51
|
Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe. Genetics 2015; 201:1467-78. [PMID: 26510788 DOI: 10.1534/genetics.115.181792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/23/2015] [Indexed: 01/02/2023] Open
Abstract
Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects in Dis1, a microtubule-associated protein that influences microtubule dynamics, lead to mitotic arrest as a result of an active SAC and consequent failure to grow at low temperature. In a mutant dis1 background (dis1-288), loss of function of Msc1, a fission yeast homolog of the KDM5 family of proteins, suppresses the growth defect and promotes normal mitosis. Genetic analysis implicates a histone deacetylase (HDAC)-linked pathway in suppression because HDAC mutants clr6-1, clr3∆, and sir2∆, though not hos2∆, also promote normal mitosis in the dis1-288 mutant. Suppression of the dis phenotype through loss of msc1 function requires the spindle checkpoint protein Mad2 and is limited by the presence of the heterochromatin-associated HP1 protein homolog Swi6. We speculate that alterations in histone acetylation promote a centromeric chromatin environment that compensates for compromised dis1 function by allowing for successful kinetochore-microtubule interactions that can satisfy the SAC. In cells arrested in mitosis by mutation of dis1, loss of function of epigenetic determinants such as Msc1 or specific HDACs can promote cell survival. Because the KDM5 family of proteins has been implicated in human cancers, an appreciation of the potential role of this family of proteins in chromosome segregation is warranted.
Collapse
|
52
|
Defective sister chromatid cohesion is synthetically lethal with impaired APC/C function. Nat Commun 2015; 6:8399. [PMID: 26423134 PMCID: PMC4600715 DOI: 10.1038/ncomms9399] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 08/19/2015] [Indexed: 01/05/2023] Open
Abstract
Warsaw breakage syndrome (WABS) is caused by defective DDX11, a DNA helicase that is essential for chromatid cohesion. Here, a paired genome-wide siRNA screen in patient-derived cell lines reveals that WABS cells do not tolerate partial depletion of individual APC/C subunits or the spindle checkpoint inhibitor p31comet. A combination of reduced cohesion and impaired APC/C function also leads to fatal mitotic arrest in diploid RPE1 cells. Moreover, WABS cell lines, and several cancer cell lines with cohesion defects, display a highly increased response to a new cell-permeable APC/C inhibitor, apcin, but not to the spindle poison paclitaxel. Synthetic lethality of APC/C inhibition and cohesion defects strictly depends on a functional mitotic spindle checkpoint as well as on intact microtubule pulling forces. This indicates that the underlying mechanism involves cohesion fatigue in response to mitotic delay, leading to spindle checkpoint re-activation and lethal mitotic arrest. Our results point to APC/C inhibitors as promising therapeutic agents targeting cohesion-defective cancers. Cohesion is associated with many forms of cancer. De Lange et al. show that such cohesion defects can sensitise cells to apoptosis in response to a new APC/C ubiquitin ligase inhibitor, by prolonging mitotic arrest and checkpoint activation due to cohesion fatigue.
Collapse
|
53
|
Buisson R, Boisvert JL, Benes CH, Zou L. Distinct but Concerted Roles of ATR, DNA-PK, and Chk1 in Countering Replication Stress during S Phase. Mol Cell 2015; 59:1011-24. [PMID: 26365377 PMCID: PMC4575890 DOI: 10.1016/j.molcel.2015.07.029] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 07/28/2015] [Indexed: 01/29/2023]
Abstract
The ATR-Chk1 pathway is critical for DNA damage responses and cell-cycle progression. Chk1 inhibition is more deleterious to cycling cells than ATR inhibition, raising questions about ATR and Chk1 functions in the absence of extrinsic replication stress. Here we show that a key role of ATR in S phase is to coordinate RRM2 accumulation and origin firing. ATR inhibitor (ATRi) induces massive ssDNA accumulation and replication catastrophe in a fraction of early S-phase cells. In other S-phase cells, however, ATRi induces moderate ssDNA and triggers a DNA-PK and Chk1-mediated backup pathway to suppress origin firing. The backup pathway creates a threshold such that ATRi selectively kills cells under high replication stress, whereas Chk1 inhibitor induces cell death at a lower threshold. The levels of ATRi-induced ssDNA correlate with ATRi sensitivity in a panel of cell lines, suggesting that ATRi-induced ssDNA could be predictive of ATRi sensitivity in cancer cells.
