51
|
Pammer J, Rossiter H, Bilban M, Eckhart L, Buchberger M, Monschein L, Mildner M. PIWIL-2 and piRNAs are regularly expressed in epithelia of the skin and their expression is related to differentiation. Arch Dermatol Res 2020; 312:705-714. [PMID: 32166374 PMCID: PMC7548280 DOI: 10.1007/s00403-020-02052-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/10/2020] [Accepted: 02/26/2020] [Indexed: 12/29/2022]
Abstract
PIWI proteins play multiple roles in germline stem cell maintenance and self-renewal. PIWI-interacting RNAs (piRNAs) associate with PIWI proteins, form effector complexes and maintain genome integrity and function in the regulation of gene expression by epigenetic modifications. Both are involved in cancer development. In this study, we investigated the expression of PIWIL-2 and piRNAs in normal human skin and epithelial tumors and its regulation during keratinocyte (KC) differentiation. Immunohistochemistry showed that PIWIL-2 was regularly expressed in the epidermis and adnexal tissue with strongest expression in sebaceous glands. Cell culture studies revealed an association of PIWIL-2 expression with the state of differentiated KC. In contrast, the PIWIL-2 expression pattern did not correlate with stem cell compartments or malignancy. piRNAs were consistently detected in KC in vitro by next-generation sequencing and the expression levels of numerous piRNAs were regulated during KC differentiation. Epidermal piRNAs were predominantly derived from processed snoRNAs (C/D-box snoRNAs), tRNAs and protein coding genes. Our data indicate that components of the PIWIL-2-piRNA pathway are present in epithelial cells of the skin and are regulated in the context of KC differentiation, suggesting a role of somatic gene regulation. However, putative roles in the maintenance of stem cell compartments or the development of malignancy in the skin were not supported by this study.
Collapse
Affiliation(s)
- Johannes Pammer
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Heidi Rossiter
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine and Core Facility Genomics, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Buchberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Laura Monschein
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
52
|
Mahadevan IA, Kumar S, Rao MRS. Linker histone variant H1t is closely associated with repressed repeat-element chromatin domains in pachytene spermatocytes. Epigenetics Chromatin 2020; 13:9. [PMID: 32131873 PMCID: PMC7057672 DOI: 10.1186/s13072-020-00335-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/20/2020] [Indexed: 12/22/2022] Open
Abstract
Background H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50–60% of total H1. This linker histone variant was previously reported to localize in the nucleolar rDNA element in mouse spermatocytes. Our main aim was to determine the extra-nucleolar localization of this linker histone variant in pachytene spermatocytes. Results We generated H1t-specific antibodies in rabbits and validated its specificity by multiple assays like ELISA, western blot, etc. Genome-wide occupancy studies, as determined by ChIP-sequencing in P20 mouse testicular cells revealed that H1t did not closely associate with active gene promoters and open chromatin regions. Annotation of H1t-bound genomic regions revealed that H1t is depleted from DSB hotspots and TSS, but are predominantly associated with retrotransposable repeat elements like LINE and LTR in pachytene spermatocytes. These chromatin domains are repressed based on co-association of H1t observed with methylated CpGs and repressive histone marks like H3K9me3 and H4K20me3 in vivo. Mass spectrometric analysis of proteins associated with H1t-containing oligonucleosomes identified piRNA–PIWI pathway proteins, repeat repression-associated proteins and heterochromatin proteins confirming the association with repressed repeat-element genomic regions. We validated the interaction of key proteins with H1t-containing oligonucleosomes by use of ChIP-western blot assays. On the other hand, we observe majority of H1t peaks to be associated with the intergenic spacer of the rDNA element, also in association with SINE elements of the rDNA element. Thus, we have identified the genomic and chromatin features of both nucleolar and extranucleolar localization patterns of linker histone H1t in the context of pachytene spermatocytes. Conclusions H1t-containing repeat-element LINE and LTR chromatin domains are associated with repressive marks like methylated CpGs, histone modifications H3K9me3 and H4K20me3, and heterochromatin proteins like HP1β, Trim28, PIWIL1, etc. Apart from localization of H1t at the rDNA element, we demonstrate the extranucleolar association of this linker histone variant at repeat-associated chromatin domains in pachytene spermatocytes. We hypothesize that H1t might induce local chromatin relaxation to recruit heterochromatin and repeat repression-associated protein factors necessary for TE (transposable element) repression, the final biological effect being formation of closed chromatin repressed structures.
Collapse
Affiliation(s)
- Iyer Aditya Mahadevan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Sanjeev Kumar
- BioCOS Life Sciences Private Limited, SAAMI Building, 851/A, AECS Layout, B-Block, Singasandra Hosur Road, Bangalore, India
| | | |
Collapse
|
53
|
Yamaguchi S, Oe A, Nishida KM, Yamashita K, Kajiya A, Hirano S, Matsumoto N, Dohmae N, Ishitani R, Saito K, Siomi H, Nishimasu H, Siomi MC, Nureki O. Crystal structure of Drosophila Piwi. Nat Commun 2020; 11:858. [PMID: 32051406 PMCID: PMC7015924 DOI: 10.1038/s41467-020-14687-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022] Open
Abstract
PIWI-clade Argonaute proteins associate with PIWI-interacting RNAs (piRNAs), and silence transposons in animal gonads. Here, we report the crystal structure of the Drosophila PIWI-clade Argonaute Piwi in complex with endogenous piRNAs, at 2.9 Å resolution. A structural comparison of Piwi with other Argonautes highlights the PIWI-specific structural features, such as the overall domain arrangement and metal-dependent piRNA recognition. Our structural and biochemical data reveal that, unlike other Argonautes including silkworm Siwi, Piwi has a non-canonical DVDK tetrad and lacks the RNA-guided RNA cleaving slicer activity. Furthermore, we find that the Piwi mutant with the canonical DEDH catalytic tetrad exhibits the slicer activity and readily dissociates from less complementary RNA targets after the slicer-mediated cleavage, suggesting that the slicer activity could compromise the Piwi-mediated co-transcriptional silencing. We thus propose that Piwi lost the slicer activity during evolution to serve as an RNA-guided RNA-binding platform, thereby ensuring faithful co-transcriptional silencing of transposons.
