51
|
van den Berg MCW, Burgering BMT. CCM1 and the second life of proteins in adhesion complexes. Cell Adh Migr 2015; 8:146-57. [PMID: 24714220 DOI: 10.4161/cam.28437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is well recognized that a number of proteins present within adhesion complexes perform discrete signaling functions outside these adhesion complexes, including transcriptional control. In this respect, β-catenin is a well-known example of an adhesion protein present both in cadherin complexes and in the nucleus where it regulates the TCF transcription factor. Here we discuss nuclear functions of adhesion complex proteins with a special focus on the CCM-1/KRIT-1 protein, which may turn out to be yet another adhesion complex protein with a second life.
Collapse
Affiliation(s)
- Maaike C W van den Berg
- Center for Molecular Medicine; Dept. Molecular Cancer Research; University Medical Center Utrecht; The Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine; Dept. Molecular Cancer Research; University Medical Center Utrecht; The Netherlands
| |
Collapse
|
52
|
The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell 2015; 32:168-80. [PMID: 25625206 DOI: 10.1016/j.devcel.2014.12.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 09/21/2014] [Accepted: 12/05/2014] [Indexed: 12/23/2022]
Abstract
The cerebral cavernous malformation (CCM) pathway is required in endothelial cells for normal cardiovascular development and to prevent postnatal vascular malformations, but its molecular effectors are not well defined. Here we show that loss of CCM signaling in endocardial cells results in mid-gestation heart failure associated with premature degradation of cardiac jelly. CCM deficiency dramatically alters endocardial and endothelial gene expression, including increased expression of the Klf2 and Klf4 transcription factors and the Adamts4 and Adamts5 proteases that degrade cardiac jelly. These changes in gene expression result from increased activity of MEKK3, a mitogen-activated protein kinase that binds CCM2 in endothelial cells. MEKK3 is both necessary and sufficient for expression of these genes, and partial loss of MEKK3 rescues cardiac defects in CCM-deficient embryos. These findings reveal a molecular mechanism by which CCM signaling controls endothelial gene expression during cardiovascular development that may also underlie CCM formation.
Collapse
|
53
|
Snider NT, Altshuler PJ, Omary MB. Modulation of cytoskeletal dynamics by mammalian nucleoside diphosphate kinase (NDPK) proteins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015. [PMID: 25234227 DOI: 10.07/s00210-014-1046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nucleoside diphosphate kinase (NDPK) proteins comprise a family of ten human isoforms that participate in the regulation of multiple cellular processes via enzymatic and nonenzymatic functions. The major enzymatic function of NDPKs is the generation of nucleoside triphosphates, such as guanosine triphosphate (GTP). Mechanisms behind the nonenzymatic NDPK functions are not clear but likely involve context-dependent signaling roles of NDPK within multi-protein complexes. This is most evident for NDPK-A, which is encoded by the human NME1 gene, the first tumor metastasis suppressor gene to be identified. Understanding which protein interactions are most relevant for the biological and metastasis-related functions of NDPK will be important in the potential utilization of NDPK as a disease target. Accumulating evidence suggests that NDPK interacts with and affects various components and regulators of the cytoskeleton, including actin-binding proteins, intermediate filaments, and cytoskeletal attachment structures (adherens junctions, desmosomes, and focal adhesions). We review the existing literature on this topic and highlight outstanding questions and potential future directions that should clarify the impact of NDPK on the different cytoskeletal systems.