Collapse
Affiliation(s)
- Rémi Buisson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129, USA
| | - Jessica L Boisvert
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
54
|
Nicolay BN, Danielian PS, Kottakis F, Lapek JD, Sanidas I, Miles WO, Dehnad M, Tschöp K, Gierut JJ, Manning AL, Morris R, Haigis K, Bardeesy N, Lees JA, Haas W, Dyson NJ. Proteomic analysis of pRb loss highlights a signature of decreased mitochondrial oxidative phosphorylation. Genes Dev 2015; 29:1875-89. [PMID: 26314710 PMCID: PMC4573859 DOI: 10.1101/gad.264127.115] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/13/2015] [Indexed: 12/22/2022]
Abstract
Nicolay et al. ablated Rb in adult mice and conducted a quantitative analysis of RNA and proteomic changes in the colon and lungs. The proteomic changes in common between RbKO tissues showed a striking decrease in proteins with mitochondrial functions, highlighting the importance of pRb for mitochondrial function. The retinoblastoma tumor suppressor (pRb) protein associates with chromatin and regulates gene expression. Numerous studies have identified Rb-dependent RNA signatures, but the proteomic effects of Rb loss are largely unexplored. We acutely ablated Rb in adult mice and conducted a quantitative analysis of RNA and proteomic changes in the colon and lungs, where RbKO was sufficient or insufficient to induce ectopic proliferation, respectively. As expected, RbKO caused similar increases in classic pRb/E2F-regulated transcripts in both tissues, but, unexpectedly, their protein products increased only in the colon, consistent with its increased proliferative index. Thus, these protein changes induced by Rb loss are coupled with proliferation but uncoupled from transcription. The proteomic changes in common between RbKO tissues showed a striking decrease in proteins with mitochondrial functions. Accordingly, RB1 inactivation in human cells decreased both mitochondrial mass and oxidative phosphorylation (OXPHOS) function. RBKO cells showed decreased mitochondrial respiratory capacity and the accumulation of hypopolarized mitochondria. Additionally, RB/Rb loss altered mitochondrial pyruvate oxidation from 13C-glucose through the TCA cycle in mouse tissues and cultured cells. Consequently, RBKO cells have an enhanced sensitivity to mitochondrial stress conditions. In summary, proteomic analyses provide a new perspective on Rb/RB1 mutation, highlighting the importance of pRb for mitochondrial function and suggesting vulnerabilities for treatment.
Collapse
Affiliation(s)
- Brandon N Nicolay
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Paul S Danielian
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Filippos Kottakis
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - John D Lapek
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Ioannis Sanidas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Wayne O Miles
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Mantre Dehnad
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA; University Medical Center Utrecht, Utrecht 3584CX, Netherlands
| | - Katrin Tschöp
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Jessica J Gierut
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Amity L Manning
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Kevin Haigis
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Jacqueline A Lees
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
55
|
Brownlee PM, Meisenberg C, Downs JA. The SWI/SNF chromatin remodelling complex: Its role in maintaining genome stability and preventing tumourigenesis. DNA Repair (Amst) 2015; 32:127-133. [PMID: 25981841 DOI: 10.1016/j.dnarep.2015.04.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Genes encoding subunits of the two SWI/SNF chromatin remodelling complexes (BAF and PBAF) are mutated in almost 20% of all human cancers. In addition to a role in regulating transcription, recent work from our laboratory and others identified roles for both complexes in DNA damage responses and the maintenance of sister chromatid cohesion, which may have profound impacts on genome stability and contribute to its role as a tumour suppressor. Here, we review some of the transcription-independent functions of the SWI/SNF chromatin remodelling complex and discuss these in light of their potential relevance to tumourigenesis.
