51
|
Li G, Zhao Z, Wu B, Su Q, Wu L, Yang X, Chen J. Ulva pertusa lectin 1 delivery through adenovirus vector affects multiple signaling pathways in cancer cells. Glycoconj J 2017; 34:489-498. [PMID: 28349379 DOI: 10.1007/s10719-017-9767-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 02/26/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022]
Abstract
Ulva pertusa lectin 1 (UPL1) is a N-acetyl-D-glucosamine (GlcNAc) binding lectin in marine green alga Ulva pertusa. Exogenous UPL1 colocalized with protein arginine methyltransferase 5 (PRMT5), methylosome protein 50 (MEP50), β-actin and β-tubulin, indicating the interaction of UPL1 with the methylosome and cytoskeleton. UPL1 delivery through adenovirus vector (Ad-UPL1) dramatically induced extracellularly regulated protein kinases 1/2 (ERK1/2) phosphorylation in liver cancer cell lines BEL-7404 and Huh7. Signaling pathways including p38 mitogen-activated protein kinase (MAPK), and Akt were also affected by Ad-UPL1 in a cell type dependent manner. MEK1/2 inhibitor U0126, as well as to a lesser extent p38 MAPK inhibitor SB203580 and phosphoinositide 3-kinase (PI3K) inhibitor LY294002, completely eliminated a higher molecular weight isoform of β-tubulin induced by Ad-UPL1, and significantly enhanced the cytotoxicity of Ad-UPL1 in Huh7 cells, suggesting that the inhibition of MEK1/2, p38 MAPK, and PI3K enhanced antiproliferative effect of Ad-UPL1 possibly through regulating the modification of β-tubulin. Ad-UPL1 completely inhibited the expression of autophagy-related factor Beclin1, but induced LC3-II expression in Huh7 cells. In addition, Ad-UPL1 significantly enhanced starvation induced survival suppression in Huh7 cells. Our data elucidated intracellular signaling pathways affected by exogenous UPL1, and may provide insights into a novel way of UPL1 delivery through adenovirus vectors combined with survival signaling inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Gongchu Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| | - Zhenzhen Zhao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Bingbing Wu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Qunshu Su
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Liqin Wu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Xinyan Yang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Jing Chen
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
52
|
Lee D, Nam JW, Shin C. DROSHA targets its own transcript to modulate alternative splicing. RNA (NEW YORK, N.Y.) 2017; 23:1035-1047. [PMID: 28400409 PMCID: PMC5473138 DOI: 10.1261/rna.059808.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/06/2017] [Indexed: 05/23/2023]
Abstract
The nuclear RNase III enzyme DROSHA interacts with its cofactor DGCR8 to form the Microprocessor complex, which initiates microRNA (miRNA) maturation by cleaving hairpin structures embedded in primary transcripts. Apart from its central role in the biogenesis of miRNAs, DROSHA is also known to recognize and cleave miRNA-like hairpins in a subset of transcripts without apparent small RNA production. Here, we report that the human DROSHA transcript is one such noncanonical target of DROSHA. Mammalian DROSHA genes have evolved a conserved hairpin structure spanning a specific exon-intron junction, which serves as a substrate for the Microprocessor in human cells but not in murine cells. We show that it is this hairpin element that decides whether the overlapping exon is alternatively or constitutively spliced. We further demonstrate that DROSHA promotes skipping of the overlapping exon in human cells independently of its cleavage function. Our findings add to the expanding list of noncanonical DROSHA functions.