Collapse
Affiliation(s)
- Natasha T Snider
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA,
| | | | | |
Collapse
|
54
|
Fisher OS, Liu W, Zhang R, Stiegler AL, Ghedia S, Weber JL, Boggon TJ. Structural basis for the disruption of the cerebral cavernous malformations 2 (CCM2) interaction with Krev interaction trapped 1 (KRIT1) by disease-associated mutations. J Biol Chem 2014; 290:2842-53. [PMID: 25525273 DOI: 10.1074/jbc.m114.616433] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Familial cerebral cavernous malformations (CCMs) are predominantly neurovascular lesions and are associated with mutations within the KRIT1, CCM2, and PDCD10 genes. The protein products of KRIT1 and CCM2 (Krev interaction trapped 1 (KRIT1) and cerebral cavernous malformations 2 (CCM2), respectively) directly interact with each other. Disease-associated mutations in KRIT1 and CCM2 mostly result in loss of their protein products, although rare missense point mutations can also occur. From gene sequencing of patients known or suspected to have one or more CCMs, we discover a series of missense point mutations in KRIT1 and CCM2 that result in missense mutations in the CCM2 and KRIT1 proteins. To place these mutations in the context of the molecular level interactions of CCM2 and KRIT1, we map the interaction of KRIT1 and CCM2 and find that the CCM2 phosphotyrosine binding (PTB) domain displays a preference toward the third of the three KRIT1 NPX(Y/F) motifs. We determine the 2.75 Å co-crystal structure of the CCM2 PTB domain with a peptide corresponding to KRIT1(NPX(Y/F)3), revealing a Dab-like PTB fold for CCM2 and its interaction with KRIT1(NPX(Y/F)3). We find that several disease-associated missense mutations in CCM2 have the potential to interrupt the KRIT1-CCM2 interaction by destabilizing the CCM2 PTB domain and that a KRIT1 mutation also disrupts this interaction. We therefore provide new insights into the architecture of CCM2 and how the CCM complex is disrupted in CCM disease.
Collapse
Affiliation(s)
- Oriana S Fisher
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Weizhi Liu
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Rong Zhang
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Amy L Stiegler
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sondhya Ghedia
- the Department of Clinical Genetics, Royal North Shore Hospital, Pacific Highway, St. Leonards, New South Wales 2065, Australia, and
| | | | - Titus J Boggon
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520,
| |
Collapse
|
55
|
Macek Jilkova Z, Lisowska J, Manet S, Verdier C, Deplano V, Geindreau C, Faurobert E, Albigès-Rizo C, Duperray A. CCM proteins control endothelial β1 integrin dependent response to shear stress. Biol Open 2014; 3:1228-35. [PMID: 25432514 PMCID: PMC4265761 DOI: 10.1242/bio.201410132] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hemodynamic shear stress from blood flow on the endothelium critically regulates vascular function in many physiological and pathological situations. Endothelial cells adapt to shear stress by remodeling their cytoskeletal components and subsequently by changing their shape and orientation. We demonstrate that β1 integrin activation is critically controlled during the mechanoresponse of endothelial cells to shear stress. Indeed, we show that overexpression of the CCM complex, an inhibitor of β1 integrin activation, blocks endothelial actin rearrangement and cell reorientation in response to shear stress similarly to β1 integrin silencing. Conversely, depletion of CCM2 protein leads to an elongated “shear-stress-like” phenotype even in the absence of flow. Taken together, our findings reveal the existence of a balance between positive extracellular and negative intracellular signals, i.e. shear stress and CCM complex, for the control of β1 integrin activation and subsequent adaptation of vascular endothelial cells to mechanostimulation by fluid shear stress.