Collapse
Affiliation(s)
- Peter M Brownlee
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Cornelia Meisenberg
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Jessica A Downs
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
56
|
Stoepker C, Ameziane N, van der Lelij P, Kooi IE, Oostra AB, Rooimans MA, van Mil SE, Brink A, Dietrich R, Balk JA, Ylstra B, Joenje H, Feller SM, Brakenhoff RH. Defects in the Fanconi Anemia Pathway and Chromatid Cohesion in Head and Neck Cancer. Cancer Res 2015; 75:3543-53. [PMID: 26122845 DOI: 10.1158/0008-5472.can-15-0528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/19/2015] [Indexed: 11/16/2022]
Abstract
Failure to repair DNA damage or defective sister chromatid cohesion, a process essential for correct chromosome segregation, can be causative of chromosomal instability (CIN), which is a hallmark of many types of cancers. We investigated how frequent this occurs in head and neck squamous cell carcinoma (HNSCC) and whether specific mechanisms or genes could be linked to these phenotypes. The genomic instability syndrome Fanconi anemia is caused by mutations in any of at least 16 genes regulating DNA interstrand crosslink (ICL) repair. Since patients with Fanconi anemia have a high risk to develop HNSCC, we investigated whether and to which extent Fanconi anemia pathway inactivation underlies CIN in HNSCC of non-Fanconi anemia individuals. We observed ICL-induced chromosomal breakage in 9 of 17 (53%) HNSCC cell lines derived from patients without Fanconi anemia. In addition, defective sister chromatid cohesion was observed in five HNSCC cell lines. Inactivation of FANCM was responsible for chromosomal breakage in one cell line, whereas in two other cell lines, somatic mutations in PDS5A or STAG2 resulted in inadequate sister chromatid cohesion. In addition, FANCF methylation was found in one cell line by screening an additional panel of 39 HNSCC cell lines. Our data demonstrate that CIN in terms of ICL-induced chromosomal breakage and defective chromatid cohesion is frequently observed in HNSCC. Inactivation of known Fanconi anemia and chromatid cohesion genes does explain CIN in the minority of cases. These findings point to phenotypes that may be highly relevant in treatment response of HNSCC.
Collapse
Affiliation(s)
- Chantal Stoepker
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Najim Ameziane
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Petra van der Lelij
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Irsan E Kooi
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Anneke B Oostra
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Martin A Rooimans
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Saskia E van Mil
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Arjen Brink
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Ralf Dietrich
- German Fanconi Anemia Support Group and Research Fund, Unna-Siddinghausen, Germany
| | - Jesper A Balk
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Hans Joenje
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Stephan M Feller
- Biological Systems Architecture Group, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, United Kingdom
| | - Ruud H Brakenhoff
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
57
|
Abstract
Chromosomal instability is a driving force for heterogeneity within tumours. A recent study shows that boosting sister chromatid cohesion corrects chromosomal instability in pRB-deficient cancer cells. This key finding provides an important lead to make tumours more susceptible to anti-cancer drugs.
