51
|
Su Y, Ghodke PP, Egli M, Li L, Wang Y, Guengerich FP. Human DNA polymerase η has reverse transcriptase activity in cellular environments. J Biol Chem 2019; 294:6073-6081. [PMID: 30842261 DOI: 10.1074/jbc.ra119.007925] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2019] [Indexed: 12/24/2022] Open
Abstract
Classical DNA and RNA polymerase (pol) enzymes have defined roles with their respective substrates, but several pols have been found to have multiple functions. We reported previously that purified human DNA pol η (hpol η) can incorporate both deoxyribonucleoside triphosphates (dNTPs) and ribonucleoside triphosphates (rNTPs) and can use both DNA and RNA as substrates. X-ray crystal structures revealed that two pol η residues, Phe-18 and Tyr-92, behave as steric gates to influence sugar selectivity. However, the physiological relevance of these phenomena has not been established. Here, we show that purified hpol η adds rNTPs to DNA primers at physiological rNTP concentrations and in the presence of competing dNTPs. When two rATPs were inserted opposite a cyclobutane pyrimidine dimer, the substrate was less efficiently cleaved by human RNase H2. Human XP-V fibroblast extracts, devoid of hpol η, could not add rNTPs to a DNA primer, but the expression of transfected hpol η in the cells restored this ability. XP-V cell extracts did not add dNTPs to DNA primers hybridized to RNA, but could when hpol η was expressed in the cells. HEK293T cell extracts could add dNTPs to DNA primers hybridized to RNA, but lost this ability if hpol η was deleted. Interestingly, a similar phenomenon was not observed when other translesion synthesis (TLS) DNA polymerases-hpol ι, κ, or ζ-were individually deleted. These results suggest that hpol η is one of the major reverse transcriptases involved in physiological processes in human cells.
Collapse
Affiliation(s)
- Yan Su
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Pratibha P Ghodke
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Martin Egli
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Lin Li
- Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| |
Collapse
|
52
|
Apn2 resolves blocked 3' ends and suppresses Top1-induced mutagenesis at genomic rNMP sites. Nat Struct Mol Biol 2019; 26:155-163. [PMID: 30778235 PMCID: PMC6515903 DOI: 10.1038/s41594-019-0186-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/04/2019] [Indexed: 11/25/2022]
Abstract
Ribonucleotides (rNMPs) mis-incorporated during DNA replication are removed by RNase H2 dependent excision repair or by Topoisomerase I – catalyzed cleavage. Top1 cleavage of rNMPs produces 3’ ends harboring terminal adducts, such as 2’, 3’ cyclic phosphate or Top1 cleavage complex (Top1cc), and leads to frequent mutagenesis and DNA damage checkpoint induction. We surveyed a range of candidate enzymes from Saccharomyces cerevisiae for potential roles in Top1 dependent genomic rNMP removal. Genetic and biochemical analyses reveal that Apn2 resolves phosphotyrosine-DNA conjugates, terminal 2’, 3’ cyclic phosphates and their hydrolyzed products. APN2 also suppresses 2-bp slippage mutagenesis in RNH201-deficient cells. Our results define additional activities of Apn2 in resolving a wide range of 3’- end blocks and identify a role of Apn2 in maintaining genome integrity during rNMP repair.
Collapse
|
53
|
Sassa A, Yasui M, Honma M. Current perspectives on mechanisms of ribonucleotide incorporation and processing in mammalian DNA. Genes Environ 2019; 41:3. [PMID: 30700998 PMCID: PMC6346524 DOI: 10.1186/s41021-019-0118-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Ribonucleotides, which are RNA precursors, are often incorporated into DNA during replication. Although embedded ribonucleotides in the genome are efficiently removed by canonical ribonucleotide excision repair (RER), inactivation of RER causes genomic ribonucleotide accumulation, leading to various abnormalities in cells. Mutation of genes encoding factors involved in RER is associated with the neuroinflammatory autoimmune disorder Aicardi–Goutières syndrome. Over the last decade, the biological impact of ribonucleotides in the genome has attracted much attention. In the present review, we particularly focus on recent studies that have elucidated possible mechanisms of ribonucleotide incorporation and repair and their significance in mammals.
Collapse
Affiliation(s)
- Akira Sassa
- 1Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522 Japan
| | - Manabu Yasui
- 2Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501 Japan
| | - Masamitsu Honma
- 2Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501 Japan
| |
Collapse
|
54
|
Lemor M, Kong Z, Henry E, Brizard R, Laurent S, Bossé A, Henneke G. Differential Activities of DNA Polymerases in Processing Ribonucleotides during DNA Synthesis in Archaea. J Mol Biol 2018; 430:4908-4924. [PMID: 30342933 DOI: 10.1016/j.jmb.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/09/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
Consistent with the fact that ribonucleotides (rNTPs) are in excess over deoxyribonucleotides (dNTPs) in vivo, recent findings indicate that replicative DNA polymerases (DNA Pols) are able to insert ribonucleotides (rNMPs) during DNA synthesis, raising crucial questions about the fidelity of DNA replication in both Bacteria and Eukarya. Here, we report that the level of rNTPs is 20-fold higher than that of dNTPs in Pyrococcus abyssi cells. Using dNTP and rNTP concentrations present in vivo, we recorded rNMP incorporation in a template-specific manner during in vitro synthesis, with the family-D DNA Pol (PolD) having the highest propensity compared with the family-B DNA Pol and the p41/p46 complex. We also showed that ribonucleotides accumulate at a relatively high frequency in the genome of wild-type Thermococcales cells, and this frequency significantly increases upon deletion of RNase HII, the major enzyme responsible for the removal of RNA from DNA. Because ribonucleotides remain in genomic DNA, we then analyzed the effects on polymerization activities by the three DNA Pols. Depending on the identity of the base and the sequence context, all three DNA Pols bypass rNMP-containing DNA templates with variable efficiency and nucleotide (mis)incorporation ability. Unexpectedly, we found that PolD correctly base-paired a single ribonucleotide opposite rNMP-containing DNA templates. An evolutionary scenario is discussed concerning rNMP incorporation into DNA and genome stability.
Collapse
Affiliation(s)
- Mélanie Lemor
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Ziqing Kong
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Etienne Henry
- CNRS, Ifremer, Univ Brest, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280, Plouzané, France
| | - Raphaël Brizard
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Sébastien Laurent
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Audrey Bossé
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Ghislaine Henneke
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France.
| |
Collapse
|
55
|
Zhou ZX, Williams JS, Kunkel TA. Studying Ribonucleotide Incorporation: Strand-specific Detection of Ribonucleotides in the Yeast Genome and Measuring Ribonucleotide-induced Mutagenesis. J Vis Exp 2018. [PMID: 30102287 DOI: 10.3791/58020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The presence of ribonucleotides in nuclear DNA has been shown to be a source of genomic instability. The extent of ribonucleotide incorporation can be assessed by alkaline hydrolysis and gel electrophoresis as RNA is highly susceptible to hydrolysis in alkaline conditions. This, in combination with Southern blot analysis can be used to determine the location and strand into which the ribonucleotides have been incorporated. However, this procedure is only semi-quantitative and may not be sensitive enough to detect small changes in ribonucleotide content, although strand-specific Southern blot probing improves the sensitivity. As a measure of one of the most striking biological consequences of ribonucleotides in DNA, spontaneous mutagenesis can be analyzed using a forward mutation assay. Using appropriate reporter genes, rare mutations that results in the loss of function can be selected and overall and specific mutation rates can be measured by combining data from fluctuation experiments with DNA sequencing of the reporter gene. The fluctuation assay is applicable to examine a wide variety of mutagenic processes in specific genetic background or growth conditions.
Collapse
Affiliation(s)
- Zhi-Xiong Zhou
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS;
| | - Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS
| |
Collapse
|
56
|
Abstract
Ribonucleotides incorporated into DNA by the DNA polymerases can be incised by Topoisomerase 1 (Top1) to initiate removal of ribonucleotides from the genome. This Top1-dependent ribonucleotide removal has been demonstrated to result in multiple forms of genome instability in yeast. Here, we describe both quantitative and qualitative assays to identify mutations and other forms of DNA damage resulting from Top1-cleavage at unrepaired genomic ribonucleotides.