Collapse
Affiliation(s)
- Dooyoung Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
53
|
Li Y, Xu B, Xu M, Chen D, Xiong Y, Lian M, Sun Y, Tang Z, Wang L, Jiang C, Lin Y. 6-Gingerol protects intestinal barrier from ischemia/reperfusion-induced damage via inhibition of p38 MAPK to NF-κB signalling. Pharmacol Res 2017; 119:137-148. [PMID: 28167239 DOI: 10.1016/j.phrs.2017.01.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/25/2017] [Indexed: 01/08/2023]
Abstract
Intestinal ischemia reperfusion (I/R) injury caused by severe trauma, intestinal obstruction, and operation is one of the tough challenges in clinic. 6-Gingerol (6G), a main active ingredient of ginger, is found to have anti-microbial, anti-inflammatory, anti-oxidative, and anti-cancer activities. The present study was designed to characterize the potential protective effects of 6G on rat intestinal I/R injury and reveal the correlated mechanisms. Rat intestinal I/R model was established with clamping the superior mesenteric artery (SMA) and 6G was intragastrically administered for three consecutive days before I/R injury. Caco-2 and IEC-6 cells were incubated under hypoxia/reoxygenation (H/R) conditions to simulate I/R injury in vitro. The results showed that 6G significantly alleviated intestinal injury in I/R injured rats by reducing the generation of oxidative stress and inhibiting p38 MAPK signaling pathway. 6G significantly reduced MDA level and increased the levels of SOD, GSH, and GSH-Px in I/R injured intestinal tissues. 6G significantly decreased the production of proinflammatory cytokines including TNF-α, IL-1β, and IL-6, and inhibited the expression of inflammatory mediators iNOS/NO in I/R injured intestinal tissues. The impaired intestinal barrier function was restored by using 6G in I/R injured rats and in both Caco-2 and IEC-6 cells characterized by inhibiting p38 MAPK phosphorylation, nuclear translocation of NF-κB, and expression of myosin light chain kinase (MLCK) protein. 6G also reduced the generation of reactive oxygen species (ROS) in both Caco-2 and IEC-6 cells. In vitro transfection of p38 MAPK siRNA mitigated the impact of 6G on NF-κB and MLCK expression, and the results further corroborated the protective effects of 6G on intestinal I/R injury by repressing p38 MAPK signaling. In conclusion, the present study suggests that 6G exerts protective effects against I/R-induced intestinal mucosa injury by inhibiting the formation of ROS and p38 MAPK activation, providing novel insights into the mechanisms of this therapeutic candidate for the treatment of intestinal injury.
Collapse
Affiliation(s)
- Yanli Li
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Bin Xu
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Ming Xu
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Dapeng Chen
- Laboratory Animal Center, Dalian Medical University, Dalian 116044, China
| | - Yongjian Xiong
- Central Laboratory, The First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Mengqiao Lian
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Yuchao Sun
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Li Wang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Chunling Jiang
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Yuan Lin
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
54
|
Kim B, Jeong K, Kim VN. Genome-wide Mapping of DROSHA Cleavage Sites on Primary MicroRNAs and Noncanonical Substrates. Mol Cell 2017; 66:258-269.e5. [DOI: 10.1016/j.molcel.2017.03.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/24/2017] [Accepted: 03/17/2017] [Indexed: 02/08/2023]
|
55
|
Pyrintegrin Induces Soft Tissue Formation by Transplanted or Endogenous Cells. Sci Rep 2017; 7:36402. [PMID: 28128224 PMCID: PMC5269584 DOI: 10.1038/srep36402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022] Open
Abstract
Focal adipose deficiency, such as lipoatrophy, lumpectomy or facial trauma, is a formidable challenge in reconstructive medicine, and yet scarcely investigated in experimental studies. Here, we report that Pyrintegrin (Ptn), a 2,4-disubstituted pyrimidine known to promote embryonic stem cells survival, is robustly adipogenic and induces postnatal adipose tissue formation in vivo of transplanted adipose stem/progenitor cells (ASCs) and recruited endogenous cells. In vitro, Ptn stimulated human adipose tissue derived ASCs to differentiate into lipid-laden adipocytes by upregulating peroxisome proliferator-activated receptor (PPARγ) and CCAAT/enhancer-binding protein-α (C/EBPα), with differentiated cells increasingly secreting adiponectin, leptin, glycerol and total triglycerides. Ptn-primed human ASCs seeded in 3D-bioprinted biomaterial scaffolds yielded newly formed adipose tissue that expressed human PPARγ, when transplanted into the dorsum of athymic mice. Remarkably, Ptn-adsorbed 3D scaffolds implanted in the inguinal fat pad had enhanced adipose tissue formation, suggesting Ptn’s ability to induce in situ adipogenesis of endogenous cells. Ptn promoted adipogenesis by upregulating PPARγ and C/EBPα not only in adipogenesis induction medium, but also in chemically defined medium specifically for osteogenesis, and concurrently attenuated Runx2 and Osx via BMP-mediated SMAD1/5 phosphorylation. These findings suggest Ptn’s novel role as an adipogenesis inducer with a therapeutic potential in soft tissue reconstruction and augmentation.