Collapse
|
58
|
Abstract
Genome instability is a hallmark of cancer, and DNA replication is the most vulnerable cellular process that can lead to it. Any condition leading to high levels of DNA damage will result in replication stress, which is a source of genome instability and a feature of pre-cancerous and cancerous cells. Therefore, understanding the molecular basis of replication stress is crucial to the understanding of tumorigenesis. Although a negative aspect of replication stress is its prominent role in tumorigenesis, a positive aspect is that it provides a potential target for cancer therapy. In this Review, we discuss the link between persistent replication stress and tumorigenesis, with the goal of shedding light on the mechanisms underlying the initiation of an oncogenic process, which should open up new possibilities for cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Sevilla 41092, Spain
| | - Tatiana García-Muse
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Sevilla 41092, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Sevilla 41092, Spain
| |
Collapse
|
59
|
Inactivation of the retinoblastoma gene yields a mouse model of malignant colorectal cancer. Oncogene 2015; 34:5890-9. [PMID: 25745996 PMCID: PMC4668801 DOI: 10.1038/onc.2015.30] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 02/07/2023]
Abstract
The retinoblastoma gene (Rb) is mutated at significant frequency in various human epithelial tumors, including colorectal cancer, and is strongly associated with metastatic disease. However, sole inactivation of Rb in the mouse has so far failed to yield epithelial cancers. Here, we specifically inactivate Rb and/or p53 in the urogenital epithelium and the intestine. We find that loss of both tumor suppressors is unable to yield tumors in the transitional epithelium lining the bladder, kidneys and ureters. Instead, these mice develop highly metastatic tumors of neuroendocrine, not epithelial, origin within the urogenital tract to give prostate cancer in the males and vaginal tumors in the females. Additionally, we discovered that the sole inactivation of Rb in the intestine was sufficient to induce formation of metastatic colorectal adenocarcinomas. These tumors closely mirror the human disease in regard to age of onset, histological appearance, invasiveness and metastatic potential. Like most human colorectal carcinomas, our murine Rb-deficient tumors demonstrate genomic instability and they show activation of β-catenin. Deregulation of the Wnt/β-catenin pathway is specific to the intestinal tumors, as genomic instability but not activation of β-catenin was observed in the neuroendocrine tumors. To date, attempts to generate genetically engineered mouse models of colorectal cancer tumors have yielded mostly cancer of the small intestine, which rarely occurs in humans. Our system provides the opportunity to accurately model and study colorectal cancer in the mouse via a single gene mutation.
Collapse
|
60
|
Drosophila casein kinase I alpha regulates homolog pairing and genome organization by modulating condensin II subunit Cap-H2 levels. PLoS Genet 2015; 11:e1005014. [PMID: 25723539 PMCID: PMC4344196 DOI: 10.1371/journal.pgen.1005014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 01/20/2015] [Indexed: 12/25/2022] Open
Abstract
The spatial organization of chromosomes within interphase nuclei is important for gene expression and epigenetic inheritance. Although the extent of physical interaction between chromosomes and their degree of compaction varies during development and between different cell-types, it is unclear how regulation of chromosome interactions and compaction relate to spatial organization of genomes. Drosophila is an excellent model system for studying chromosomal interactions including homolog pairing. Recent work has shown that condensin II governs both interphase chromosome compaction and homolog pairing and condensin II activity is controlled by the turnover of its regulatory subunit Cap-H2. Specifically, Cap-H2 is a target of the SCFSlimb E3 ubiquitin-ligase which down-regulates Cap-H2 in order to maintain homologous chromosome pairing, chromosome length and proper nuclear organization. Here, we identify Casein Kinase I alpha (CK1α) as an additional negative-regulator of Cap-H2. CK1α-depletion stabilizes Cap-H2 protein and results in an accumulation of Cap-H2 on chromosomes. Similar to Slimb mutation, CK1α depletion in cultured cells, larval salivary gland, and nurse cells results in several condensin II-dependent phenotypes including dispersal of centromeres, interphase chromosome compaction, and chromosome unpairing. Moreover, CK1α loss-of-function mutations dominantly suppress condensin II mutant phenotypes in vivo. Thus, CK1α facilitates Cap-H2 destruction and modulates nuclear organization by attenuating chromatin localized Cap-H2 protein.
Collapse
|
61
|
Abstract
SUMMARY Germline deletion of RB1, the gene encoding the retinoblastoma tumor-suppressor protein pRB, predisposes to eye tumor formation upon loss of the remaining wild-type allele. Many functions affecting cell-cycle control, cell-cycle exit, and numerous other processes involved in the transformed phenotype have been ascribed to pRB, and deregulation of these processes is generally thought to result from complete loss of pRB in both hereditary and sporadic tumors in multiple tissues. Loss of just one allele of RB1 is now shown to lead to replication stress and aneuploidy in both mouse and human cells, and the mechanism through which this haploinsufficient phenotype is achieved may open up new opportunities for interceding both in tumor initiation and in treatment of extant tumors.