Collapse
Affiliation(s)
- Zuzana Macek Jilkova
- INSERM, Institut Albert Bonniot, F-38000 Grenoble, France Université Grenoble Alpes, Institut Albert Bonniot, F-38000 Grenoble, France
| | - Justyna Lisowska
- INSERM, Institut Albert Bonniot, F-38000 Grenoble, France Université Grenoble Alpes, Institut Albert Bonniot, F-38000 Grenoble, France CNRS ERL 5284, F-38042 Grenoble, France
| | - Sandra Manet
- INSERM, Institut Albert Bonniot, F-38000 Grenoble, France Université Grenoble Alpes, Institut Albert Bonniot, F-38000 Grenoble, France CNRS ERL 5284, F-38042 Grenoble, France
| | - Claude Verdier
- CNRS/Université Grenoble 1, LIPhy, UMR 5588, F-38041 Grenoble, France
| | - Valerie Deplano
- Aix-Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, F-13384, Marseille, France
| | - Christian Geindreau
- CNRS UMR5521, 3SR, Université Joseph Fourier Grenoble-INP, Grenoble, F-38042, France
| | - Eva Faurobert
- INSERM, Institut Albert Bonniot, F-38000 Grenoble, France Université Grenoble Alpes, Institut Albert Bonniot, F-38000 Grenoble, France CNRS ERL 5284, F-38042 Grenoble, France
| | - Corinne Albigès-Rizo
- INSERM, Institut Albert Bonniot, F-38000 Grenoble, France Université Grenoble Alpes, Institut Albert Bonniot, F-38000 Grenoble, France CNRS ERL 5284, F-38042 Grenoble, France
| | - Alain Duperray
- INSERM, Institut Albert Bonniot, F-38000 Grenoble, France Université Grenoble Alpes, Institut Albert Bonniot, F-38000 Grenoble, France
| |
Collapse
|
56
|
PTEN/PI3K/Akt/VEGF signaling and the cross talk to KRIT1, CCM2, and PDCD10 proteins in cerebral cavernous malformations. Neurosurg Rev 2014; 38:229-36; discussion 236-7. [DOI: 10.1007/s10143-014-0597-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/08/2014] [Accepted: 11/01/2014] [Indexed: 01/09/2023]
|
57
|
DiStefano PV, Kuebel JM, Sarelius IH, Glading AJ. KRIT1 protein depletion modifies endothelial cell behavior via increased vascular endothelial growth factor (VEGF) signaling. J Biol Chem 2014; 289:33054-65. [PMID: 25320085 DOI: 10.1074/jbc.m114.582304] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disruption of endothelial cell-cell contact is a key event in many cardiovascular diseases and a characteristic of pathologically activated vascular endothelium. The CCM (cerebral cavernous malformation) family of proteins (KRIT1 (Krev-interaction trapped 1), PDCD10, and CCM2) are critical regulators of endothelial cell-cell contact and vascular homeostasis. Here we show novel regulation of vascular endothelial growth factor (VEGF) signaling in KRIT1-depleted endothelial cells. Loss of KRIT1 and PDCD10, but not CCM2, increases nuclear β-catenin signaling and up-regulates VEGF-A protein expression. In KRIT1-depleted cells, increased VEGF-A levels led to increased VEGF receptor 2 (VEGFR2) activation and subsequent alteration of cytoskeletal organization, migration, and barrier function and to in vivo endothelial permeability in KRIT1-deficient animals. VEGFR2 activation also increases β-catenin phosphorylation but is only partially responsible for KRIT1 depletion-dependent disruption of cell-cell contacts. Thus, VEGF signaling contributes to modifying endothelial function in KRIT1-deficient cells and microvessel permeability in Krit1(+/-) mice; however, VEGF signaling is likely not the only contributor to disrupted endothelial cell-cell contacts in the absence of KRIT1.
Collapse
Affiliation(s)
- Peter V DiStefano
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - Julia M Kuebel
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - Ingrid H Sarelius
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - Angela J Glading
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| |
Collapse
|
58
|
Modulation of cytoskeletal dynamics by mammalian nucleoside diphosphate kinase (NDPK) proteins. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:189-97. [PMID: 25234227 DOI: 10.1007/s00210-014-1046-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/08/2014] [Indexed: 02/06/2023]
Abstract
Nucleoside diphosphate kinase (NDPK) proteins comprise a family of ten human isoforms that participate in the regulation of multiple cellular processes via enzymatic and nonenzymatic functions. The major enzymatic function of NDPKs is the generation of nucleoside triphosphates, such as guanosine triphosphate (GTP). Mechanisms behind the nonenzymatic NDPK functions are not clear but likely involve context-dependent signaling roles of NDPK within multi-protein complexes. This is most evident for NDPK-A, which is encoded by the human NME1 gene, the first tumor metastasis suppressor gene to be identified. Understanding which protein interactions are most relevant for the biological and metastasis-related functions of NDPK will be important in the potential utilization of NDPK as a disease target. Accumulating evidence suggests that NDPK interacts with and affects various components and regulators of the cytoskeleton, including actin-binding proteins, intermediate filaments, and cytoskeletal attachment structures (adherens junctions, desmosomes, and focal adhesions). We review the existing literature on this topic and highlight outstanding questions and potential future directions that should clarify the impact of NDPK on the different cytoskeletal systems.