Collapse
|
56
|
Novel involvement of miR-522-3p in high-mobility group box 1-induced prostaglandin reductase 1 expression and reduction of phagocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:625-633. [PMID: 28088550 DOI: 10.1016/j.bbamcr.2017.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/10/2016] [Accepted: 01/09/2017] [Indexed: 12/16/2022]
Abstract
Resolution of inflammation is important for physiological homeostasis. Chronic inflammatory diseases may be caused by abnormal resolution of inflammation. However, what causes a failure of inflammatory resolution is unclear. Here we investigated the involvement of high mobility group box 1 (HMGB1) protein in the control of inflammatory resolution as an 'anti-resolution factor'. We first confirmed the increased expression of HMGB1 and prostaglandin reductase 1 (PTGR1) in inflammatory conditions and HMGB1-mediated regulation of the expression of PTGR1. The inhibition of phagocytosis by HMGB1 was abrogated by PTGR1 silencing. PTGR1 was a direct target of miR522-3p and its expression was regulated by miRNA-522-3p inhibitor or mimic. Finally, miR-522-3p had an important role in the regulation of PTGR1 expression by HMGB1. The data indicates that HMGB1-miR-522-3p-PTGR1 axis may be involved in the abnormal resolution of inflammation and suggests that this mechanism might be a target for modulation of chronic inflammatory disorder.
Collapse
|
57
|
Comparative analysis of regulatory roles of P38 signaling pathway in 8 types liver cell during liver regeneration. Gene 2016; 594:66-73. [DOI: 10.1016/j.gene.2016.08.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/05/2016] [Accepted: 08/31/2016] [Indexed: 12/17/2022]
|
58
|
Funikov SY, Ryazansky SS, Kanapin AA, Logacheva MD, Penin AA, Snezhkina AV, Shilova VY, Garbuz DG, Evgen'ev MB, Zatsepina OG. Interplay between RNA interference and heat shock response systems in Drosophila melanogaster. Open Biol 2016; 6:160224. [PMID: 27805906 PMCID: PMC5090062 DOI: 10.1098/rsob.160224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022] Open
Abstract
The genome expression pattern is strongly modified during the heat shock response (HSR) to form an adaptive state. This may be partly achieved by modulating microRNA levels that control the expression of a great number of genes that are embedded within the gene circuitry. Here, we investigated the cross-talk between two highly conserved and universal house-keeping systems, the HSR and microRNA machinery, in Drosophila melanogaster We demonstrated that pronounced interstrain differences in the microRNA levels are alleviated after heat shock (HS) to form a uniform microRNA pattern. However, individual strains exhibit different patterns of microRNA expression during the course of recovery. Importantly, HS-regulated microRNAs may target functionally similar HS-responsive genes involved in the HSR. Despite the observed general downregulation of primary microRNA precursor expression as well as core microRNA pathway genes after HS, the levels of many mature microRNAs are upregulated. This indicates that the regulation of miRNA expression after HS occurs at transcriptional and post-transcriptional levels. It was also shown that deletion of all hsp70 genes had no significant effect on microRNA biogenesis but might influence the dynamics of microRNA expression during the HSR.