Collapse
Affiliation(s)
- Philip W Hinds
- Author's Affiliation: Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine and Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
62
|
de Leeuw R, Berman-Booty LD, Schiewer MJ, Ciment SJ, Den RB, Dicker AP, Kelly WK, Trabulsi EJ, Lallas CD, Gomella LG, Knudsen KE. Novel actions of next-generation taxanes benefit advanced stages of prostate cancer. Clin Cancer Res 2015; 21:795-807. [PMID: 25691773 PMCID: PMC4333741 DOI: 10.1158/1078-0432.ccr-14-1358] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE To improve the outcomes of patients with castration-resistant prostate cancer (CRPC), there is an urgent need for more effective therapies and approaches that individualize specific treatments for patients with CRPC. These studies compared the novel taxane cabazitaxel with the previous generation docetaxel, and aimed to determine which tumors are most likely to respond. EXPERIMENTAL DESIGN Cabazitaxel and docetaxel were compared via in vitro modeling to determine the molecular mechanism, biochemical and cell biologic impact, and cell proliferation, which was further assessed ex vivo in human tumor explants. Isogenic pairs of RB knockdown and control cells were interrogated in vitro and in xenograft tumors for cabazitaxel response. RESULTS The data herein show that (i) cabazitaxel exerts stronger cytostatic and cytotoxic response compared with docetaxel, especially in CRPC; (ii) cabazitaxel induces aberrant mitosis, leading to pyknotic and multinucleated cells; (iii) taxanes do not act through the androgen receptor (AR); (iv) gene-expression profiling reveals distinct molecular actions for cabazitaxel; and (v) tumors that have progressed to castration resistance via loss of RB show enhanced sensitivity to cabazitaxel. CONCLUSIONS Cabazitaxel not only induces improved cytostatic and cytotoxic effects, but also affects distinct molecular pathways, compared with docetaxel, which could underlie its efficacy after docetaxel treatment has failed in patients with CRPC. Finally, RB is identified as the first potential biomarker that could define the therapeutic response to taxanes in metastatic CRPC. This would suggest that loss of RB function induces sensitization to taxanes, which could benefit up to 50% of CRPC cases.
Collapse
Affiliation(s)
- Renée de Leeuw
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lisa D Berman-Booty
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew J Schiewer
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Stephen J Ciment
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Robert B Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania. Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam P Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania. Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - William K Kelly
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Edouard J Trabulsi
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Costas D Lallas
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leonard G Gomella
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania. Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
63
|
Abstract
The X shape of chromosomes is one of the iconic images in biology. Cohesin actually connects the sister chromatids along their entire length, from S phase until mitosis. Then, cohesin's antagonist Wapl allows the separation of chromosome arms by opening a DNA exit gate in cohesin rings. Centromeres are protected against this removal activity, resulting in the X shape of mitotic chromosomes. The destruction of the remaining centromeric cohesin by Separase triggers chromosome segregation. We review the two-phase regulation of cohesin removal and discuss how this affects chromosome alignment and decatenation in mitosis and cohesin reloading in the next cell cycle.
