during the pulse (before the chase). Because prokaryotes, including Gram-negative bacteria such as, for example, Escherichia coli and Vibrio vulnificus, lack the ubiquitin system, the use of URT in such cells requires ectopic expression of a deubiquitylase. We describe designs and applications of plasmid vectors that coexpress, in bacteria, both a URT-type fusion and Ubp1, a deubiquitylase of the yeast Saccharomyces cerevisiae. This single-plasmid approach extends the accuracy-enhancing URT assay to studies of protein degradation in prokaryotes.
Collapse
Affiliation(s)
- Konstantin Piatkov
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (KP); (AV)
| | | | - Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (KP); (AV)
| |
Collapse
|