Collapse
|
57
|
CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature 2018; 559:285-289. [PMID: 29973717 PMCID: PMC6071917 DOI: 10.1038/s41586-018-0291-z] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 06/07/2018] [Indexed: 12/18/2022]
Abstract
The observation that BRCA1- and BRCA2-deficient cells are sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors spurred their development into cancer therapies that target homologous recombination (HR) deficiency1. The cytotoxicity of PARP inhibitors depends on PARP trapping, the formation of non-covalent protein-DNA adducts composed of inhibited PARP1 bound to DNA lesions of unclear origins1–4. To address the nature of such lesions and the cellular consequences of PARP trapping, we undertook three CRISPR screens to identify genes and pathways that mediate cellular resistance to olaparib, a clinically approved PARP inhibitor1. Here were present a high-confidence set of 73 genes whose mutation causes increased PARP inhibitor sensitivity. In addition to an expected enrichment for HR-related genes, we discovered that mutation in all three genes encoding RNase H2 sensitized cells to PARP inhibition. We establish that the underlying cause of the PARP inhibitor hypersensitivity of RNase H2-deficient cells is impaired ribonucleotide excision repair (RER)5. Embedded ribonucleotides, abundant in the genome of RER-deficient cells, are substrates for topoisomerase 1 cleavage, resulting in PARP-trapping lesions that impede DNA replication and endanger genome integrity. We conclude that genomic ribonucleotides are a hitherto unappreciated source of PARP-trapping DNA lesions, and that the frequent deletion of RNASEH2B in metastatic prostate cancer and chronic lymphocytic leukemia could provide an opportunity to exploit these findings therapeutically.
Collapse
|
58
|
Orebaugh CD, Lujan SA, Burkholder AB, Clausen AR, Kunkel TA. Mapping Ribonucleotides Incorporated into DNA by Hydrolytic End-Sequencing. Methods Mol Biol 2018; 1672:329-345. [PMID: 29043634 DOI: 10.1007/978-1-4939-7306-4_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ribonucleotides embedded within DNA render the DNA sensitive to the formation of single-stranded breaks under alkali conditions. Here, we describe a next-generation sequencing method called hydrolytic end sequencing (HydEn-seq) to map ribonucleotides inserted into the genome of Saccharomyce cerevisiae strains deficient in ribonucleotide excision repair. We use this method to map several genomic features in wild-type and replicase variant yeast strains.
Collapse
Affiliation(s)
- Clinton D Orebaugh
- Genome Integrity and Structural Biology Laboratory, National Institute for Environmental Health Sciences, National Institute of Health (NIH), 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute for Environmental Health Sciences, National Institute of Health (NIH), 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Adam B Burkholder
- Integrative Bioinformatics, National Institute for Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, NC, USA
| | - Anders R Clausen
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute for Environmental Health Sciences, National Institute of Health (NIH), 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
59
|
Abstract
Topoisomerase I (Top1) resolves torsional stress that accumulates during transcription, replication and chromatin remodeling by introducing a transient single-strand break in DNA. The cleavage activity of Top1 has opposing roles, either promoting or destabilizing genome integrity depending on the context. Resolution of transcription-associated negative supercoils, for example, prevents pairing of the nascent RNA with the DNA template (R-loops) as well as DNA secondary structure formation. Reduced Top1 levels thus enhance CAG repeat contraction, somatic hypermutation, and class switch recombination. Actively transcribed ribosomal DNA is also destabilized in the absence of Top1, reflecting the importance of Top1 in ensuring efficient transcription. In terms of promoting genome instability, an aborted Top1 catalytic cycle stimulates deletions at short tandem repeats and the enzyme's transesterification activity supports illegitimate recombination. Finally, Top1 incision at ribonucleotides embedded in DNA generates deletions in tandem repeats, and induces gross chromosomal rearrangements and mitotic recombination.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, CARL 384, Durham, NC, 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, CARL 384, Durham, NC, 27710, USA.
| |
Collapse
|
60
|
Lafuente-Barquero J, Luke-Glaser S, Graf M, Silva S, Gómez-González B, Lockhart A, Lisby M, Aguilera A, Luke B. The Smc5/6 complex regulates the yeast Mph1 helicase at RNA-DNA hybrid-mediated DNA damage. PLoS Genet 2017; 13:e1007136. [PMID: 29281624 PMCID: PMC5760084 DOI: 10.1371/journal.pgen.1007136] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 01/09/2018] [Accepted: 11/28/2017] [Indexed: 01/08/2023] Open
Abstract
RNA-DNA hybrids are naturally occurring obstacles that must be overcome by the DNA replication machinery. In the absence of RNase H enzymes, RNA-DNA hybrids accumulate, resulting in replication stress, DNA damage and compromised genomic integrity. We demonstrate that Mph1, the yeast homolog of Fanconi anemia protein M (FANCM), is required for cell viability in the absence of RNase H enzymes. The integrity of the Mph1 helicase domain is crucial to prevent the accumulation of RNA-DNA hybrids and RNA-DNA hybrid-dependent DNA damage, as determined by Rad52 foci. Mph1 forms foci when RNA-DNA hybrids accumulate, e.g. in RNase H or THO-complex mutants and at short telomeres. Mph1, however is a double-edged sword, whose action at hybrids must be regulated by the Smc5/6 complex. This is underlined by the observation that simultaneous inactivation of RNase H2 and Smc5/6 results in Mph1-dependent synthetic lethality, which is likely due to an accumulation of toxic recombination intermediates. The data presented here support a model, where Mph1’s helicase activity plays a crucial role in responding to persistent RNA-DNA hybrids. DNA damage can either occur exogenously through DNA damaging agents such as UV light and exposure to chemotherapeutics, or endogenously via metabolic, cellular processes. The RNA product of transcription, for example, can engage in the formation of RNA-DNA hybrids. Such RNA-DNA hybrids can impede replication fork progression and cause genomic instability, a hallmark of cancer. The misregulation of RNA-DNA hybrids has also been implicated in several neurological disorders. Recently, it has become evident that RNA-DNA hybrids may also have beneficial roles and therefore, these structures have to be tightly controlled. We found that Mph1 (mutator phenotype 1), the budding yeast homolog of Fanconi Anemia protein M, counteracts the accumulation of RNA-DNA hybrids. The inactivation of MPH1 results in a severe growth defect when combined with mutations in the well-characterized RNase H enzymes, that degrade the RNA moiety of an RNA-DNA hybrid. Based on the data presented here, we propose a model, where Mph1 itself has to be kept in check by the SMC (structural maintenance of chromosome) 5/6 complex at replication forks stalled by RNA-DNA hybrids. Mph1 acts as a double-edged sword, as both its deletion and the inability to control its helicase activity cause DNA damage and growth arrest when RNA-DNA hybrids accumulate.
Collapse
Affiliation(s)
- Juan Lafuente-Barquero
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
| | - Sarah Luke-Glaser
- Institute of Molecular Biology (IMB), Mainz, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Marco Graf
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Sonia Silva
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
- Department of Biology, University of Copenhagen, Ole Maaloeesvej 5, Copenhagen N, Denmark
| | - Belén Gómez-González
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
| | | | - Michael Lisby
- Department of Biology, University of Copenhagen, Ole Maaloeesvej 5, Copenhagen N, Denmark
| | - Andrés Aguilera
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
- * E-mail: (BL); (AA)
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Institute of Neurobiology and Developmental Biology, JGU Mainz, Mainz, Germany
- * E-mail: (BL); (AA)
| |
Collapse
|
61
|
Malfatti MC, Balachander S, Antoniali G, Koh KD, Saint-Pierre C, Gasparutto D, Chon H, Crouch RJ, Storici F, Tell G. Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2. Nucleic Acids Res 2017; 45:11193-11212. [PMID: 28977421 PMCID: PMC5737539 DOI: 10.1093/nar/gkx723] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Ribonucleoside 5′-monophosphates (rNMPs) are the most common non-standard nucleotides found in DNA of eukaryotic cells, with over 100 million rNMPs transiently incorporated in the mammalian genome per cell cycle. Human ribonuclease (RNase) H2 is the principal enzyme able to cleave rNMPs in DNA. Whether RNase H2 may process abasic or oxidized rNMPs incorporated in DNA is unknown. The base excision repair (BER) pathway is mainly responsible for repairing oxidized and abasic sites into DNA. Here we show that human RNase H2 is unable to process an abasic rNMP (rAP site) or a ribose 8oxoG (r8oxoG) site embedded in DNA. On the contrary, we found that recombinant purified human apurinic/apyrimidinic endonuclease-1 (APE1) and APE1 from human cell extracts efficiently process an rAP site in DNA and have weak endoribonuclease and 3′-exonuclease activities on r8oxoG substrate. Using biochemical assays, our results provide evidence of a human enzyme able to recognize and process abasic and oxidized ribonucleotides embedded in DNA.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| | - Sathya Balachander
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| | - Kyung Duk Koh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,University of California, San Francisco, UCSF, School of Medicine, San Francisco, CA, USA
| | - Christine Saint-Pierre
- Chimie Reconnaissance & Etude Assemblages Biologiques, Université Grenoble Alpes, SPrAM UMR5819 CEA CNRS UGA, INAC/CEA, Grenoble, France
| | - Didier Gasparutto
- Chimie Reconnaissance & Etude Assemblages Biologiques, Université Grenoble Alpes, SPrAM UMR5819 CEA CNRS UGA, INAC/CEA, Grenoble, France
| | - Hyongi Chon
- Developmental Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Crouch
- Developmental Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
62
|
Shen W, Sun H, De Hoyos CL, Bailey JK, Liang XH, Crooke ST. Dynamic nucleoplasmic and nucleolar localization of mammalian RNase H1 in response to RNAP I transcriptional R-loops. Nucleic Acids Res 2017; 45:10672-10692. [PMID: 28977560 PMCID: PMC5737507 DOI: 10.1093/nar/gkx710] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022] Open
Abstract
An R-loop is a DNA:RNA hybrid formed during transcription when a DNA duplex is invaded by a nascent RNA transcript. R-loops accumulate in nucleoli during RNA polymerase I (RNAP I) transcription. Here, we report that mammalian RNase H1 enriches in nucleoli and co-localizes with R-loops in cultured human cells. Co-migration of RNase H1 and R-loops from nucleoli to perinucleolar ring structures was observed upon inhibition of RNAP I transcription. Treatment with camptothecin which transiently stabilized nucleolar R-loops recruited RNase H1 to the nucleoli. It has been reported that the absence of Topoisomerase and RNase H activity in Escherichia coli or Saccharomyces cerevisiae caused R-loop accumulation along rDNA. We found that the distribution of RNase H1 and Top1 along rDNA coincided at sites where R-loops accumulated in mammalian cells. Loss of either RNase H1 or Top1 caused R-loop accumulation, and the accumulation of R-loops was exacerbated when both proteins were depleted. Importantly, we observed that protein levels of Top1 were negatively correlated with the abundance of RNase H1. We conclude that Top1 and RNase H1 are partially functionally redundant in mammalian cells to suppress RNAP I transcription-associate R-loops.