Collapse
Affiliation(s)
- S Yu Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - S S Ryazansky
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russian Federation
| | | | - M D Logacheva
- Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - A A Penin
- Lomonosov Moscow State University, Moscow 119991, Russian Federation
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow 127051, Russian Federation
| | - A V Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - V Yu Shilova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - D G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - O G Zatsepina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| |
Collapse
|
59
|
Woldemichael BT, Jawaid A, Kremer EA, Gaur N, Krol J, Marchais A, Mansuy IM. The microRNA cluster miR-183/96/182 contributes to long-term memory in a protein phosphatase 1-dependent manner. Nat Commun 2016; 7:12594. [PMID: 27558292 PMCID: PMC5007330 DOI: 10.1038/ncomms12594] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/13/2016] [Indexed: 12/24/2022] Open
Abstract
Memory formation is a complex cognitive function regulated by coordinated synaptic and nuclear processes in neurons. In mammals, it is controlled by multiple molecular activators and suppressors, including the key signalling regulator, protein phosphatase 1 (PP1). Here, we show that memory control by PP1 involves the miR-183/96/182 cluster and its selective regulation during memory formation. Inhibiting nuclear PP1 in the mouse brain, or training on an object recognition task similarly increases miR-183/96/182 expression in the hippocampus. Mimicking this increase by miR-183/96/182 overexpression enhances object memory, while knocking-down endogenous miR-183/96/182 impairs it. This effect involves the modulation of several plasticity-related genes, with HDAC9 identified as an important functional target. Further, PP1 controls miR-183/96/182 in a transcription-independent manner through the processing of their precursors. These findings provide novel evidence for a role of miRNAs in memory formation and suggest the implication of PP1 in miRNAs processing in the adult brain.
Collapse
Affiliation(s)
- Bisrat T Woldemichael
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| | - Ali Jawaid
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| | - Eloïse A Kremer
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| | - Niharika Gaur
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| | - Jacek Krol
- Friedrich Miescher Institute for Biomedical Research, Basel CH-4048, Switzerland
| | - Antonin Marchais
- Institute of Agricultural Sciences, Swiss Federal Institute of Technology, Zurich CH-8092, Switzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| |
Collapse
|
60
|
Dai L, Chen K, Youngren B, Kulina J, Yang A, Guo Z, Li J, Yu P, Gu S. Cytoplasmic Drosha activity generated by alternative splicing. Nucleic Acids Res 2016; 44:10454-10466. [PMID: 27471035 PMCID: PMC5137420 DOI: 10.1093/nar/gkw668] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/01/2016] [Accepted: 07/19/2016] [Indexed: 01/03/2023] Open
Abstract
RNase III enzyme Drosha interacts with DGCR8 to form the Microprocessor, initiating canonical microRNA (miRNA) maturation in the nucleus. Here, we re-evaluated where Drosha functions in cells using Drosha and/or DGCR8 knock out (KO) cells and cleavage reporters. Interestingly, a truncated Drosha mutant located exclusively in the cytoplasm cleaved pri-miRNA effectively in a DGCR8-dependent manner. In addition, we demonstrated that in vitro generated pri-miRNAs when transfected into cells could be processed to mature miRNAs in the cytoplasm. These results indicate the existence of cytoplasmic Drosha (c-Drosha) activity. Although a subset of endogenous pri-miRNAs become enriched in the cytoplasm of Drosha KO cells, it remains unclear whether pri-miRNA processing is the main function of c-Drosha. We identified two novel in-frame Drosha isoforms generated by alternative splicing in both HEK293T and HeLa cells. One isoform loses the putative nuclear localization signal, generating c-Drosha. Further analysis indicated that the c-Drosha isoform is abundant in multiple cell lines, dramatically variable among different human tissues and upregulated in multiple tumors, suggesting that c-Drosha plays a unique role in gene regulation. Our results reveal a new layer of regulation on the miRNA pathway and provide novel insights into the ever-evolving functions of Drosha.