Collapse
Affiliation(s)
- Sonomi Yamaguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Oe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazumichi M Nishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Asako Kajiya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Seiichi Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoki Matsumoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kuniaki Saito
- Invertebrate Genetics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Haruhiko Siomi
- Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Nishimasu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
54
|
Shakya A, Park S, Rana N, King JT. Liquid-Liquid Phase Separation of Histone Proteins in Cells: Role in Chromatin Organization. Biophys J 2020; 118:753-764. [PMID: 31952807 PMCID: PMC7002979 DOI: 10.1016/j.bpj.2019.12.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/26/2019] [Accepted: 12/18/2019] [Indexed: 11/23/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) of proteins and nucleic acids has emerged as an important phenomenon in membraneless intracellular organization. We demonstrate that the linker histone H1 condenses into liquid-like droplets in the nuclei of HeLa cells. The droplets, observed during the interphase of the cell cycle, are colocalized with DNA-dense regions indicative of heterochromatin. In vitro, H1 readily undergoes LLPS with both DNA and nucleosomes of varying lengths but does not phase separate in the absence of DNA. The nucleosome core particle maintains its structural integrity inside the droplets, as demonstrated by FRET. Unexpectedly, H2A also forms droplets in the presence of DNA and nucleosomes in vitro, whereas the other core histones precipitate. The phase diagram of H1 with nucleosomes is invariant to the nucleosome length at physiological salt concentration, indicating that H1 is capable of partitioning large segments of DNA into liquid-like droplets. Of the proteins tested (H1, core histones, and the heterochromatin protein HP1α), this property is unique to H1. In addition, free nucleotides promote droplet formation of H1 nucleosome in a nucleotide-dependent manner, with droplet formation being most favorable with ATP. Although LLPS of HP1α is known to contribute to the organization of heterochromatin, our results indicate that H1 also plays a role. Based on our study, we propose that H1 and DNA act as scaffolds for phase-separated heterochromatin domains.
Collapse
Affiliation(s)
- Anisha Shakya
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Republic of Korea.
| | - Seonyoung Park
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Republic of Korea; Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Neha Rana
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Republic of Korea; Department of Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - John T King
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Republic of Korea.
| |
Collapse
|
55
|
SATO K, SIOMI MC. The piRNA pathway in Drosophila ovarian germ and somatic cells. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:32-42. [PMID: 31932527 PMCID: PMC6974405 DOI: 10.2183/pjab.96.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/28/2019] [Indexed: 05/30/2023]
Abstract
RNA silencing refers to gene silencing pathways mediated by small non-coding RNAs, including microRNAs. Piwi-interacting RNAs (piRNAs) constitute the largest class of small non-coding RNAs in animal gonads, which repress transposons to protect the germline genome from the selfish invasion of transposons. Deterioration of the system causes DNA damage, leading to severe defects in gametogenesis and infertility. Studies using Drosophila ovaries show that piRNAs originate from specific genomic loci, termed piRNA clusters, and that in piRNA biogenesis, cluster transcripts are processed into mature piRNAs via three distinct pathways: initiator or responder for ping-pong piRNAs and trailing for phased piRNAs. piRNAs then assemble with PIWI members of the Argonaute family of proteins to form piRNA-induced RNA silencing complexes (piRISCs), the core engine of the piRNA-mediated silencing pathway. Upon piRISC assembly, the PIWI member, Piwi, is translocated to the nucleus and represses transposons co-transcriptionally by inducing local heterochromatin formation at target transposon loci.
Collapse
Affiliation(s)
- Kaoru SATO
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mikiko C. SIOMI
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
56
|
DNA Methylation and Histone H1 Jointly Repress Transposable Elements and Aberrant Intragenic Transcripts. Mol Cell 2020; 77:310-323.e7. [DOI: 10.1016/j.molcel.2019.10.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/26/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
|
57
|
Yao H, Wang X, Song J, Wang Y, Song Q, Han J. Coxsackievirus B3 infection induces changes in the expression of numerous piRNAs. Arch Virol 2019; 165:105-114. [PMID: 31741095 DOI: 10.1007/s00705-019-04451-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/26/2019] [Indexed: 01/02/2023]
Abstract
Piwi-interacting RNAs (piRNAs) play pivotal roles in spermatogenesis and are widely distributed among somatic tissues. However, little is known about piRNAs in HeLa cells infected with coxsackievirus B3 (CVB3). In this study, we systematically investigated changes in piRNA expression in HeLa cells infected with CVB3 using high-throughput sequencing technology. piRNA expression profiles in CVB3-infected HeLa cells were examined at 3, 6 and 9 h postinfection (pi). Of the 32,826 piRNAs that were annotated in the NCBI database, 151,571, 89,698 and 76,626 piRNAs were detected in CVB3-infected HeLa cells at 3, 6 and 9 h pi, respectively. Compared with normal cells, 211, 72 and 94 piRNAs were differentially expressed in CVB3-infected HeLa cells at 3, 6 and 9 h pi, respectively. Thirteen piRNAs, including four novel piRNAs, exhibited concurrent changes in CVB3-infected HeLa cells. The changes in the expression of these 13 piRNAs was confirmed in CVB3-infected HeLa cells and 293T cells by stem-loop RT-qPCR at 3, 6 and 9 h pi. The target genes of 13 piRNAs were predicted. The four novel piRNAs were associated with LTR/ERV, LINE/L1 and LTR/ERVK repetitive elements located on different chromosomes. These findings may promote a better understanding of the regulatory mechanism of pathophysiological changes induced by CVB3 infection.