Collapse
Affiliation(s)
- Wen Shen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Cheryl L De Hoyos
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Jeffrey K Bailey
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
63
|
Ribonucleotides incorporated by the yeast mitochondrial DNA polymerase are not repaired. Proc Natl Acad Sci U S A 2017; 114:12466-12471. [PMID: 29109257 DOI: 10.1073/pnas.1713085114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Incorporation of ribonucleotides into DNA during genome replication is a significant source of genomic instability. The frequency of ribonucleotides in DNA is determined by deoxyribonucleoside triphosphate/ribonucleoside triphosphate (dNTP/rNTP) ratios, by the ability of DNA polymerases to discriminate against ribonucleotides, and by the capacity of repair mechanisms to remove incorporated ribonucleotides. To simultaneously compare how the nuclear and mitochondrial genomes incorporate and remove ribonucleotides, we challenged these processes by changing the balance of cellular dNTPs. Using a collection of yeast strains with altered dNTP pools, we discovered an inverse relationship between the concentration of individual dNTPs and the amount of the corresponding ribonucleotides incorporated in mitochondrial DNA, while in nuclear DNA the ribonucleotide pattern was only altered in the absence of ribonucleotide excision repair. Our analysis uncovers major differences in ribonucleotide repair between the two genomes and provides concrete evidence that yeast mitochondria lack mechanisms for removal of ribonucleotides incorporated by the mtDNA polymerase. Furthermore, as cytosolic dNTP pool imbalances were transmitted equally well into the nucleus and the mitochondria, our results support a view of the cytosolic and mitochondrial dNTP pools in frequent exchange.
Collapse
|
64
|
Schroeder JW, Yeesin P, Simmons LA, Wang JD. Sources of spontaneous mutagenesis in bacteria. Crit Rev Biochem Mol Biol 2017; 53:29-48. [PMID: 29108429 DOI: 10.1080/10409238.2017.1394262] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mutations in an organism's genome can arise spontaneously, that is, in the absence of exogenous stress and prior to selection. Mutations are often neutral or deleterious to individual fitness but can also provide genetic diversity driving evolution. Mutagenesis in bacteria contributes to the already serious and growing problem of antibiotic resistance. However, the negative impacts of spontaneous mutagenesis on human health are not limited to bacterial antibiotic resistance. Spontaneous mutations also underlie tumorigenesis and evolution of drug resistance. To better understand the causes of genetic change and how they may be manipulated in order to curb antibiotic resistance or the development of cancer, we must acquire a mechanistic understanding of the major sources of mutagenesis. Bacterial systems are particularly well-suited to studying mutagenesis because of their fast growth rate and the panoply of available experimental tools, but efforts to understand mutagenic mechanisms can be complicated by the experimental system employed. Here, we review our current understanding of mutagenic mechanisms in bacteria and describe the methods used to study mutagenesis in bacterial systems.
Collapse
Affiliation(s)
- Jeremy W Schroeder
- a Department of Bacteriology , University of Wisconsin - Madison , Madison , WI , USA
| | - Ponlkrit Yeesin
- a Department of Bacteriology , University of Wisconsin - Madison , Madison , WI , USA
| | - Lyle A Simmons
- b Department of Molecular, Cellular, and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Jue D Wang
- a Department of Bacteriology , University of Wisconsin - Madison , Madison , WI , USA
| |
Collapse
|
65
|
Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae. Genetics 2017; 206:1187-1225. [PMID: 28684602 PMCID: PMC5500125 DOI: 10.1534/genetics.112.145805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed.
Collapse
|
66
|
Abstract
The fidelity of DNA replication is determined by many factors, here simplified as the contribution of the DNA polymerase (nucleotide selectivity and proofreading), mismatch repair, a balanced supply of nucleotides, and the condition of the DNA template (both in terms of sequence context and the presence of DNA lesions). This review discusses the contribution and interplay between these factors to the overall fidelity of DNA replication.
Collapse
Affiliation(s)
- Rais A Ganai
- Department of Medical Biochemistry and Biophysics, Umeå University, SE 901 87 Umeå, Sweden; Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY 10016, USA
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE 901 87 Umeå, Sweden.
| |
Collapse
|
67
|
Antoniali G, Malfatti MC, Tell G. Unveiling the non-repair face of the Base Excision Repair pathway in RNA processing: A missing link between DNA repair and gene expression? DNA Repair (Amst) 2017. [DOI: 10.1016/j.dnarep.2017.06.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
68
|
Abstract
Multiple DNA repair pathways maintain genome stability and ensure that DNA remains essentially unchanged over the life of a cell. Various human diseases occur if DNA repair is compromised, and most of these impact the nervous system, in some cases exclusively. However, it is often unclear what specific endogenous damage underpins disease pathology. Generally, the types of causative DNA damage are associated with replication, transcription, or oxidative metabolism; other direct sources of endogenous lesions may arise from aberrant topoisomerase activity or ribonucleotide incorporation into DNA. This review focuses on the etiology of DNA damage in the nervous system and the genome stability pathways that prevent human neurologic disease.
Collapse
Affiliation(s)
- Peter J McKinnon
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
69
|
Abstract
Topoisomerases manage the torsional stress associated with the separation of DNA strands during transcription and DNA replication. Eukaryotic Topoisomerase I (Top1) is a Type IB enzyme that nicks and rejoins only one strand of duplex DNA, and it is especially important during transcription. By resolving transcription-associated torsional stress, Top1 reduces the accumulation of genome-destabilizing R-loops and non-B DNA structures. The DNA nicking activity of Top1, however, can also initiate genome instability in the form of illegitimate recombination, homologous recombination and mutagenesis. In this review, we focus on the diverse, and often opposing, roles of Top1 in regulating eukaryotic genome stability.
Collapse
|
70
|
Abstract
Genomic DNA is transiently contaminated with ribonucleotide residues during the process of DNA replication through misincorporation by the replicative DNA polymerases α, δ and ε, and by the normal replication process on the lagging strand, which uses RNA primers. These ribonucleotides are efficiently removed during replication by RNase H enzymes and the lagging strand synthesis machinery. However, when ribonucleotides remain in DNA they can distort the DNA helix, affect machineries for DNA replication, transcription and repair, and can stimulate genomic instabilities which are manifest as increased mutation, recombination and chromosome alterations. The genomic instabilities associated with embedded ribonucleotides are considered here, along with a discussion of the origin of the lesions that stimulate particular classes of instabilities.
Collapse
Affiliation(s)
- Hannah L Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
71
|
A New Method, "Reverse Yeast Two-Hybrid Array" (RYTHA), Identifies Mutants that Dissociate the Physical Interaction Between Elg1 and Slx5. Genetics 2017; 206:1683-1697. [PMID: 28476868 DOI: 10.1534/genetics.117.200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/27/2017] [Indexed: 11/18/2022] Open
Abstract
The vast majority of processes within the cell are carried out by proteins working in conjunction. The Yeast Two-Hybrid (Y2H) methodology allows the detection of physical interactions between any two interacting proteins. Here, we describe a novel systematic genetic methodology, "Reverse Yeast Two-Hybrid Array" (RYTHA), that allows the identification of proteins required for modulating the physical interaction between two given proteins. Our assay starts with a yeast strain in which the physical interaction of interest can be detected by growth on media lacking histidine, in the context of the Y2H methodology. By combining the synthetic genetic array technology, we can systematically screen mutant libraries of the yeast Saccharomyces cerevisiae to identify trans-acting mutations that disrupt the physical interaction of interest. We apply this novel method in a screen for mutants that disrupt the interaction between the N-terminus of Elg1 and the Slx5 protein. Elg1 is part of an alternative replication factor C-like complex that unloads PCNA during DNA replication and repair. Slx5 forms, together with Slx8, a SUMO-targeted ubiquitin ligase (STUbL) believed to send proteins to degradation. Our results show that the interaction requires both the STUbL activity and the PCNA unloading by Elg1, and identify topoisomerase I DNA-protein cross-links as a major factor in separating the two activities. Thus, we demonstrate that RYTHA can be applied to gain insights about particular pathways in yeast, by uncovering the connection between the proteasomal ubiquitin-dependent degradation pathway, DNA replication, and repair machinery, which can be separated by the topoisomerase-mediated cross-links to DNA.