Collapse
Affiliation(s)
- Lisheng Dai
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Kevin Chen
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Brenda Youngren
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Julia Kulina
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Acong Yang
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Zhengyu Guo
- Department of Electrical and Computer Engineering & TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jin Li
- Department of Electrical and Computer Engineering & TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering & TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Shuo Gu
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
61
|
Link S, Grund SE, Diederichs S. Alternative splicing affects the subcellular localization of Drosha. Nucleic Acids Res 2016; 44:5330-43. [PMID: 27185895 PMCID: PMC4914122 DOI: 10.1093/nar/gkw400] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022] Open
Abstract
The RNase III enzyme Drosha is a key factor in microRNA (miRNA) biogenesis and as such indispensable for cellular homeostasis and developmental processes. Together with its co-factor DGCR8, it converts the primary transcript (pri-miRNA) into the precursor hairpin (pre-miRNA) in the nucleus. While the middle and the C-terminal domain are crucial for pri-miRNA processing and DGCR8 binding, the function of the N-terminus remains cryptic. Different studies have linked this region to the subcellular localization of Drosha, stabilization and response to stress. In this study, we identify alternatively spliced Drosha transcripts that are devoid of a part of the arginine/serine-rich (RS-rich) domain and expressed in a large set of human cells. In contrast to their expected habitation, we find two isoforms also present in the cytoplasm, while the other two isoforms reside exclusively in the nucleus. Their processing activity for pri-miRNAs and the binding to co-factors remains unaltered. In multiple cell lines, the endogenous mRNA expression of the Drosha isoforms correlates with the localization of endogenous Drosha proteins. The pri-miRNA processing efficiency is not significantly different between groups of cells with or without cytoplasmic Drosha expression. In summary, we discovered novel isoforms of Drosha with differential subcellular localization pointing toward additional layers of complexity in the regulation of its activity.
Collapse
Affiliation(s)
- Steffen Link
- Division of RNA Biology and Cancer (B150), German Cancer Research Center (DKFZ), Heidelberg, Germany Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Stefanie E Grund
- Division of RNA Biology and Cancer (B150), German Cancer Research Center (DKFZ), Heidelberg, Germany Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Sven Diederichs
- Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center-University of Freiburg, Freiburg, Germany Faculty of Medicine, University of Freiburg, Freiburg, Germany Division of RNA Biology and Cancer (B150), German Cancer Research Center (DKFZ), Heidelberg, Germany German Cancer Consortium (DKTK), Freiburg, Germany Institute of Pathology, University of Heidelberg, Heidelberg, Germany Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| |
Collapse
|
62
|
Eitan C, Hornstein E. Vulnerability of microRNA biogenesis in FTD-ALS. Brain Res 2016; 1647:105-111. [PMID: 26778173 DOI: 10.1016/j.brainres.2015.12.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/29/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022]
Abstract
The genetics of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) turn our attention to RNA metabolism, primarily because many of the identified diseases-associated genes encode for RNA-binding proteins. microRNAs (miRNAs) are endogenous noncoding RNAs that play critical roles in maintaining brain integrity. The current review sheds light on miRNA dysregulation in neurodegenerative diseases, focusing on FTD-ALS. We propose that miRNAs are susceptible to fail when protein factors that are critical for miRNA biogenesis malfunction. Accordingly, potential insufficiencies of the 'microprocessor' complex, the nucleo-cytoplasmic export of miRNA precursors or their processing by Dicer were recently reported. Furthermore, specific miRNAs are involved in the regulation of pathways that are essential for neuronal survival or function. Any change in the expression of these specific miRNAs or in their ability to recognize their target sequences will have negative consequences. Taken together, recent reports strengthens the hypothesis that dysregulation of miRNAs might play an important role in the pathogenesis of neurodegenerative diseases, and highlights the miRNA biogenesis machinery as an interesting target for therapeutic interventions for ALS as well as FTD. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.
Collapse
Affiliation(s)
- Chen Eitan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|