Collapse
Affiliation(s)
- Hailan Yao
- Molecular Immunology Laboratory, Capital Institute of Pediatrics, 2 YaBao Rd, Beijing, 100020, China
| | - Xinling Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 155 Changbai Rd, Beijing, 102206, China
| | - Juan Song
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 155 Changbai Rd, Beijing, 102206, China
| | - Yanhai Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 155 Changbai Rd, Beijing, 102206, China
| | - Qinqin Song
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 155 Changbai Rd, Beijing, 102206, China
| | - Jun Han
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 155 Changbai Rd, Beijing, 102206, China.
| |
Collapse
|
58
|
Drongitis D, Aniello F, Fucci L, Donizetti A. Roles of Transposable Elements in the Different Layers of Gene Expression Regulation. Int J Mol Sci 2019; 20:ijms20225755. [PMID: 31731828 PMCID: PMC6888579 DOI: 10.3390/ijms20225755] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 02/03/2023] Open
Abstract
The biology of transposable elements (TEs) is a fascinating and complex field of investigation. TEs represent a substantial fraction of many eukaryotic genomes and can influence many aspects of DNA function that range from the evolution of genetic information to duplication, stability, and gene expression. Their ability to move inside the genome has been largely recognized as a double-edged sword, as both useful and deleterious effects can result. A fundamental role has been played by the evolution of the molecular processes needed to properly control the expression of TEs. Today, we are far removed from the original reductive vision of TEs as “junk DNA”, and are more convinced that TEs represent an essential element in the regulation of gene expression. In this review, we summarize some of the more recent findings, mainly in the animal kingdom, concerning the active roles that TEs play at every level of gene expression regulation, including chromatin modification, splicing, and protein translation.
Collapse
Affiliation(s)
- Denise Drongitis
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy;
| | - Francesco Aniello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.A.); (L.F.)
| | - Laura Fucci
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.A.); (L.F.)
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.A.); (L.F.)
- Correspondence:
| |
Collapse
|
59
|
Assembly and Function of Gonad-Specific Non-Membranous Organelles in Drosophila piRNA Biogenesis. Noncoding RNA 2019; 5:ncrna5040052. [PMID: 31698692 PMCID: PMC6958439 DOI: 10.3390/ncrna5040052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small non-coding RNAs that repress transposons in animal germlines. This protects the genome from the invasive DNA elements. piRNA pathway failures lead to DNA damage, gonadal development defects, and infertility. Thus, the piRNA pathway is indispensable for the continuation of animal life. piRNA-mediated transposon silencing occurs in both the nucleus and cytoplasm while piRNA biogenesis is a solely cytoplasmic event. piRNA production requires a number of proteins, the majority of which localize to non-membranous organelles that specifically appear in the gonads. Other piRNA factors are localized on outer mitochondrial membranes. In situ RNA hybridization experiments show that piRNA precursors are compartmentalized into other non-membranous organelles. In this review, we summarize recent findings about the function of these organelles in the Drosophila piRNA pathway by focusing on their assembly and function.
Collapse
|
60
|
Osumi K, Sato K, Murano K, Siomi H, Siomi MC. Essential roles of Windei and nuclear monoubiquitination of Eggless/SETDB1 in transposon silencing. EMBO Rep 2019; 20:e48296. [PMID: 31576653 DOI: 10.15252/embr.201948296] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/02/2019] [Accepted: 09/11/2019] [Indexed: 11/09/2022] Open
Abstract
Eggless/SETDB1 (Egg), the only essential histone methyltransferase (HMT) in Drosophila, plays a role in gene repression, including piRNA-mediated transposon silencing in the ovaries. Previous studies suggested that Egg is post-translationally modified and showed that Windei (Wde) regulates Egg nuclear localization through protein-protein interaction. Monoubiquitination of mammalian SETDB1 is necessary for the HMT activity. Here, using cultured ovarian somatic cells, we show that Egg is monoubiquitinated and phosphorylated but that only monoubiquitination is required for piRNA-mediated transposon repression. Egg monoubiquitination occurs in the nucleus. Egg has its own nuclear localization signal, and the nuclear import of Egg is Wde-independent. Wde recruits Egg to the chromatin at target gene silencing loci, but their interaction is monoubiquitin-independent. The abundance of nuclear Egg is governed by that of nuclear Wde. These results illuminate essential roles of nuclear monoubiquitination of Egg and the role of Wde in piRNA-mediated transposon repression.
Collapse
Affiliation(s)
- Ken Osumi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kaoru Sato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
61
|
Zhao K, Cheng S, Miao N, Xu P, Lu X, Zhang Y, Wang M, Ouyang X, Yuan X, Liu W, Lu X, Zhou P, Gu J, Zhang Y, Qiu D, Jin Z, Su C, Peng C, Wang JH, Dong MQ, Wan Y, Ma J, Cheng H, Huang Y, Yu Y. A Pandas complex adapted for piRNA-guided transcriptional silencing and heterochromatin formation. Nat Cell Biol 2019; 21:1261-1272. [PMID: 31570835 DOI: 10.1038/s41556-019-0396-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/22/2019] [Indexed: 11/09/2022]
Abstract
The repression of transposons by the Piwi-interacting RNA (piRNA) pathway is essential to protect animal germ cells. In Drosophila, Panoramix enforces transcriptional silencing by binding to the target-engaged Piwi-piRNA complex, although the precise mechanisms by which this occurs remain elusive. Here, we show that Panoramix functions together with a germline-specific paralogue of a nuclear export factor, dNxf2, and its cofactor dNxt1 (p15), to suppress transposon expression. The transposon RNA-binding protein dNxf2 is required for animal fertility and Panoramix-mediated silencing. Transient tethering of dNxf2 to nascent transcripts leads to their nuclear retention. The NTF2 domain of dNxf2 competes dNxf1 (TAP) off nucleoporins, a process required for proper RNA export. Thus, dNxf2 functions in a Panoramix-dNxf2-dependent TAP/p15 silencing (Pandas) complex that counteracts the canonical RNA exporting machinery and restricts transposons to the nuclear peripheries. Our findings may have broader implications for understanding how RNA metabolism modulates heterochromatin formation.