Collapse
|
72
|
The role of RNase H2 in processing ribonucleotides incorporated during DNA replication. DNA Repair (Amst) 2017; 53:52-58. [PMID: 28325498 DOI: 10.1016/j.dnarep.2017.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 12/17/2022]
Abstract
Saccharomyces cerevisiae RNase H2 resolves RNA-DNA hybrids formed during transcription and it incises DNA at single ribonucleotides incorporated during nuclear DNA replication. To distinguish between the roles of these two activities in maintenance of genome stability, here we investigate the phenotypes of a mutant of yeast RNase H2 (rnh201-RED; ribonucleotide excision defective) that retains activity on RNA-DNA hybrids but is unable to cleave single ribonucleotides that are stably incorporated into the genome. The rnh201-RED mutant was expressed in wild type yeast or in a strain that also encodes a mutant allele of DNA polymerase ε (pol2-M644G) that enhances ribonucleotide incorporation during DNA replication. Similar to a strain that completely lacks RNase H2 (rnh201Δ), the pol2-M644G rnh201-RED strain exhibits replication stress and checkpoint activation. Moreover, like its null mutant counterpart, the double mutant pol2-M644G rnh201-RED strain and the single mutant rnh201-RED strain delete 2-5 base pairs in repetitive sequences at a high rate that is topoisomerase 1-dependent. The results highlight an important role for RNase H2 in maintaining genome integrity by removing single ribonucleotides incorporated during DNA replication.
Collapse
|
73
|
Berglund AK, Navarrete C, Engqvist MKM, Hoberg E, Szilagyi Z, Taylor RW, Gustafsson CM, Falkenberg M, Clausen AR. Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA. PLoS Genet 2017; 13:e1006628. [PMID: 28207748 PMCID: PMC5336301 DOI: 10.1371/journal.pgen.1006628] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/03/2017] [Accepted: 02/09/2017] [Indexed: 01/22/2023] Open
Abstract
Previous work has demonstrated the presence of ribonucleotides in human mitochondrial DNA (mtDNA) and in the present study we use a genome-wide approach to precisely map the location of these. We find that ribonucleotides are distributed evenly between the heavy- and light-strand of mtDNA. The relative levels of incorporated ribonucleotides reflect that DNA polymerase γ discriminates the four ribonucleotides differentially during DNA synthesis. The observed pattern is also dependent on the mitochondrial deoxyribonucleotide (dNTP) pools and disease-causing mutations that change these pools alter both the absolute and relative levels of incorporated ribonucleotides. Our analyses strongly suggest that DNA polymerase γ-dependent incorporation is the main source of ribonucleotides in mtDNA and argues against the existence of a mitochondrial ribonucleotide excision repair pathway in human cells. Furthermore, we clearly demonstrate that when dNTP pools are limiting, ribonucleotides serve as a source of building blocks to maintain DNA replication. Increased levels of embedded ribonucleotides in patient cells with disturbed nucleotide pools may contribute to a pathogenic mechanism that affects mtDNA stability and impair new rounds of mtDNA replication. Human mitochondria contain a small double-stranded DNA genome (mtDNA) of only 16,569 base pairs (bp) that encodes 13 essential subunits of the oxidative phosphorylation system. Depletion of mtDNA and different types of mtDNA mutations cause mitochondrial disease, and are also implicated in biological ageing. For almost half a century it has been known that mtDNA contains ribonucleotides, but their identity and precise location are not known. The source of these ribonucleotides and their relevance for mitochondrial genome stability in healthy individuals and in patients with mitochondrial defects has not been addressed. We have used a combination of next-generation sequencing, and in vivo and in vitro biochemistry to address some of these questions. Our findings demonstrate that DNA polymerase γ-dependent incorporation is the main source of ribonucleotides in mtDNA and argues against the existence of ribonucleotide excision repair pathways in human mitochondria. Our data also reveal that when dNTP pools are limiting, ribonucleotides serves as a second line of building blocks for DNA synthesis. We also demonstrate increased levels of embedded ribonucleotides in patient cells with disturbed nucleotide pools, which may constitute a new pathogenic mechanism that affects mtDNA stability and impairs later rounds of mtDNA replication.
Collapse
Affiliation(s)
| | - Clara Navarrete
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Emily Hoberg
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Zsolt Szilagyi
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Maria Falkenberg
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- * E-mail: (MF); (ARC)
| | - Anders R. Clausen
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- * E-mail: (MF); (ARC)
| |
Collapse
|
74
|
Allam WR, Ashour ME, Waly AA, El-Khamisy S. Role of Protein Linked DNA Breaks in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:41-58. [PMID: 28840551 DOI: 10.1007/978-3-319-60733-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Topoisomerases are a group of specialized enzymes that function to maintain DNA topology by introducing transient DNA breaks during transcription and replication. As a result of abortive topoisomerases activity, topoisomerases catalytic intermediates may be trapped on the DNA forming topoisomerase cleavage complexes (Topcc). Topoisomerases trapping on the DNA is the mode of action of several anticancer drugs, it lead to formation of protein linked DAN breaks (PDBs). PDBs are now considered as one of the most dangerous forms of endogenous DNA damage and a major threat to genomic stability. The repair of PDBs involves both the sensing and repair pathways. Unsuccessful repair of PDBs leads to different signs of genomic instabilities such as chromosomal rearrangements and cancer predisposition. In this chapter we will summarize the role of topoisomerases induced PDBs, identification and signaling, repair, role in transcription. We will also discuss the role of PDBs in cancer with a special focus on prostate cancer.
Collapse
Affiliation(s)
- Walaa R Allam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
| | - Mohamed E Ashour
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Amr A Waly
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sherif El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt. .,Krebs Institute and Sheffield Institute for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
75
|
Huang SYN, Williams JS, Arana ME, Kunkel TA, Pommier Y. Topoisomerase I-mediated cleavage at unrepaired ribonucleotides generates DNA double-strand breaks. EMBO J 2016; 36:361-373. [PMID: 27932446 DOI: 10.15252/embj.201592426] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 01/02/2023] Open
Abstract
Ribonuclease activity of topoisomerase I (Top1) causes DNA nicks bearing 2',3'-cyclic phosphates at ribonucleotide sites. Here, we provide genetic and biochemical evidence that DNA double-strand breaks (DSBs) can be directly generated by Top1 at sites of genomic ribonucleotides. We show that RNase H2-deficient yeast cells displayed elevated frequency of Rad52 foci, inactivation of RNase H2 and RAD52 led to synthetic lethality, and combined loss of RNase H2 and RAD51 induced slow growth and replication stress. Importantly, these phenotypes were rescued upon additional deletion of TOP1, implicating homologous recombination for the repair of Top1-induced damage at ribonuclelotide sites. We demonstrate biochemically that irreversible DSBs are generated by subsequent Top1 cleavage on the opposite strand from the Top1-induced DNA nicks at ribonucleotide sites. Analysis of Top1-linked DNA from pull-down experiments revealed that Top1 is covalently linked to the end of DNA in RNase H2-deficient yeast cells, supporting this model. Taken together, these results define Top1 as a source of DSBs and genome instability when ribonucleotides incorporated by the replicative polymerases are not removed by RNase H2.