Collapse
Affiliation(s)
- Judith H I Haarhuis
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ahmed M O Elbatsh
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
64
|
Toki H, Inoue M, Minowa O, Motegi H, Saiki Y, Wakana S, Masuya H, Gondo Y, Shiroishi T, Yao R, Noda T. Novel retinoblastoma mutation abrogating the interaction to E2F2/3, but not E2F1, led to selective suppression of thyroid tumors. Cancer Sci 2014; 105:1360-8. [PMID: 25088905 PMCID: PMC4462357 DOI: 10.1111/cas.12495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/18/2014] [Accepted: 07/25/2014] [Indexed: 01/18/2023] Open
Abstract
Mutant mouse models are indispensable tools for clarifying gene functions and elucidating the pathogenic mechanisms of human diseases. Here, we describe novel cancer models bearing point mutations in the retinoblastoma gene (Rb1) generated by N-ethyl-N-nitrosourea mutagenesis. Two mutations in splice sites reduced Rb1 expression and led to a tumor spectrum and incidence similar to those observed in the conventional Rb1 knockout mice. The missense mutant, Rb1D326V/+, developed pituitary tumors, but thyroid tumors were completely suppressed. Immunohistochemical analyses of thyroid tissue revealed that E2F1, but not E2F2/3, was selectively inactivated, indicating that the mutant Rb protein (pRb) suppressed thyroid tumors by inactivating E2F1. Interestingly, Rb1D326V/+ mice developed pituitary tumors that originated from the intermediate lobe of the pituitary, despite selective inactivation of E2F1. Furthermore, in the anterior lobe of the pituitary, other E2F were also inactivated. These observations show that pRb mediates the inactivation of E2F function and its contribution to tumorigenesis is highly dependent on the cell type. Last, by using a reconstitution assay of synthesized proteins, we showed that the D326V missense pRb bound to E2F1 but failed to interact with E2F2/3. These results reveal the effect of the pRb N-terminal domain on E2F function and the impact of the protein on tumorigenesis. Thus, this mutant mouse model can be used to investigate human Rb family-bearing mutations at the N-terminal region.
Collapse
Affiliation(s)
- Hideaki Toki
- Team for Advanced Development and Evaluation of Human Disease Models, Riken BioResource Center, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Gollin SM. Cytogenetic alterations and their molecular genetic correlates in head and neck squamous cell carcinoma: a next generation window to the biology of disease. Genes Chromosomes Cancer 2014; 53:972-90. [PMID: 25183546 DOI: 10.1002/gcc.22214] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/15/2014] [Indexed: 01/14/2023] Open
Abstract
Cytogenetic alterations underlie the development of head and neck squamous cell carcinoma (HNSCC), whether tobacco and alcohol use, betel nut chewing, snuff or human papillomavirus (HPV) causes the disease. Many of the molecular genetic aberrations in HNSCC result from these cytogenetic alterations. This review presents a brief introduction to the epidemiology of HNSCC, and discusses the role of HPV in the disease, cytogenetic alterations and their frequencies in HNSCC, their molecular genetic and The Cancer Genome Atlas (TCGA) correlates, prognostic implications, and possible therapeutic considerations. The most frequent cytogenetic alterations in HNSCC are gains of 5p14-15, 8q11-12, and 20q12-13, gains or amplifications of 3q26, 7p11, 8q24, and 11q13, and losses of 3p, 4q35, 5q12, 8p23, 9p21-24, 11q14-23, 13q12-14, 18q23, and 21q22. To understand their effects on tumor cell biology and response to therapy, the cytogenetic findings in HNSCC are increasingly being examined in the context of the biochemical pathways they disrupt. The goal is to minimize morbidity and mortality from HNSCC using cytogenetic abnormalities to identify valuable diagnostic biomarkers for HNSCC, prognostic biomarkers of tumor behavior, recurrence risk, and outcome, and predictive biomarkers of therapeutic response to identify the most efficacious treatment for each individual patient's tumor, all based on a detailed understanding of the next generation biology of HNSCC.