Collapse
Affiliation(s)
- Kang Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sha Cheng
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Na Miao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ping Xu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,National Engineering Laboratory of AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaohua Lu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuhan Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Ming Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuan Ouyang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xun Yuan
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Liu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Lu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Gu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiqun Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ding Qiu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaohui Jin
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua Wang
- Graduate School of Peking Union Medical College and Chinese Academy of Sciences of Medical Sciences, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Youzhong Wan
- National Engineering Laboratory of AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Cheng
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ying Huang
- University of Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China. .,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yang Yu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
62
|
PiRNA-DQ541777 Contributes to Neuropathic Pain via Targeting Cdk5rap1. J Neurosci 2019; 39:9028-9039. [PMID: 31519819 DOI: 10.1523/jneurosci.1602-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 01/06/2023] Open
Abstract
Piwi-Interacting RNA (piRNA) is the largest class of small noncoding RNA and is involved in various physiological and pathological processes. However, whether it has a role in pain modulation remains unknown. In the present study, we found that spinal piRNA-DQ541777 (piR-DQ541777) was significantly increased in the male mouse model of sciatic nerve chronic constriction injury (CCI)-induced neuropathic pain. Knockdown of spinal piR-DQ541777 alleviated CCI-induced thermal hyperalgesia and mechanical allodynia and spinal neuronal sensitization. However, the overexpression of spinal piR-DQ541777 in naive mice produced pain behaviors and increased spinal neuron sensitization. Furthermore, we found that piR-DQ541777 regulates pain behaviors by targeting CDK5 regulatory subunit-associated protein 1 (Cdk5rap1). CCI increased the methylation level of CpG islands in the cdk5rap1 promoter and consequently reduced the expression of Cdk5rap1, which was reversed by the knockdown of piR-DQ541777 and mimicked by the overexpression of piR-DQ541777 in naive mice. Finally, piR-DQ541777 increased the methylation level of CpG islands by recruiting DNA methyltransferase 3A (DNMT3a) to cdk5rap1 promoter. In conclusion, this study represents a novel role of piR-DQ541777 in the regulation of neuropathic pain through the methylation of cdk5rap1 SIGNIFICANCE STATEMENT Chronic pain affects ∼20% of the population of the world and is a major global public health problem. Although we have studied the neurobiological mechanism of neuropathic pain for decades, there is still no ideal drug available to treat it. This work indicates that a novel role of Piwi-interacting RNA (piRNA) DQ541777 in the regulation of neuropathic pain through the methylation of cdk5rap1 Our findings provide the first evidence of the regulatory effect of piRNAs on neuropathic pain, which may improve our understanding of pain mechanisms and lead to the discovery of novel drug targets for the prevention and treatment of neuropathic pain.
Collapse
|
63
|
Murano K, Iwasaki YW, Ishizu H, Mashiko A, Shibuya A, Kondo S, Adachi S, Suzuki S, Saito K, Natsume T, Siomi MC, Siomi H. Nuclear RNA export factor variant initiates piRNA-guided co-transcriptional silencing. EMBO J 2019; 38:e102870. [PMID: 31368590 PMCID: PMC6717896 DOI: 10.15252/embj.2019102870] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
The PIWI-interacting RNA (piRNA) pathway preserves genomic integrity by repressing transposable elements (TEs) in animal germ cells. Among PIWI-clade proteins in Drosophila, Piwi transcriptionally silences its targets through interactions with cofactors, including Panoramix (Panx) and forms heterochromatin characterized by H3K9me3 and H1. Here, we identified Nxf2, a nuclear RNA export factor (NXF) variant, as a protein that forms complexes with Piwi, Panx, and p15. Panx-Nxf2-P15 complex formation is necessary in the silencing by stabilizing protein levels of Nxf2 and Panx. Notably, ectopic targeting of Nxf2 initiates co-transcriptional repression of the target reporter in a manner independent of H3K9me3 marks or H1. However, continuous silencing requires HP1a and H1. In addition, Nxf2 directly interacts with target TE transcripts in a Piwi-dependent manner. These findings suggest a model in which the Panx-Nxf2-P15 complex enforces the association of Piwi with target transcripts to trigger co-transcriptional repression, prior to heterochromatin formation in the nuclear piRNA pathway. Our results provide an unexpected connection between an NXF variant and small RNA-mediated co-transcriptional silencing.