Collapse
Affiliation(s)
- Shar-Yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Mercedes E Arana
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
76
|
Transient RNA-DNA Hybrids Are Required for Efficient Double-Strand Break Repair. Cell 2016; 167:1001-1013.e7. [DOI: 10.1016/j.cell.2016.10.001] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/16/2016] [Accepted: 09/29/2016] [Indexed: 11/19/2022]
|
77
|
Differential roles of the RNases H in preventing chromosome instability. Proc Natl Acad Sci U S A 2016; 113:12220-12225. [PMID: 27791008 DOI: 10.1073/pnas.1613448113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
DNA:RNA hybrids can lead to DNA damage and genome instability. This damage can be prevented by degradation of the RNA in the hybrid by two evolutionarily conserved enzymes, RNase H1 and H2. Indeed, RNase H-deficient cells have increased chromosomal rearrangements. However, the quantitative and spatial contributions of the individual enzymes to hybrid removal have been unclear. Additionally, RNase H2 can remove single ribonucleotides misincorporated into DNA during replication. The relative contribution of DNA:RNA hybrids and misincorporated ribonucleotides to chromosome instability also was uncertain. To address these issues, we studied the frequency and location of loss-of-heterozygosity (LOH) events on chromosome III in Saccharomyces cerevisiae strains that were defective for RNase H1, H2, or both. We showed that RNase H2 plays the major role in preventing chromosome III instability through its hybrid-removal activity. Furthermore, RNase H2 acts pervasively at many hybrids along the chromosome. In contrast, RNase H1 acts to prevent LOH within a small region of chromosome III where the instability is dependent upon two hybrid-prone sequences. This restriction of RNase H1 activity to a subset of hybrids is not the result of its constrained localization, because we found it at hybrids genome-wide. This result suggests that the genome-protection activity of RNase H1 is regulated at a step after hybrid recognition. The global function of RNase H2 and the region-specific function of RNase H1 provide insight into why these enzymes with overlapping hybrid-removal activities have been conserved throughout evolution.
Collapse
|
78
|
Sassa A, Çağlayan M, Rodriguez Y, Beard WA, Wilson SH, Nohmi T, Honma M, Yasui M. Impact of Ribonucleotide Backbone on Translesion Synthesis and Repair of 7,8-Dihydro-8-oxoguanine. J Biol Chem 2016; 291:24314-24323. [PMID: 27660390 DOI: 10.1074/jbc.m116.738732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/28/2016] [Indexed: 12/21/2022] Open
Abstract
Numerous ribonucleotides are incorporated into the genome during DNA replication. Oxidized ribonucleotides can also be erroneously incorporated into DNA. Embedded ribonucleotides destabilize the structure of DNA and retard DNA synthesis by DNA polymerases (pols), leading to genomic instability. Mammalian cells possess translesion DNA synthesis (TLS) pols that bypass DNA damage. The mechanism of TLS and repair of oxidized ribonucleotides remains to be elucidated. To address this, we analyzed the miscoding properties of the ribonucleotides riboguanosine (rG) and 7,8-dihydro-8-oxo-riboguanosine (8-oxo-rG) during TLS catalyzed by the human TLS pols κ and η in vitro The primer extension reaction catalyzed by human replicative pol α was strongly blocked by 8-oxo-rG. pol κ inefficiently bypassed rG and 8-oxo-rG compared with dG and 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG), whereas pol η easily bypassed the ribonucleotides. pol α exclusively inserted dAMP opposite 8-oxo-rG. Interestingly, pol κ preferentially inserted dCMP opposite 8-oxo-rG, whereas the insertion of dAMP was favored opposite 8-oxo-dG. In addition, pol η accurately bypassed 8-oxo-rG. Furthermore, we examined the activity of the base excision repair (BER) enzymes 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease 1 on the substrates, including rG and 8-oxo-rG. Both BER enzymes were completely inactive against 8-oxo-rG in DNA. However, OGG1 suppressed 8-oxo-rG excision by RNase H2, which is involved in the removal of ribonucleotides from DNA. These results suggest that the different sugar backbones between 8-oxo-rG and 8-oxo-dG alter the capacity of TLS and repair of 8-oxoguanine.
Collapse
Affiliation(s)
- Akira Sassa
- From the Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan and
| | - Melike Çağlayan
- the Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Yesenia Rodriguez
- the Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - William A Beard
- the Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Samuel H Wilson
- the Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Takehiko Nohmi
- From the Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan and
| | - Masamitsu Honma
- From the Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan and
| | - Manabu Yasui
- From the Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan and
| |
Collapse
|
79
|
Wang IX, Grunseich C, Chung YG, Kwak H, Ramrattan G, Zhu Z, Cheung VG. RNA-DNA sequence differences in Saccharomyces cerevisiae. Genome Res 2016; 26:1544-1554. [PMID: 27638543 PMCID: PMC5088596 DOI: 10.1101/gr.207878.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/15/2016] [Indexed: 01/06/2023]
Abstract
Alterations of RNA sequences and structures, such as those from editing and alternative splicing, result in two or more RNA transcripts from a DNA template. It was thought that in yeast, RNA editing only occurs in tRNAs. Here, we found that Saccharomyces cerevisiae have all 12 types of RNA–DNA sequence differences (RDDs) in the mRNA. We showed these sequence differences are propagated to proteins, as we identified peptides encoded by the RNA sequences in addition to those by the DNA sequences at RDD sites. RDDs are significantly enriched at regions with R-loops. A screen of yeast mutants showed that RDD formation is affected by mutations in genes regulating R-loops. Loss-of-function mutations in ribonuclease H, senataxin, and topoisomerase I that resolve RNA–DNA hybrids lead to increases in RDD frequency. Our results demonstrate that RDD is a conserved process that diversifies transcriptomes and proteomes and provide a mechanistic link between R-loops and RDDs.
Collapse
Affiliation(s)
- Isabel X Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Youree G Chung
- College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hojoong Kwak
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Girish Ramrattan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Zhengwei Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vivian G Cheung
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.,Departments of Pediatrics and Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
80
|
Peng J, Feng W. Incision of damaged DNA in the presence of an impaired Smc5/6 complex imperils genome stability. Nucleic Acids Res 2016; 44:10216-10229. [PMID: 27536003 PMCID: PMC5137426 DOI: 10.1093/nar/gkw720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 11/14/2022] Open
Abstract
The Smc5/6 complex is implicated in homologous recombination-mediated DNA repair during DNA damage or replication stress. Here, we analysed genome-wide replication dynamics in a hypomorphic budding yeast mutant, smc6-P4. The overall replication dynamics in the smc6 mutant is similar to that in the wild-type cells. However, we captured a difference in the replication profile of an early S phase sample in the mutant, prompting the hypothesis that the mutant incorporates ribonucleotides and/or accumulates single-stranded DNA gaps during replication. We tested if inhibiting the ribonucleotide excision repair pathway would exacerbate the smc6 mutant in response to DNA replication stress. Contrary to our expectation, impairment of ribonucleotide excision repair, as well as virtually all other DNA repair pathways, alleviated smc6 mutant's hypersensitivity to induced replication stress. We propose that nucleotide incision in the absence of a functional Smc5/6 complex has more disastrous outcomes than the damage per se. Our study provides novel perspectives for the role of the Smc5/6 complex during DNA replication.
Collapse
Affiliation(s)
- Jie Peng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
81
|
Cho JE, Jinks-Robertson S. Ribonucleotides and Transcription-Associated Mutagenesis in Yeast. J Mol Biol 2016; 429:3156-3167. [PMID: 27511624 DOI: 10.1016/j.jmb.2016.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 12/26/2022]
Abstract
High levels of transcription stimulate mutation rates in microorganisms, and this occurs primarily through an enhanced accumulation of DNA damage. The major source of transcription-associated damage in yeast is Topoisomerase I (Top1), an enzyme that removes torsional stress that accumulates when DNA strands are separated. Top1 relieves torsional stress by nicking and resealing one DNA strand, and some Top1-dependent mutations are due to trapping and processing of the covalent cleavage intermediate. Most, however, reflect enzyme incision at ribonucleotides, which are the most abundant noncanonical component of DNA. In either case, Top1 generates a distinctive mutation signature composed of short deletions in tandem repeats; in the specific case of ribonucleotide-initiated events, mutations reflect sequential cleavage by the enzyme. Top1-dependent mutations do not require highly activated transcription, but their levels are greatly increased by transcription, which partially reflects an interaction of Top1 with RNA polymerase. Recent studies have demonstrated that Top1-dependent mutations exhibit a strand bias, with the nature of the bias differing depending on the transcriptional status of the underlying DNA. Under low-transcription conditions, most Top1-dependent mutations arise in the context of replication and reflect incision at ribonucleotides incorporated during leading-strand synthesis. Under high-transcription conditions, most Top1-dependent events arise when the enzyme cleaves the non-transcribed strand of DNA. In addition to increasing genetic instability in growing cells, Top1 activity in transcriptionally active regions may be a source of mutations in quiescent cells.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
82
|
Ganai RA, Zhang XP, Heyer WD, Johansson E. Strand displacement synthesis by yeast DNA polymerase ε. Nucleic Acids Res 2016; 44:8229-40. [PMID: 27325747 PMCID: PMC5041465 DOI: 10.1093/nar/gkw556] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022] Open
Abstract
DNA polymerase ε (Pol ε) is a replicative DNA polymerase with an associated 3′–5′ exonuclease activity. Here, we explored the capacity of Pol ε to perform strand displacement synthesis, a process that influences many DNA transactions in vivo. We found that Pol ε is unable to carry out extended strand displacement synthesis unless its 3′–5′ exonuclease activity is removed. However, the wild-type Pol ε holoenzyme efficiently displaced one nucleotide when encountering double-stranded DNA after filling a gap or nicked DNA. A flap, mimicking a D-loop or a hairpin structure, on the 5′ end of the blocking primer inhibited Pol ε from synthesizing DNA up to the fork junction. This inhibition was observed for Pol ε but not with Pol δ, RB69 gp43 or Pol η. Neither was Pol ε able to extend a D-loop in reconstitution experiments. Finally, we show that the observed strand displacement synthesis by exonuclease-deficient Pol ε is distributive. Our results suggest that Pol ε is unable to extend the invading strand in D-loops during homologous recombination or to add more than two nucleotides during long-patch base excision repair. Our results support the hypothesis that Pol ε participates in short-patch base excision repair and ribonucleotide excision repair.