Collapse
|
59
|
Huet-Calderwood C, Brahme NN, Kumar N, Stiegler AL, Raghavan S, Boggon TJ, Calderwood DA. Differences in binding to the ILK complex determines kindlin isoform adhesion localization and integrin activation. J Cell Sci 2014; 127:4308-21. [PMID: 25086068 DOI: 10.1242/jcs.155879] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Kindlins are essential FERM-domain-containing focal adhesion (FA) proteins required for proper integrin activation and signaling. Despite the widely accepted importance of each of the three mammalian kindlins in cell adhesion, the molecular basis for their function has yet to be fully elucidated, and the functional differences between isoforms have generally not been examined. Here, we report functional differences between kindlin-2 and -3 (also known as FERMT2 and FERMT3, respectively); GFP-tagged kindlin-2 localizes to FAs whereas kindlin-3 does not, and kindlin-2, but not kindlin-3, can rescue α5β1 integrin activation defects in kindlin-2-knockdown fibroblasts. Using chimeric kindlins, we show that the relatively uncharacterized kindlin-2 F2 subdomain drives FA targeting and integrin activation. We find that the integrin-linked kinase (ILK)-PINCH-parvin complex binds strongly to the kindlin-2 F2 subdomain but poorly to that of kindlin-3. Using a point-mutated kindlin-2, we establish that efficient kindlin-2-mediated integrin activation and FA targeting require binding to the ILK complex. Thus, ILK-complex binding is crucial for normal kindlin-2 function and differential ILK binding contributes to kindlin isoform specificity.
Collapse
Affiliation(s)
| | - Nina N Brahme
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Nikit Kumar
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Srikala Raghavan
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka 560065, India
| | - Titus J Boggon
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
60
|
Stiegler AL, Zhang R, Liu W, Boggon TJ. Structural determinants for binding of sorting nexin 17 (SNX17) to the cytoplasmic adaptor protein Krev interaction trapped 1 (KRIT1). J Biol Chem 2014; 289:25362-73. [PMID: 25059659 DOI: 10.1074/jbc.m114.584011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sorting nexin 17 (SNX17) is a member of the family of cytoplasmic sorting nexin adaptor proteins that regulate endosomal trafficking of cell surface proteins. SNX17 localizes to early endosomes where it directly binds NPX(Y/F) motifs in the cytoplasmic tails of its target receptors to mediate their rates of endocytic internalization, recycling, and/or degradation. SNX17 has also been implicated in mediating cell signaling and can interact with cytoplasmic proteins. KRIT1 (Krev interaction trapped 1), a cytoplasmic adaptor protein associated with cerebral cavernous malformations, has previously been shown to interact with SNX17. Here, we demonstrate that SNX17 indeed binds directly to KRIT1 and map the binding to the second Asn-Pro-Xaa-Tyr/Phe (NPX(Y/F)) motif in KRIT1. We further characterize the interaction as being mediated by the FERM domain of SNX17. We present the co-crystal structure of SNX17-FERM with the KRIT1-NPXF2 peptide to 3.0 Å resolution and demonstrate that the interaction is highly similar in structure and binding affinity to that between SNX17 and P-selectin. We verify the molecular details of the interaction by site-directed mutagenesis and pulldown assay and thereby confirm that the major binding site for SNX17 is confined to the NPXF2 motif in KRIT1. Taken together, our results verify a direct interaction between SNX17 and KRIT1 and classify KRIT1 as a SNX17 binding partner.