Collapse
Affiliation(s)
- Kensaku Murano
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Yuka W Iwasaki
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Hirotsugu Ishizu
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Akane Mashiko
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
- Graduate School of EngineeringYokohama National UniversityYokohamaJapan
| | - Aoi Shibuya
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Shu Kondo
- Invertebrate Genetics LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and TechnologyTokyoJapan
| | - Saori Suzuki
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Kuniaki Saito
- Invertebrate Genetics LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and TechnologyTokyoJapan
| | - Mikiko C Siomi
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Haruhiko Siomi
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
64
|
Rutowicz K, Lirski M, Mermaz B, Teano G, Schubert J, Mestiri I, Kroteń MA, Fabrice TN, Fritz S, Grob S, Ringli C, Cherkezyan L, Barneche F, Jerzmanowski A, Baroux C. Linker histones are fine-scale chromatin architects modulating developmental decisions in Arabidopsis. Genome Biol 2019; 20:157. [PMID: 31391082 PMCID: PMC6685187 DOI: 10.1186/s13059-019-1767-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chromatin provides a tunable platform for gene expression control. Besides the well-studied core nucleosome, H1 linker histones are abundant chromatin components with intrinsic potential to influence chromatin function. Well studied in animals, little is known about the evolution of H1 function in other eukaryotic lineages for instance plants. Notably, in the model plant Arabidopsis, while H1 is known to influence heterochromatin and DNA methylation, its contribution to transcription, molecular, and cytological chromatin organization remains elusive. RESULTS We provide a multi-scale functional study of Arabidopsis linker histones. We show that H1-deficient plants are viable yet show phenotypes in seed dormancy, flowering time, lateral root, and stomata formation-complemented by either or both of the major variants. H1 depletion also impairs pluripotent callus formation. Fine-scale chromatin analyses combined with transcriptome and nucleosome profiling reveal distinct roles of H1 on hetero- and euchromatin: H1 is necessary to form heterochromatic domains yet dispensable for silencing of most transposable elements; H1 depletion affects nucleosome density distribution and mobility in euchromatin, spatial arrangement of nanodomains, histone acetylation, and methylation. These drastic changes affect moderately the transcription but reveal a subset of H1-sensitive genes. CONCLUSIONS H1 variants have a profound impact on the molecular and spatial (nuclear) chromatin organization in Arabidopsis with distinct roles in euchromatin and heterochromatin and a dual causality on gene expression. Phenotypical analyses further suggest the novel possibility that H1-mediated chromatin organization may contribute to the epigenetic control of developmental and cellular transitions.
Collapse
Affiliation(s)
- Kinga Rutowicz
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Maciej Lirski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Benoît Mermaz
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
- Department of Molecular, Cellular & Developmental Biology, Yale University, 352a Osborn memorial laboratories, New Haven, CT, 06511, USA
| | - Gianluca Teano
- Département de Biologie, IBENS, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, F-75005, Paris, France
| | - Jasmin Schubert
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Imen Mestiri
- Département de Biologie, IBENS, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, F-75005, Paris, France
| | - Magdalena A Kroteń
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-089, Warsaw, Poland
| | - Tohnyui Ndinyanka Fabrice
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Simon Fritz
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Stefan Grob
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Christoph Ringli
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Lusik Cherkezyan
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Fredy Barneche
- Département de Biologie, IBENS, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, F-75005, Paris, France
| | - Andrzej Jerzmanowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
- Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Célia Baroux
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
65
|
Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 2019; 20:89-108. [PMID: 30446728 DOI: 10.1038/s41576-018-0073-3] [Citation(s) in RCA: 733] [Impact Index Per Article: 122.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) of 21-35 nucleotides in length silence transposable elements, regulate gene expression and fight viral infection. piRNAs guide PIWI proteins to cleave target RNA, promote heterochromatin assembly and methylate DNA. The architecture of the piRNA pathway allows it both to provide adaptive, sequence-based immunity to rapidly evolving viruses and transposons and to regulate conserved host genes. piRNAs silence transposons in the germ line of most animals, whereas somatic piRNA functions have been lost, gained and lost again across evolution. Moreover, most piRNA pathway proteins are deeply conserved, but different animals employ remarkably divergent strategies to produce piRNA precursor transcripts. Here, we discuss how a common piRNA pathway allows animals to recognize diverse targets, ranging from selfish genetic elements to genes essential for gametogenesis.
Collapse
Affiliation(s)
- Deniz M Ozata
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ansgar Zoch
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Dónal O'Carroll
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
66
|
Hirakata S, Ishizu H, Fujita A, Tomoe Y, Siomi MC. Requirements for multivalent Yb body assembly in transposon silencing in Drosophila. EMBO Rep 2019; 20:e47708. [PMID: 31267711 PMCID: PMC6607011 DOI: 10.15252/embr.201947708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022] Open
Abstract
Female sterile (1) Yb (Yb) is a primary component of Yb bodies, perinuclear foci considered to be the site of PIWI-interacting RNA (piRNA) biogenesis in Drosophila ovarian somatic cells (OSCs). Yb consists of three domains: Helicase C-terminal (Hel-C), RNA helicase, and extended Tudor (eTud) domains. We previously showed that the RNA helicase domain is necessary for Yb-RNA interaction, Yb body formation, and piRNA biogenesis. Here, we investigate the functions of Hel-C and eTud and reveal that Hel-C is dedicated to Yb-Yb homotypic interaction, while eTud is necessary for Yb-RNA association, as is the RNA helicase domain. All of these domains are indispensable for Yb body formation and transposon-repressing piRNA production. Strikingly, however, genic piRNAs unrelated to transposon silencing are produced in OSCs where Yb bodies are disassembled. We also reveal that Yb bodies are liquid-like multivalent condensates whose assembly depends on Yb-Yb homotypic interaction and Yb binding particularly with flamenco RNA transcripts, the source of transposon-repressing piRNAs. New insights into Yb body assembly and biological relevance of Yb bodies in transposon silencing have emerged.