Collapse
Affiliation(s)
- Rais A Ganai
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY 10016, USA
| | - Xiao-Ping Zhang
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616-8665, USA
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
83
|
Epshtein A, Potenski CJ, Klein HL. Increased Spontaneous Recombination in RNase H2-Deficient Cells Arises From Multiple Contiguous rNMPs and Not From Single rNMP Residues Incorporated by DNA Polymerase Epsilon. MICROBIAL CELL 2016; 3:248-254. [PMID: 28203566 PMCID: PMC5305187 DOI: 10.15698/mic2016.06.506] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ribonucleotides can become embedded in DNA from insertion by DNA polymerases,
failure to remove Okazaki fragment primers, R-loops that can prime replication,
and RNA/cDNA-mediated recombination. RNA:DNA hybrids are removed by RNase H
enzymes. Single rNMPs in DNA are removed by RNase H2 and if they remain on the
leading strand, can lead to mutagenesis in a Top1-dependent pathway. rNMPs in
DNA can also stimulate genome instability, among which are homologous
recombination gene conversion events. We previously found that, similar to the
rNMP-stimulated mutagenesis, rNMP-stimulated recombination was also
Top1-dependent. However, in contrast to mutagenesis, we report here that
recombination is not stimulated by rNMPs incorporated by the replicative
polymerase epsilon. Instead, recombination seems to be stimulated by multiple
contiguous rNMPs, which may arise from R-loops or replication priming
events.
Collapse
Affiliation(s)
- Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | | | - Hannah L Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| |
Collapse
|
84
|
Williams JS, Lujan SA, Kunkel TA. Processing ribonucleotides incorporated during eukaryotic DNA replication. Nat Rev Mol Cell Biol 2016; 17:350-63. [PMID: 27093943 PMCID: PMC5445644 DOI: 10.1038/nrm.2016.37] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The information encoded in DNA is influenced by the presence of non-canonical nucleotides, the most frequent of which are ribonucleotides. In this Review, we discuss recent discoveries about ribonucleotide incorporation into DNA during replication by the three major eukaryotic replicases, DNA polymerases α, δ and ε. The presence of ribonucleotides in DNA causes short deletion mutations and may result in the generation of single- and double-strand DNA breaks, leading to genome instability. We describe how these ribonucleotides are removed from DNA through ribonucleotide excision repair and by topoisomerase I. We discuss the biological consequences and the physiological roles of ribonucleotides in DNA, and consider how deficiencies in their removal from DNA may be important in the aetiology of disease.
Collapse
Affiliation(s)
- Jessica S. Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Scott A. Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Thomas A. Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| |
Collapse
|
85
|
Cerritelli SM, Crouch RJ. The Balancing Act of Ribonucleotides in DNA. Trends Biochem Sci 2016; 41:434-445. [PMID: 26996833 DOI: 10.1016/j.tibs.2016.02.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 11/28/2022]
Abstract
The abundance of ribonucleotides in DNA remained undetected until recently because they are efficiently removed by the ribonucleotide excision repair (RER) pathway, a process similar to Okazaki fragment (OF) processing after incision by Ribonuclease H2 (RNase H2). All DNA polymerases incorporate ribonucleotides during DNA synthesis. How many, when, and why they are incorporated has been the focus of intense work during recent years by many labs. In this review, we discuss recent advances in ribonucleotide incorporation by eukaryotic DNA polymerases that suggest an evolutionarily conserved role for ribonucleotides in DNA. We also review the data that indicate that removal of ribonucleotides has an important role in maintaining genome stability.
Collapse
Affiliation(s)
- Susana M Cerritelli
- Section on Formation of RNA, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Crouch
- Section on Formation of RNA, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
86
|
Clausen AR, Williams JS, Kunkel TA. Measuring ribonucleotide incorporation into DNA in vitro and in vivo. Methods Mol Biol 2016; 1300:123-39. [PMID: 25916710 DOI: 10.1007/978-1-4939-2596-4_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribonucleotides are incorporated into genomes by DNA polymerases, they can be removed, and if not removed, they can have deleterious and beneficial consequences. Here, we describe an assay to quantify stable ribonucleotide incorporation by DNA polymerases in vitro, and an assay to probe for ribonucleotides in each of the two DNA strands of the yeast nuclear genome.
Collapse
Affiliation(s)
- Anders R Clausen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | | | | |
Collapse
|
87
|
Niu H, Potenski CJ, Epshtein A, Sung P, Klein HL. Roles of DNA helicases and Exo1 in the avoidance of mutations induced by Top1-mediated cleavage at ribonucleotides in DNA. Cell Cycle 2015; 15:331-6. [PMID: 26716562 DOI: 10.1080/15384101.2015.1128594] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The replicative DNA polymerases insert ribonucleotides into DNA at a frequency of approximately 1/6500 nucleotides replicated. The rNMP residues make the DNA backbone more susceptible to hydrolysis and can also distort the helix, impeding the transcription and replication machineries. rNMPs in DNA are efficiently removed by RNaseH2 by a process called ribonucleotides excision repair (RER). In the absence of functional RNaseH2, rNMPs are subject to cleavage by Topoisomerase I, followed by further processing to result in deletion mutations due to slippage in simple DNA repeats. The topoisomerase I-mediated cleavage at rNMPs results in DNA ends that cannot be ligated by DNA ligase I, a 5'OH end and a 2'-3' cyclic phosphate end. In the budding yeast, the mutation level in RNaseH2 deficient cells is kept low via the action of the Srs2 helicase and the Exo1 nuclease, which collaborate to process the Top1-induced nick with subsequent non-mutagenic gap filling. We have surveyed other helicases and nucleases for a possible role in reducing mutagenesis at Top1 nicks at rNMPs and have uncovered a novel role for the RecQ family helicase Sgs1 in this process.
Collapse
Affiliation(s)
- Hengyao Niu
- a Molecular Biophysics and Biochemistry, Yale University School of Medicine , New Haven , CT, USA.,b Department of Molecular and Cellular Biochemistry , Indiana University , Bloomington , IN , USA
| | - Catherine J Potenski
- c Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA.,d Nature Publishing Group , New York , NY , USA
| | - Anastasiya Epshtein
- c Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| | - Patrick Sung
- a Molecular Biophysics and Biochemistry, Yale University School of Medicine , New Haven , CT, USA
| | - Hannah L Klein
- c Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| |
Collapse
|
88
|
Lujan SA, Williams JS, Kunkel TA. Eukaryotic genome instability in light of asymmetric DNA replication. Crit Rev Biochem Mol Biol 2015; 51:43-52. [PMID: 26822554 DOI: 10.3109/10409238.2015.1117055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The eukaryotic nuclear genome is replicated asymmetrically, with the leading strand replicated continuously and the lagging strand replicated as discontinuous Okazaki fragments that are subsequently joined. Both strands are replicated with high fidelity, but the processes used to achieve high fidelity are likely to differ. Here we review recent studies of similarities and differences in the fidelity with which the three major eukaryotic replicases, DNA polymerases α, δ, and ɛ, replicate the leading and lagging strands with high nucleotide selectivity and efficient proofreading. We then relate the asymmetric fidelity at the replication fork to the efficiency of DNA mismatch repair, ribonucleotide excision repair and topoisomerase 1 activity.
Collapse
Affiliation(s)
- Scott A Lujan
- a Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Jessica S Williams
- a Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Thomas A Kunkel
- a Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| |
Collapse
|
89
|
Atias N, Kupiec M, Sharan R. Systematic identification and correction of annotation errors in the genetic interaction map of Saccharomyces cerevisiae. Nucleic Acids Res 2015; 44:e50. [PMID: 26602688 PMCID: PMC4797274 DOI: 10.1093/nar/gkv1284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023] Open
Abstract
The yeast mutant collections are a fundamental tool in deciphering genomic organization and function. Over the last decade, they have been used for the systematic exploration of ∼6 000 000 double gene mutants, identifying and cataloging genetic interactions among them. Here we studied the extent to which these data are prone to neighboring gene effects (NGEs), a phenomenon by which the deletion of a gene affects the expression of adjacent genes along the genome. Analyzing ∼90,000 negative genetic interactions observed to date, we found that more than 10% of them are incorrectly annotated due to NGEs. We developed a novel algorithm, GINGER, to identify and correct erroneous interaction annotations. We validated the algorithm using a comparative analysis of interactions from Schizosaccharomyces pombe. We further showed that our predictions are significantly more concordant with diverse biological data compared to their mis-annotated counterparts. Our work uncovered about 9500 new genetic interactions in yeast.