Collapse
Affiliation(s)
- Amy L Stiegler
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Rong Zhang
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Weizhi Liu
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Titus J Boggon
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
61
|
Shishido S, Bönig H, Kim YM. Role of integrin alpha4 in drug resistance of leukemia. Front Oncol 2014; 4:99. [PMID: 24904821 PMCID: PMC4033044 DOI: 10.3389/fonc.2014.00099] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/22/2014] [Indexed: 11/20/2022] Open
Abstract
Chemotherapeutic drug resistance in acute lymphoblastic leukemia (ALL) is a significant problem, resulting in poor responsiveness to first-line treatment or relapse after transient remission. Classical anti-leukemic drugs are non-specific cell cycle poisons; some more modern drugs target oncogenic pathways in leukemia cells, although in ALL these do not play a very significant role. By contrast, the molecular interactions between microenvironment and leukemia cells are often neglected in the design of novel therapies against drug resistant leukemia. It was shown however, that chemotherapy resistance is promoted in part through cell–cell contact of leukemia cells with bone marrow (BM) stromal cells, also called cell adhesion-mediated drug resistance (CAM-DR). Incomplete response to chemotherapy results in persistence of resistant clones with or without detectable minimal residual disease (MRD). Approaches for how to address CAM-DR and MRD remain elusive. Specifically, studies using anti-functional antibodies and genetic models have identified integrin alpha4 as a critical molecule regulating BM homing and active retention of normal and leukemic cells. Pre-clinical evidence has been provided that interference with alpha4-mediated adhesion of ALL cells can sensitize them to chemotherapy and thus facilitate eradication of ALL cells in an MRD setting. To this end, Andreeff and colleagues recently provided evidence of stroma-induced and alpha4-mediated nuclear factor-κB signaling in leukemia cells, disruption of which depletes leukemia cells of strong survival signals. We here review the available evidence supporting the targeting of alpha4 as a novel strategy for treatment of drug resistant leukemia.
Collapse
Affiliation(s)
- Stephanie Shishido
- Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine , Los Angeles, CA , USA
| | - Halvard Bönig
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Goethe University , Frankfurt , Germany
| | - Yong-Mi Kim
- Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine , Los Angeles, CA , USA
| |
Collapse
|
62
|
Draheim KM, Fisher OS, Boggon TJ, Calderwood DA. Cerebral cavernous malformation proteins at a glance. J Cell Sci 2014; 127:701-7. [PMID: 24481819 DOI: 10.1242/jcs.138388] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Loss-of-function mutations in genes encoding KRIT1 (also known as CCM1), CCM2 (also known as OSM and malcavernin) or PDCD10 (also known as CCM3) cause cerebral cavernous malformations (CCMs). These abnormalities are characterized by dilated leaky blood vessels, especially in the neurovasculature, that result in increased risk of stroke, focal neurological defects and seizures. The three CCM proteins can exist in a trimeric complex, and each of these essential multi-domain adaptor proteins also interacts with a range of signaling, cytoskeletal and adaptor proteins, presumably accounting for their roles in a range of basic cellular processes including cell adhesion, migration, polarity and apoptosis. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of current models of CCM protein function focusing on how known protein-protein interactions might contribute to cellular phenotypes and highlighting gaps in our current understanding.
Collapse
Affiliation(s)
- Kyle M Draheim
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | | | | | | |
Collapse
|
63
|
Abstract
Integrins are heterodimeric cell surface adhesion receptors essential for multicellular life. They connect cells to the extracellular environment and transduce chemical and mechanical signals to and from the cell. Intracellular proteins that bind the integrin cytoplasmic tail regulate integrin engagement of extracellular ligands as well as integrin localization and trafficking. Cytoplasmic integrin-binding proteins also function downstream of integrins, mediating links to the cytoskeleton and to signaling cascades that impact cell motility, growth, and survival. Here, we review key integrin-interacting proteins and their roles in regulating integrin activity, localization, and signaling.