Collapse
Affiliation(s)
- Shigeki Hirakata
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Hirotsugu Ishizu
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
- Present address:
Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Aoi Fujita
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Yumiko Tomoe
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Mikiko C Siomi
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
67
|
Fabry MH, Ciabrelli F, Munafò M, Eastwood EL, Kneuss E, Falciatori I, Falconio FA, Hannon GJ, Czech B. piRNA-guided co-transcriptional silencing coopts nuclear export factors. eLife 2019; 8:e47999. [PMID: 31219034 PMCID: PMC6677536 DOI: 10.7554/elife.47999] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 01/25/2023] Open
Abstract
The PIWI-interacting RNA (piRNA) pathway is a small RNA-based immune system that controls the expression of transposons and maintains genome integrity in animal gonads. In Drosophila, piRNA-guided silencing is achieved, in part, via co-transcriptional repression of transposons by Piwi. This depends on Panoramix (Panx); however, precisely how an RNA binding event silences transcription remains to be determined. Here we show that Nuclear Export Factor 2 (Nxf2) and its co-factor, Nxt1, form a complex with Panx and are required for co-transcriptional silencing of transposons in somatic and germline cells of the ovary. Tethering of Nxf2 or Nxt1 to RNA results in silencing of target loci and the concomitant accumulation of repressive chromatin marks. Nxf2 and Panx proteins are mutually required for proper localization and stability. We mapped the protein domains crucial for the Nxf2/Panx complex formation and show that the amino-terminal portion of Panx is sufficient to induce transcriptional silencing.
Collapse
Affiliation(s)
- Martin H Fabry
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Filippo Ciabrelli
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Marzia Munafò
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Evelyn L Eastwood
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Emma Kneuss
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Ilaria Falciatori
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Federica A Falconio
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Gregory J Hannon
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Benjamin Czech
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
68
|
He S, Vickers M, Zhang J, Feng X. Natural depletion of histone H1 in sex cells causes DNA demethylation, heterochromatin decondensation and transposon activation. eLife 2019; 8:42530. [PMID: 31135340 PMCID: PMC6594752 DOI: 10.7554/elife.42530] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/26/2019] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs), the movement of which can damage the genome, are epigenetically silenced in eukaryotes. Intriguingly, TEs are activated in the sperm companion cell - vegetative cell (VC) - of the flowering plant Arabidopsis thaliana. However, the extent and mechanism of this activation are unknown. Here we show that about 100 heterochromatic TEs are activated in VCs, mostly by DEMETER-catalyzed DNA demethylation. We further demonstrate that DEMETER access to some of these TEs is permitted by the natural depletion of linker histone H1 in VCs. Ectopically expressed H1 suppresses TEs in VCs by reducing DNA demethylation and via a methylation-independent mechanism. We demonstrate that H1 is required for heterochromatin condensation in plant cells and show that H1 overexpression creates heterochromatic foci in the VC progenitor cell. Taken together, our results demonstrate that the natural depletion of H1 during male gametogenesis facilitates DEMETER-directed DNA demethylation, heterochromatin relaxation, and TE activation.
Collapse
Affiliation(s)
- Shengbo He
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Martin Vickers
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jingyi Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
69
|
Kijima M, Yamagishi H, Hara Y, Kasai M, Takami Y, Takemura H, Miyanari Y, Shinkai Y, Mizuta R. Histone H1 quantity determines the efficiency of chromatin condensation in both apoptotic and live cells. Biochem Biophys Res Commun 2019; 512:202-207. [DOI: 10.1016/j.bbrc.2019.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 11/26/2022]
|
70
|
Clouaire T, Legube G. A Snapshot on the Cis Chromatin Response to DNA Double-Strand Breaks. Trends Genet 2019; 35:330-345. [PMID: 30898334 DOI: 10.1016/j.tig.2019.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 12/11/2022]
Abstract
In eukaryotes, detection and repair of DNA double-strand breaks (DSBs) operate within chromatin, an incredibly complex structure that tightly packages and regulates DNA metabolism. Chromatin participates in the repair of these lesions at multiple steps, from detection to genomic sequence recovery and chromatin is itself extensively modified during the repair process. In recent years, new methodologies and dedicated techniques have expanded the experimental toolbox, opening up a new era granting the high-resolution analysis of chromatin modifications at annotated DSBs in a genome-wide manner. A complex picture is starting to emerge whereby chromatin is altered at various scales around DSBs, in a manner that relates to the repair pathway used, hence defining a 'repair histone code'. Here, we review the recent advances regarding our knowledge of the chromatin landscape induced in cis around DSBs, with an emphasis on histone post-translational modifications and histone variants.
Collapse
Affiliation(s)
- Thomas Clouaire
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France.
| |
Collapse
|
71
|
Renault S, Genty M, Gabori A, Boisneau C, Esnault C, Dugé de Bernonville T, Augé-Gouillou C. The epigenetic regulation of HsMar1, a human DNA transposon. BMC Genet 2019; 20:17. [PMID: 30764754 PMCID: PMC6375154 DOI: 10.1186/s12863-019-0719-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Both classes of transposable elements (DNA and RNA) are tightly regulated at the transcriptional level leading to the inactivation of transposition via epigenetic mechanisms. Due to the high copies number of these elements, the hypothesis has emerged that their regulation can coordinate a regulatory network of genes. Herein, we investigated whether transposition regulation of HsMar1, a human DNA transposon, differs in presence or absence of endogenous HsMar1 copies. In the case where HsMar1 transposition is regulated, the number of repetitive DNA sequences issued by HsMar1 and distributed in the human genome makes HsMar1 a good candidate to regulate neighboring gene expression by epigenetic mechanisms. RESULTS A recombinant active HsMar1 copy was inserted in HeLa (human) and CHO (hamster) cells and its genomic excision monitored. We show that HsMar1 excision is blocked in HeLa cells, whereas CHO cells are competent to promote HsMar1 excision. We demonstrate that de novo HsMar1 insertions in HeLa cells (human) undergo rapid silencing by cytosine methylation and apposition of H3K9me3 marks, whereas de novo HsMar1 insertions in CHO cells (hamster) are not repressed and enriched in H3K4me3 modifications. The overall analysis of HsMar1 endogenous copies in HeLa cells indicates that neither full-length endogenous inactive copies nor their Inverted Terminal Repeats seem to be specifically silenced, and are, in contrast, devoid of epigenetic marks. Finally, the setmar gene, derived from HsMar1, presents H3K4me3 modifications as expected for a human housekeeping gene. CONCLUSIONS Our work highlights that de novo and old HsMar1 are not similarly regulated by epigenetic mechanisms. Old HsMar1 are generally detected as lacking epigenetic marks, irrespective their localisation relative to the genes. Considering the putative existence of a network associating HsMar1 old copies and SETMAR, two non-mutually exclusive hypotheses are proposed: active and inactive HsMar1 copies are not similarly regulated or/and regulations concern only few loci (and few genes) that cannot be detected at the whole genome level.