Collapse
Affiliation(s)
- Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA; Departments of Otolaryngology and Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA; University of Pittsburgh Cancer Institute, Pittsburgh, PA
| |
Collapse
|
66
|
George CM, Bozler J, Nguyen HQ, Bosco G. Condensins are Required for Maintenance of Nuclear Architecture. Cells 2014; 3:865-82. [PMID: 25153163 PMCID: PMC4197639 DOI: 10.3390/cells3030865] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/20/2014] [Accepted: 08/11/2014] [Indexed: 12/14/2022] Open
Abstract
The 3-dimensional spatial organization of eukaryotic genomes is important for regulation of gene expression as well as DNA damage repair. It has been proposed that one basic biophysical property of all nuclei is that interphase chromatin must be kept in a condensed prestressed state in order to prevent entropic pressure of the DNA polymer from expanding and disrupting the nuclear envelope. Although many factors can contribute to specific organizational states to compact chromatin, the mechanisms through which such interphase chromatin compaction is maintained are not clearly understood. Condensin proteins are known to exert compaction forces on chromosomes in anticipation of mitosis, but it is not known whether condensins also function to maintain interphase prestressed chromatin states. Here we show that RNAi depletion of the N-CAP-H2, N-CAP-D3 and SMC2 subunits of human condensin II leads to dramatic disruption of nuclear architecture and nuclear size. This is consistent with the idea that condensin mediated chromatin compaction contributes significantly to the prestressed condensed state of the interphase nucleus, and when such compaction forces are disrupted nuclear size and shape change due to chromatin expansion.
Collapse
Affiliation(s)
- Carolyn M George
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - Julianna Bozler
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - Huy Q Nguyen
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - Giovanni Bosco
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
67
|
Coschi CH, Ishak CA, Gallo D, Marshall A, Talluri S, Wang J, Cecchini MJ, Martens AL, Percy V, Welch I, Boutros PC, Brown GW, Dick FA. Haploinsufficiency of an RB-E2F1-Condensin II complex leads to aberrant replication and aneuploidy. Cancer Discov 2014; 4:840-53. [PMID: 24740996 DOI: 10.1158/2159-8290.cd-14-0215] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Genome instability is a characteristic of malignant cells; however, evidence for its contribution to tumorigenesis has been enigmatic. In this study, we demonstrate that the retinoblastoma protein, E2F1, and Condensin II localize to discrete genomic locations including major satellite repeats at pericentromeres. In the absence of this complex, aberrant replication ensues followed by defective chromosome segregation in mitosis. Surprisingly, loss of even one copy of the retinoblastoma gene reduced recruitment of Condensin II to pericentromeres and caused this phenotype. Using cancer genome data and gene-targeted mice, we demonstrate that mutation of one copy of RB1 is associated with chromosome copy-number variation in cancer. Our study connects DNA replication and chromosome structure defects with aneuploidy through a dosage-sensitive complex at pericentromeric repeats. SIGNIFICANCE Genome instability is inherent to most cancers and is the basis for selective killing of cancer cells by genotoxic therapeutics. In this report, we demonstrate that instability can be caused by loss of a single allele of the retinoblastoma gene that prevents proper replication and condensation of pericentromeric chromosomal regions, leading to elevated levels of aneuploidy in cancer.
Collapse
Affiliation(s)
- Courtney H Coschi
- Authors' Affiliations:London Regional Cancer Program; Department of Biochemistry, and
| | - Charles A Ishak
- Authors' Affiliations:London Regional Cancer Program; Department of Biochemistry, and
| | - David Gallo
- Biochemistry, Donnelly Centre, University of Toronto; and
| | - Aren Marshall
- Authors' Affiliations:London Regional Cancer Program; Department of Biochemistry, and
| | - Srikanth Talluri
- Authors' Affiliations:London Regional Cancer Program; Department of Biochemistry, and
| | - Jianxin Wang
- Informatics and Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Matthew J Cecchini
- Authors' Affiliations:London Regional Cancer Program; Department of Biochemistry, and
| | - Alison L Martens
- Authors' Affiliations:London Regional Cancer Program; Department of Biochemistry, and
| | - Vanessa Percy
- Authors' Affiliations:London Regional Cancer Program
| | - Ian Welch
- Veterinary Services, Western University, London; Departments of
| | - Paul C Boutros
- Medical Biophysics, and Pharmacology and Toxicology, Informatics and Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Grant W Brown
- Biochemistry, Donnelly Centre, University of Toronto; and
| | - Frederick A Dick
- Authors' Affiliations:London Regional Cancer Program; Children's Health Research Institute; Department of Biochemistry, and
| |
Collapse
|