Collapse
Affiliation(s)
- Elizabeth M Morse
- Department of Cell Biology and ‡Department of Pharmacology, Yale University School of Medicine , 333 Cedar Street, New Haven, Connecticut 06520, United States
| | | | | |
Collapse
|
64
|
Fisher OS, Boggon TJ. Signaling pathways and the cerebral cavernous malformations proteins: lessons from structural biology. Cell Mol Life Sci 2013; 71:1881-92. [PMID: 24287896 DOI: 10.1007/s00018-013-1532-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 10/26/2022]
Abstract
Cerebral cavernous malformations (CCM) are neurovascular dysplasias that result in mulberry-shaped lesions predominantly located in brain and spinal tissues. Mutations in three genes are associated with CCM. These genes encode for the proteins KRIT1/CCM1 (krev interaction trapped 1/cerebral cavernous malformations 1), cerebral cavernous malformations 2, osmosensing scaffold for MEKK3 (CCM2/malcavernin/OSM), and cerebral cavernous malformations 3/programmed cell death 10 (CCM3/PDCD10). There have been many significant recent advances in our understanding of the structure and function of these proteins, as well as in their roles in cellular signaling. Here, we provide an update on the current knowledge of the structure of the CCM proteins and their functions within cellular signaling, particularly in cellular adhesion complexes and signaling cascades. We go on to discuss subcellular localization of the CCM proteins, the formation and regulation of the CCM complex signaling platform, and current progress towards targeted therapy for CCM disease. Recent structural studies have begun to shed new light on CCM protein function, and we focus here on how these studies have helped inform the current understanding of these roles and how they may aid future studies into both CCM-related biology and disease mechanisms.
Collapse
Affiliation(s)
- Oriana S Fisher
- Department of Pharmacology, Yale University School of Medicine, SHM B-316A, 333 Cedar Street, New Haven, CT, 06520, USA
| | | |
Collapse
|
65
|
Faurobert E, Rome C, Lisowska J, Manet-Dupé S, Boulday G, Malbouyres M, Balland M, Bouin AP, Kéramidas M, Bouvard D, Coll JL, Ruggiero F, Tournier-Lasserve E, Albiges-Rizo C. CCM1-ICAP-1 complex controls β1 integrin-dependent endothelial contractility and fibronectin remodeling. ACTA ACUST UNITED AC 2013; 202:545-61. [PMID: 23918940 PMCID: PMC3734079 DOI: 10.1083/jcb.201303044] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Loss of CCM1/2 leads to destabilization of ICAP-1 and up-regulation of β1 integrin, resulting in the destabilization of intercellular junctions due to increased cell contractility and aberrant extracellular matrix remodeling. The endothelial CCM complex regulates blood vessel stability and permeability. Loss-of-function mutations in CCM genes are responsible for human cerebral cavernous malformations (CCMs), which are characterized by clusters of hemorrhagic dilated capillaries composed of endothelium lacking mural cells and altered sub-endothelial extracellular matrix (ECM). Association of the CCM1/2 complex with ICAP-1, an inhibitor of β1 integrin, prompted us to investigate whether the CCM complex interferes with integrin signaling. We demonstrate that CCM1/2 loss resulted in ICAP-1 destabilization, which increased β1 integrin activation and led to increased RhoA-dependent contractility. The resulting abnormal distribution of forces led to aberrant ECM remodeling around lesions of CCM1- and CCM2-deficient mice. ICAP-1–deficient vessels displayed similar defects. We demonstrate that a positive feedback loop between the aberrant ECM and internal cellular tension led to decreased endothelial barrier function. Our data support that up-regulation of β1 integrin activation participates in the progression of CCM lesions by destabilizing intercellular junctions through increased cell contractility and aberrant ECM remodeling.