Collapse
Affiliation(s)
- Sylvaine Renault
- EA 6306 Instabilité génétique et cancer, Université de Tours, UFR Sciences et Techniques, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France
- UMR 1253, iBrain, University of Tours, INSERM, Tours, France
| | - Murielle Genty
- EA 6306 Instabilité génétique et cancer, Université de Tours, UFR Sciences et Techniques, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France
- UMR 1253, iBrain, University of Tours, INSERM, Tours, France
| | - Alison Gabori
- EA 6306 Instabilité génétique et cancer, Université de Tours, UFR Sciences et Techniques, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Catherine Boisneau
- UMR CITERES CNRS 7324, Université de Tours, 35 Allée Ferdinand de Lesseps, 37200 Tours, France
| | - Charles Esnault
- EA 6306 Instabilité génétique et cancer, Université de Tours, UFR Sciences et Techniques, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | | | - Corinne Augé-Gouillou
- EA 6306 Instabilité génétique et cancer, Université de Tours, UFR Sciences et Techniques, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France
- UMR 1253, iBrain, University of Tours, INSERM, Tours, France
| |
Collapse
|
72
|
Novel roles of Drosophila FUS and Aub responsible for piRNA biogenesis in neuronal disorders. Brain Res 2018; 1708:207-219. [PMID: 30578769 DOI: 10.1016/j.brainres.2018.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/16/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
piRNAs, small non-coding RNAs, were considered to be restricted to germline cells. Although they have recently been detected in somatic cells including neurons, it remains unclear how piRNA biogenesis is involved in neuronal diseases. We herein examined the possible roles of Aubergine (Aub), a Piwi-family protein (PIWI) responsible for piRNA biogenesis, in the neuronal disorders, using the Cabeza (Caz) knockdown Drosophila. Caz is a Drosophila homologue of FUS, which is one of the genes causing amyotrophic lateral sclerosis (ALS). Aub overexpression enhanced the mobility defects accompanied by anatomical defects in motoneurons at neuromuscular junctions induced by the neuron-specific knockdown of Caz. In order to elucidate the underlying mechanisms, we examined pre-piRNA and mature-size piRNA levels under these conditions. qRT-PCR and RNA-seq analyses revealed that the Caz knockdown increased pre-piRNA levels, but reduced mature-size piRNA levels in the central nervous system (CNS), suggesting a role in the pre-piRNAs production. Aub overexpression did not increase mature-size piRNA levels. These results suggest that the accumulated pre-piRNAs are abnormal abortive pre-piRNAs that cannot be further processed by slicers, including Aub. We also demonstrated a relationship between Caz and pre-piRNAs in the CNS by RNA immunoprecipitation. Aub overexpression induced the abnormal cytoplasmic localization of Caz. Based on these results, we propose a model in which Caz knockdown-induced abnormal pre-piRNAs associate with Caz, then translocate and accumulate in the cytoplasm, a process that may be mediated by Aub. The novel roles for Caz and Aub demonstrated herein using the Caz-knockdown fly will contribute to a deeper understanding of the pathogenesis of ALS.
Collapse
|
73
|
Lebedeva LA, Yakovlev KV, Kozlov EN, Schedl P, Deshpande G, Shidlovskii YV. Transcriptional quiescence in primordial germ cells. Crit Rev Biochem Mol Biol 2018; 53:579-595. [PMID: 30280955 PMCID: PMC8729227 DOI: 10.1080/10409238.2018.1506733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
Abstract
In most animal species, newly formed primordial germ cells (PGCs) acquire the special characteristics that distinguish them from the surrounding somatic cells. Proper fate specification of the PGCs is coupled with transcriptional quiescence, whether they are segregated by determinative or inductive mechanisms. Inappropriate differentiation of PGCs into somatic cells is thought to be prevented due to repression of RNA polymerase (Pol) II-dependent transcription. In the case of a determinative mode of PGC formation (Drosophila, Caenorhabditis elegans, etc.), there is a broad downregulation of Pol II activity. By contrast, PGCs display only gene-specific repression in organisms that rely on inductive signaling-based mechanism (e.g., mice). In addition to the global block of Pol II activity in PGCs, gene expression can be suppressed in other ways, such as chromatin remodeling and Piwi-mediated RNAi. Here, we discuss the mechanisms responsible for the transcriptionally silent state of PGCs in common experimental animals, such as Drosophila, C. elegans, Danio rerio, Xenopus, and mouse. While a PGC-specific downregulation of transcription is a common feature among these organisms, the diverse nature of underlying mechanisms suggests that this functional trait likely evolved independently on several instances. We discuss the possible biological relevance of these silencing mechanisms vis-a-vis fate determination of PGCs.