Collapse
Affiliation(s)
- Nir Atias
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
90
|
Donigan KA, Cerritelli SM, McDonald JP, Vaisman A, Crouch RJ, Woodgate R. Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae. DNA Repair (Amst) 2015; 35:1-12. [PMID: 26340535 PMCID: PMC4651834 DOI: 10.1016/j.dnarep.2015.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/18/2015] [Accepted: 07/21/2015] [Indexed: 11/26/2022]
Abstract
DNA polymerase η (pol η) is best characterized for its ability to perform accurate and efficient translesion DNA synthesis (TLS) through cyclobutane pyrimidine dimers (CPDs). To ensure accurate bypass the polymerase is not only required to select the correct base, but also discriminate between NTPs and dNTPs. Most DNA polymerases have a conserved "steric gate" residue which functions to prevent incorporation of NMPs during DNA synthesis. Here, we demonstrate that the Phe35 residue of Saccharomyces cerevisiae pol η functions as a steric gate to limit the use of ribonucleotides during polymerization both in vitro and in vivo. Unlike the related pol ι enzyme, wild-type pol η does not readily incorporate NMPs in vitro. In contrast, a pol η F35A mutant incorporates NMPs on both damaged and undamaged DNA in vitro with a high degree of base selectivity. An S.cerevisiae strain expressing pol η F35A (rad30-F35A) that is also deficient for nucleotide excision repair (rad1Δ) and the TLS polymerase, pol ζ (rev3Δ), is extremely sensitive to UV-light. The sensitivity is due, in part, to RNase H2 activity, as an isogenic rnh201Δ strain is roughly 50-fold more UV-resistant than its RNH201(+) counterpart. Interestingly the rad1Δ rev3Δ rad30-F35A rnh201Δ strain exhibits a significant increase in the extent of spontaneous mutagenesis with a spectrum dominated by 1bp deletions at runs of template Ts. We hypothesize that the increased mutagenesis is due to rA incorporation at these sites and that the short poly rA tract is subsequently repaired in an error-prone manner by a novel repair pathway that is specifically targeted to polyribonucleotide tracks. These data indicate that under certain conditions, pol η can compete with the cell's replicases and gain access to undamaged genomic DNA. Such observations are consistent with a role for pol η in replicating common fragile sites (CFS) in human cells.
Collapse
Affiliation(s)
- Katherine A Donigan
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Susana M Cerritelli
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Robert J Crouch
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| |
Collapse
|
91
|
Wallace BD, Williams RS. Ribonucleotide triggered DNA damage and RNA-DNA damage responses. RNA Biol 2015; 11:1340-6. [PMID: 25692233 DOI: 10.4161/15476286.2014.992283] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Research indicates that the transient contamination of DNA with ribonucleotides exceeds all other known types of DNA damage combined. The consequences of ribose incorporation into DNA, and the identity of protein factors operating in this RNA-DNA realm to protect genomic integrity from RNA-triggered events are emerging. Left unrepaired, the presence of ribonucleotides in genomic DNA impacts cellular proliferation and is associated with chromosome instability, gross chromosomal rearrangements, mutagenesis, and production of previously unrecognized forms of ribonucleotide-triggered DNA damage. Here, we highlight recent findings on the nature and structure of DNA damage arising from ribonucleotides in DNA, and the identification of cellular factors acting in an RNA-DNA damage response (RDDR) to counter RNA-triggered DNA damage.
Collapse
Affiliation(s)
- Bret D Wallace
- a Genome Integrity and Structural Biology Laboratory; National Institute of Environmental Health Sciences; NIH; DHHS ; Research Triangle Park , NC USA
| | | |
Collapse
|
92
|
Lindsey-Boltz LA, Kemp MG, Hu J, Sancar A. Analysis of Ribonucleotide Removal from DNA by Human Nucleotide Excision Repair. J Biol Chem 2015; 290:29801-7. [PMID: 26491008 DOI: 10.1074/jbc.m115.695254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotides are incorporated into the genome during DNA replication. The enzyme RNase H2 plays a critical role in targeting the removal of these ribonucleotides from DNA, and defects in RNase H2 activity are associated with both genomic instability and the human autoimmune/inflammatory disorder Aicardi-Goutières syndrome. Whether additional general DNA repair mechanisms contribute to ribonucleotide removal from DNA in human cells is not known. Because of its ability to act on a wide variety of substrates, we examined a potential role for canonical nucleotide excision repair in the removal of ribonucleotides from DNA. However, using highly sensitive dual incision/excision assays, we find that ribonucleotides are not efficiently targeted by the human nucleotide excision repair system in vitro or in cultured human cells. These results suggest that nucleotide excision repair is unlikely to play a major role in the cellular response to ribonucleotide incorporation in genomic DNA in human cells.
Collapse
Affiliation(s)
- Laura A Lindsey-Boltz
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Michael G Kemp
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Jinchuan Hu
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Aziz Sancar
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| |
Collapse
|
93
|
Stimulation of Chromosomal Rearrangements by Ribonucleotides. Genetics 2015; 201:951-61. [PMID: 26400612 DOI: 10.1534/genetics.115.181149] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/12/2015] [Indexed: 11/18/2022] Open
Abstract
We show by whole genome sequence analysis that loss of RNase H2 activity increases loss of heterozygosity (LOH) in Saccharomyces cerevisiae diploid strains harboring the pol2-M644G allele encoding a mutant version of DNA polymerase ε that increases ribonucleotide incorporation. This led us to analyze the effects of loss of RNase H2 on LOH and on nonallelic homologous recombination (NAHR) in mutant diploid strains with deletions of genes encoding RNase H2 subunits (rnh201Δ, rnh202Δ, and rnh203Δ), topoisomerase 1 (TOP1Δ), and/or carrying mutant alleles of DNA polymerases ε, α, and δ. We observed an ∼7-fold elevation of the LOH rate in RNase H2 mutants encoding wild-type DNA polymerases. Strains carrying the pol2-M644G allele displayed a 7-fold elevation in the LOH rate, and synergistic 23-fold elevation in combination with rnh201Δ. In comparison, strains carrying the pol2-M644L mutation that decreases ribonucleotide incorporation displayed lower LOH rates. The LOH rate was not elevated in strains carrying the pol1-L868M or pol3-L612M alleles that result in increased incorporation of ribonucleotides during DNA synthesis by polymerases α and δ, respectively. A similar trend was observed in an NAHR assay, albeit with smaller phenotypic differentials. The ribonucleotide-mediated increases in the LOH and NAHR rates were strongly dependent on TOP1. These data add to recent reports on the asymmetric mutagenicity of ribonucleotides caused by topoisomerase 1 processing of ribonucleotides incorporated during DNA replication.
Collapse
|
94
|
Elevated Genome-Wide Instability in Yeast Mutants Lacking RNase H Activity. Genetics 2015; 201:963-75. [PMID: 26400613 DOI: 10.1534/genetics.115.182725] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 11/18/2022] Open
Abstract
Two types of RNA:DNA associations can lead to genome instability: the formation of R-loops during transcription and the incorporation of ribonucleotide monophosphates (rNMPs) into DNA during replication. Both ribonuclease (RNase) H1 and RNase H2 degrade the RNA component of R-loops, whereas only RNase H2 can remove one or a few rNMPs from DNA. We performed high-resolution mapping of mitotic recombination events throughout the yeast genome in diploid strains of Saccharomyces cerevisiae lacking RNase H1 (rnh1Δ), RNase H2 (rnh201Δ), or both RNase H1 and RNase H2 (rnh1Δ rnh201Δ). We found little effect on recombination in the rnh1Δ strain, but elevated recombination in both the rnh201Δ and the double-mutant strains; levels of recombination in the double mutant were ∼50% higher than in the rnh201 single-mutant strain. An rnh201Δ mutant that additionally contained a mutation that reduces rNMP incorporation by DNA polymerase ε (pol2-M644L) had a level of instability similar to that observed in the presence of wild-type Pol ε. This result suggests that the elevated recombination observed in the absence of only RNase H2 is primarily a consequence of R-loops rather than misincorporated rNMPs.