Collapse
Affiliation(s)
- Eva Faurobert
- INSERM U823, Institut Albert Bonniot, Grenoble F-38042, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Chrzanowska-Wodnicka M. Distinct functions for Rap1 signaling in vascular morphogenesis and dysfunction. Exp Cell Res 2013; 319:2350-9. [PMID: 23911990 DOI: 10.1016/j.yexcr.2013.07.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/18/2013] [Accepted: 07/21/2013] [Indexed: 01/27/2023]
Abstract
Rap1 signaling is important for both major processes of vessel formation: vasculogenesis, or de novo vessel formation, and angiogenesis, sprouting of new vessels from pre-existing ones. We provide an overview of genetic studies in mice and zebrafish and discuss some of the proposed underlying mechanisms derived from cellular models, with particular emphasis on Rap1's role in angiogenesis, maintenance of endothelial barrier and connection with cerebral cavernous malformation (CCM), a neurological deficit that leads to seizures and lethal stroke. Lastly, we provide a brief summary of studies in cardiac and smooth muscle cells, where the Epac-Rap1 signaling axis is emerging as an important regulator of contractility.
Collapse
|
67
|
Calderwood DA, Campbell ID, Critchley DR. Talins and kindlins: partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol 2013; 14:503-17. [PMID: 23860236 PMCID: PMC4116690 DOI: 10.1038/nrm3624] [Citation(s) in RCA: 456] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrin receptors provide a dynamic, tightly-regulated link between the extracellular matrix (or cellular counter-receptors) and intracellular cytoskeletal and signalling networks, enabling cells to sense and respond to their chemical and physical environment. Talins and kindlins, two families of FERM-domain proteins, bind the cytoplasmic tail of integrins, recruit cytoskeletal and signalling proteins involved in mechanotransduction and synergize to activate integrin binding to extracellular ligands. New data reveal the domain structure of full-length talin, provide insights into talin-mediated integrin activation and show that RIAM recruits talin to the plasma membrane, whereas vinculin stabilizes talin in cell-matrix junctions. How kindlins act is less well-defined, but disease-causing mutations show that kindlins are also essential for integrin activation, adhesion, cell spreading and signalling.
Collapse
Affiliation(s)
- David A Calderwood
- Departments of Pharmacology and of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Iain D Campbell
- Department of Biochemistry, University of Oxford, S. Parks Rd., Oxford, OX1 3QU, UK
| | - David R Critchley
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH
| |
Collapse
|
68
|
Das M, Ithychanda S, Qin J, Plow EF. Mechanisms of talin-dependent integrin signaling and crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:579-88. [PMID: 23891718 DOI: 10.1016/j.bbamem.2013.07.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 01/01/2023]
Abstract
Cells undergo dynamic remodeling of the cytoskeleton during adhesion and migration on various extracellular matrix (ECM) substrates in response to physiological and pathological cues. The major mediators of such cellular responses are the heterodimeric adhesion receptors, the integrins. Extracellular or intracellular signals emanating from different signaling cascades cause inside-out signaling of integrins via talin, a cystokeletal protein that links integrins to the actin cytoskeleton. Various integrin subfamilies communicate with each other and growth factor receptors under diverse cellular contexts to facilitate or inhibit various integrin-mediated functions. Since talin is an essential mediator of integrin activation, much of the integrin crosstalk would therefore be influenced by talin. However, despite the existence of an extensive body of knowledge on the role of talin in integrin activation and as a stabilizer of ECM-actin linkage, information on its role in regulating inter-integrin communication is limited. This review will focus on the structure of talin, its regulation of integrin activation and discuss its potential role in integrin crosstalk. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Mitali Das
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic
| | - Sujay Ithychanda
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic
| | - Jun Qin
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic
| | - Edward F Plow
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic
| |
Collapse
|
69
|
Bouvard D, Pouwels J, De Franceschi N, Ivaska J. Integrin inactivators: balancing cellular functions in vitro and in vivo. Nat Rev Mol Cell Biol 2013; 14:430-42. [DOI: 10.1038/nrm3599] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
70
|
Millon-Frémillon A, Brunner M, Abed N, Collomb E, Ribba AS, Block MR, Albigès-Rizo C, Bouvard D. Calcium and calmodulin-dependent serine/threonine protein kinase type II (CaMKII)-mediated intramolecular opening of integrin cytoplasmic domain-associated protein-1 (ICAP-1α) negatively regulates β1 integrins. J Biol Chem 2013; 288:20248-60. [PMID: 23720740 DOI: 10.1074/jbc.m113.455956] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Focal adhesion turnover during cell migration is an integrated cyclic process requiring tight regulation of integrin function. Interaction of integrin with its ligand depends on its activation state, which is regulated by the direct recruitment of proteins onto the β integrin chain cytoplasmic domain. We previously reported that ICAP-1α, a specific cytoplasmic partner of β1A integrins, limits both talin and kindlin interaction with β1 integrin, thereby restraining focal adhesion assembly. Here we provide evidence that the calcium and calmodulin-dependent serine/threonine protein kinase type II (CaMKII) is an important regulator of ICAP-1α for controlling focal adhesion dynamics. CaMKII directly phosphorylates ICAP-1α and disrupts an intramolecular interaction between the N- and the C-terminal domains of ICAP-1α, unmasking the PTB domain, thereby permitting ICAP-1α binding onto the β1 integrin tail. ICAP-1α direct interaction with the β1 integrin tail and the modulation of β1 integrin affinity state are required for down-regulating focal adhesion assembly. Our results point to a molecular mechanism for the phosphorylation-dependent control of ICAP-1α function by CaMKII, allowing the dynamic control of β1 integrin activation and cell adhesion.
Collapse
|
71
|
Liu W, Boggon TJ. Cocrystal structure of the ICAP1 PTB domain in complex with a KRIT1 peptide. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:494-8. [PMID: 23695561 DOI: 10.1107/s1744309113010762] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/19/2013] [Indexed: 11/11/2022]
Abstract
Integrin cytoplasmic domain-associated protein-1 (ICAP1) is a suppressor of integrin activation and directly binds to the cytoplasmic tail of β1 integrins; its binding suppresses integrin activation by competition with talin. Krev/Rap1 interaction trapped-1 (KRIT1) releases ICAP1 suppression of integrin activation by sequestering ICAP1 away from integrin cytoplasmic tails. Here, the cocrystal structure of the PTB domain of ICAP1 in complex with a 29-amino-acid fragment (residues 170-198) of KRIT1 is presented to 1.7 Å resolution [the resolution at which 〈I/σ(I)〉 = 2.9 was 1.83 Å]. In previous studies, the structure of ICAP1 with integrin β1 was determined to 3.0 Å resolution and that of ICAP1 with the N-terminal portion of KRIT1 (residues 1-198) was determined to 2.54 Å resolution; therefore, this study provides the highest resolution structure yet of ICAP1 and allows further detailed analysis of the interaction of ICAP1 with its minimal binding region in KRIT1.
Collapse
Affiliation(s)
- Weizhi Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
72
|
Fischer A, Zalvide J, Faurobert E, Albiges-Rizo C, Tournier-Lasserve E. Cerebral cavernous malformations: from CCM genes to endothelial cell homeostasis. Trends Mol Med 2013; 19:302-8. [PMID: 23506982 DOI: 10.1016/j.molmed.2013.02.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 11/18/2022]
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions that can occur sporadically or as a consequence of inherited loss-of-function mutations, predominantly in the genes CCM1 (KRIT1), CCM2 (MGC4607, OSM, Malcavernin), or CCM3 (PDCD10, TFAR15). Inherited, familial CCM is characterized by the development of multiple lesions throughout a patient's life leading to recurrent cerebral hemorrhages. Recently, roles for the CCM proteins in maintaining vascular barrier functions and quiescence have been elucidated, and in this review we summarize the genetics and pathophysiology of this disease and discuss the molecular mechanisms through which CCM proteins may act within blood vessels.
Collapse
Affiliation(s)
- Andreas Fischer
- Vascular Signaling and Cancer (A270), German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|