Collapse
|
95
|
Ding J, Taylor MS, Jackson AP, Reijns MAM. Genome-wide mapping of embedded ribonucleotides and other noncanonical nucleotides using emRiboSeq and EndoSeq. Nat Protoc 2015; 10:1433-44. [PMID: 26313479 DOI: 10.1038/nprot.2015.099] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ribonucleotides are the most common noncanonical nucleotides incorporated into the genome of replicating cells. They are efficiently removed by ribonucleotide excision repair initiated by RNase H2 cleavage. In the absence of RNase H2, such embedded ribonucleotides can be used to track DNA polymerase activity in vivo. To determine their precise location in Saccharomyces cerevisiae, we developed embedded ribonucleotide sequencing (emRiboSeq), which uses recombinant RNase H2 to selectively create ligatable 3'-hydroxyl groups, in contrast to alternative methods that use alkaline hydrolysis. EmRiboSeq allows reproducible, strand-specific and potentially quantitative detection of embedded ribonucleotides at single-nucleotide resolution. For the genome-wide mapping of other noncanonical bases, RNase H2 can be replaced with specific nicking endonucleases in this protocol; we term this method endonuclease sequencing (EndoSeq). With the protocol taking <5 d to complete, these methods allow the in vivo study of DNA replication and repair, including the identification of replication origins and termination regions.
Collapse
Affiliation(s)
- James Ding
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Martin S Taylor
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Andrew P Jackson
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Martin A M Reijns
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
96
|
Cho JE, Kim N, Jinks-Robertson S. Topoisomerase 1-dependent deletions initiated by incision at ribonucleotides are biased to the non-transcribed strand of a highly activated reporter. Nucleic Acids Res 2015; 43:9306-13. [PMID: 26271994 PMCID: PMC4627074 DOI: 10.1093/nar/gkv824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/03/2015] [Indexed: 11/14/2022] Open
Abstract
DNA polymerases incorporate ribonucleoside monophosphates (rNMPs) into genomic DNA at a low level and such rNMPs are efficiently removed in an error-free manner by ribonuclease (RNase) H2. In the absence of RNase H2 in budding yeast, persistent rNMPs give rise to short deletions via a mutagenic process initiated by Topoisomerase 1 (Top1). We examined the activity of a 2-bp, rNMP-dependent deletion hotspot [the (TG)2 hotspot] when on the transcribed or non-transcribed strand (TS or NTS, respectively) of a reporter placed in both orientations near a strong origin of replication. Under low-transcription conditions, hotspot activity depended on whether the (TG)2 sequence was part of the newly synthesized leading or lagging strand of replication. In agreement with an earlier study, deletions occurred at a much higher rate when (TG)2 was on the nascent leading strand. Under high-transcription conditions, however, hotspot activity was not dependent on replication direction, but rather on whether the (TG)2 sequence was on the TS or NTS of the reporter. Deletion rates were several orders of magnitude higher when (TG)2 was on the NTS. These results highlight the complex interplay between replication and transcription in regulating Top1-dependent genetic instability.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nayun Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
97
|
Abstract
Innate immune sensing of nucleic acids provides resistance against viral infection and is important in the aetiology of autoimmune diseases. AGS (Aicardi-Goutières syndrome) is a monogenic autoinflammatory disorder mimicking in utero viral infection of the brain. Phenotypically and immunologically, it also exhibits similarities to SLE (systemic lupus erythaematosus). Three of the six genes identified to date encode components of the ribonuclease H2 complex. As all six encode enzymes involved in nucleic acid metabolism, it is thought that pathogenesis involves the accumulation of nucleic acids to stimulate an inappropriate innate immune response. Given that AGS is a monogenic disorder with a defined molecular basis, we use it as a model for common autoimmune disease to investigate cellular processes and molecular pathways responsible for nucleic-acid-mediated autoimmunity. These investigations have also provided fundamental insights into the biological roles of the RNase H2 endonuclease enzyme. In the present article, we describe how human RNase H2 and its role in AGS were first identified, and give an overview of subsequent structural, biochemical, cellular and developmental studies of this enzyme. These investigations have culminated in establishing this enzyme as a key genome-surveillance enzyme required for mammalian genome stability.
Collapse
|
98
|
Huang SYN, Ghosh S, Pommier Y. Topoisomerase I alone is sufficient to produce short DNA deletions and can also reverse nicks at ribonucleotide sites. J Biol Chem 2015; 290:14068-76. [PMID: 25887397 DOI: 10.1074/jbc.m115.653345] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide monophosphates (rNMPs) are among the most frequent form of DNA aberration, as high ratios of ribonucleotide triphosphate:deoxyribonucleotide triphosphate pools result in approximately two misincorporated rNMPs/kb of DNA. The main pathway for the removal of rNMPs is by RNase H2. However, in a RNase H2 knock-out yeast strain, a topoisomerase I (Top1)-dependent mutator effect develops with accumulation of short deletions within tandem repeats. Proposed models for these deletions implicated processing of Top1-generated nicks at rNMP sites and/or sequential Top1 binding, but experimental support has been lacking thus far. Here, we investigated the biochemical mechanism of the Top1-induced short deletions at the rNMP sites by generating nicked DNA substrates bearing 2',3'-cyclic phosphates at the nick sites, mimicking the Top1-induced nicks. We demonstrate that a second Top1 cleavage complex adjacent to the nick and subsequent faulty Top1 religation led to the short deletions. Moreover, when acting on the nicked DNA substrates containing 2',3'-cyclic phosphates, Top1 generated not only the short deletion, but also a full-length religated DNA product. A catalytically inactive Top1 mutant (Top1-Y723F) also induced the full-length products, indicating that Top1 binding independent of its enzymatic activity promotes the sealing of DNA backbones via nucleophilic attacks by the 5'-hydroxyl on the 2',3'-cyclic phosphate. The resealed DNA would allow renewed attempt for repair by the error-free RNase H2-dependent pathway in vivo. Our results provide direct evidence for the generation of short deletions by sequential Top1 cleavage events and for the promotion of nick religation at rNMP sites by Top1.
Collapse
Affiliation(s)
- Shar-Yin Naomi Huang
- From the Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Sanchari Ghosh
- From the Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Yves Pommier
- From the Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
99
|
Williams JS, Clausen AR, Lujan SA, Marjavaara L, Clark AB, Burgers PM, Chabes A, Kunkel TA. Evidence that processing of ribonucleotides in DNA by topoisomerase 1 is leading-strand specific. Nat Struct Mol Biol 2015; 22:291-7. [PMID: 25751426 PMCID: PMC4835660 DOI: 10.1038/nsmb.2989] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/11/2015] [Indexed: 01/26/2023]
Abstract
Ribonucleotides incorporated during DNA replication are removed by RNase H2-dependent ribonucleotide excision repair (RER). In RER-defective yeast, topoisomerase 1 (Top1) incises DNA at unrepaired ribonucleotides, initiating their removal, but this is accompanied by RNA-DNA-damage phenotypes. Here we show that these phenotypes are incurred by a high level of ribonucleotides incorporated by a leading strand-replicase variant, DNA polymerase (Pol) ɛ, but not by orthologous variants of the lagging-strand replicases, Pols α or δ. Moreover, loss of both RNases H1 and H2 is lethal in combination with increased ribonucleotide incorporation by Pol ɛ but not by Pols α or δ. Several explanations for this asymmetry are considered, including the idea that Top1 incision at ribonucleotides relieves torsional stress in the nascent leading strand but not in the nascent lagging strand, in which preexisting nicks prevent the accumulation of superhelical tension.
Collapse
Affiliation(s)
- Jessica S. Williams
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Anders R. Clausen
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Scott A. Lujan
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Alan B. Clark
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Peter M. Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87, Umeå, Sweden
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| |
Collapse
|
100
|
Sparks JL, Burgers PM. Error-free and mutagenic processing of topoisomerase 1-provoked damage at genomic ribonucleotides. EMBO J 2015; 34:1259-69. [PMID: 25777529 DOI: 10.15252/embj.201490868] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/25/2015] [Indexed: 11/09/2022] Open
Abstract
Genomic ribonucleotides incorporated during DNA replication are commonly repaired by RNase H2-dependent ribonucleotide excision repair (RER). When RNase H2 is compromised, such as in Aicardi-Goutières patients, genomic ribonucleotides either persist or are processed by DNA topoisomerase 1 (Top1) by either error-free or mutagenic repair. Here, we present a biochemical analysis of these pathways. Top1 cleavage at genomic ribonucleotides can produce ribonucleoside-2',3'-cyclic phosphate-terminated nicks. Remarkably, this nick is rapidly reverted by Top1, thereby providing another opportunity for repair by RER. However, the 2',3'-cyclic phosphate-terminated nick is also processed by Top1 incision, generally 2 nucleotides upstream of the nick, which produces a covalent Top1-DNA complex with a 2-nucleotide gap. We show that these covalent complexes can be processed by proteolysis, followed by removal of the phospho-peptide by Tdp1 and the 3'-phosphate by Tpp1 to mediate error-free repair. However, when the 2-nucleotide gap is associated with a dinucleotide repeat sequence, sequence slippage re-alignment followed by Top1-mediated religation can occur which results in 2-nucleotide deletion. The efficiency of deletion formation shows strong sequence-context dependence.
Collapse
Affiliation(s)
- Justin L Sparks
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|