Collapse
Affiliation(s)
| | - Konstantin V. Yakovlev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Eugene N. Kozlov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Paul Schedl
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, USA
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, USA
| | - Yulii V. Shidlovskii
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
74
|
Sato K, Siomi MC. Two distinct transcriptional controls triggered by nuclear Piwi-piRISCs in the Drosophila piRNA pathway. Curr Opin Struct Biol 2018; 53:69-76. [DOI: 10.1016/j.sbi.2018.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 06/19/2018] [Indexed: 01/21/2023]
|
75
|
Czech B, Munafò M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, Hannon GJ. piRNA-Guided Genome Defense: From Biogenesis to Silencing. Annu Rev Genet 2018; 52:131-157. [PMID: 30476449 PMCID: PMC10784713 DOI: 10.1146/annurev-genet-120417-031441] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PIWI-interacting RNAs (piRNAs) and their associated PIWI clade Argonaute proteins constitute the core of the piRNA pathway. In gonadal cells, this conserved pathway is crucial for genome defense, and its main function is to silence transposable elements. This is achieved through posttranscriptional and transcriptional gene silencing. Precursors that give rise to piRNAs require specialized transcription and transport machineries because piRNA biogenesis is a cytoplasmic process. The ping-pong cycle, a posttranscriptional silencing mechanism, combines the cleavage-dependent silencing of transposon RNAs with piRNA production. PIWI proteins also function in the nucleus, where they scan for nascent target transcripts with sequence complementarity, instructing transcriptional silencing and deposition of repressive chromatin marks at transposon loci. Although studies have revealed numerous factors that participate in each branch of the piRNA pathway, the precise molecular roles of these factors often remain unclear. In this review, we summarize our current understanding of the mechanisms involved in piRNA biogenesis and function.
Collapse
Affiliation(s)
- Benjamin Czech
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Marzia Munafò
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Filippo Ciabrelli
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Evelyn L Eastwood
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Martin H Fabry
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Emma Kneuss
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| |
Collapse
|
76
|
Abstract
Gametogenesis represents the most dramatic cellular differentiation pathways in both female and male flies. At the genome level, meiosis ensures that diploid germ cells become haploid gametes. At the epigenome level, extensive changes are required to turn on and shut off gene expression in a precise spatiotemporally controlled manner. Research applying conventional molecular genetics and cell biology, in combination with rapidly advancing genomic tools have helped us to investigate (1) how germ cells maintain lineage specificity throughout their adult reproductive lifetime; (2) what molecular mechanisms ensure proper oogenesis and spermatogenesis, as well as protect genome integrity of the germline; (3) how signaling pathways contribute to germline-soma communication; and (4) if such communication is important. In this chapter, we highlight recent discoveries that have improved our understanding of these questions. On the other hand, restarting a new life cycle upon fertilization is a unique challenge faced by gametes, raising questions that involve intergenerational and transgenerational epigenetic inheritance. Therefore, we also discuss new developments that link changes during gametogenesis to early embryonic development-a rapidly growing field that promises to bring more understanding to some fundamental questions regarding metazoan development.
Collapse
|
77
|
Watanabe T, Cui X, Yuan Z, Qi H, Lin H. MIWI2 targets RNAs transcribed from piRNA-dependent regions to drive DNA methylation in mouse prospermatogonia. EMBO J 2018; 37:e95329. [PMID: 30108053 PMCID: PMC6138435 DOI: 10.15252/embj.201695329] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022] Open
Abstract
Argonaute/Piwi proteins can regulate gene expression via RNA degradation and translational regulation using small RNAs as guides. They also promote the establishment of suppressive epigenetic marks on repeat sequences in diverse organisms. In mice, the nuclear Piwi protein MIWI2 and Piwi-interacting RNAs (piRNAs) are required for DNA methylation of retrotransposon sequences and some other sequences. However, its underlying molecular mechanisms remain unclear. Here, we show that piRNA-dependent regions are transcribed at the stage when piRNA-mediated DNA methylation takes place. MIWI2 specifically interacts with RNAs from these regions. In addition, we generated mice with deletion of a retrotransposon sequence either in a representative piRNA-dependent region or in a piRNA cluster. Both deleted regions were required for the establishment of DNA methylation of the piRNA-dependent region, indicating that piRNAs determine the target specificity of MIWI2-mediated DNA methylation. Our results indicate that MIWI2 affects the chromatin state through base-pairing between piRNAs and nascent RNAs, as observed in other organisms possessing small RNA-mediated epigenetic regulation.
Collapse
Affiliation(s)
- Toshiaki Watanabe
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiekui Cui
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhongyu Yuan
- Zhiyuan College, Shanghai Jiaotong University, Shanghai, China
| | - Hongying Qi
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
78
|
Mezquita-Pla J. Gordon H. Dixon's trace in my personal career and the quantic jump experienced in regulatory information. Syst Biol Reprod Med 2018; 64:448-468. [PMID: 30136864 DOI: 10.1080/19396368.2018.1503752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Even before Rosalin Franklin had discovered the DNA double helix, in her impressive X-ray diffraction image pattern, Erwin Schröedinger, described, in his excellent book, What is Life, how the finding of aperiodic crystals in biological systems surprised him (an aperiodic crystal, which, in my opinion is the material carrier of life). In the 21st century and still far from being able to define life, we are attending to a quick acceleration of knowledge on regulatory information. With the discovery of new codes and punctuation marks, we will greatly increase our understanding in front of an impressive avalanche of genomic sequences. Trifonov et al. defined a genetic code as a widespread DNA sequence pattern that carries a message with an impact on biology. These patterns are largely captured in transcribed messages that give meaning and identity to the particular cells. In this review, I will go through my personal career in and after my years of work in the laboratory of Gordon H. Dixon, extending toward the impressive acquisition of new knowledge on regulatory information and genetic codes provided by remarkable scientists in the field. Abbreviations: CA II: carbonic anhydridase II (chicken); Car2: carbonic anhydridase 2 (mouse); CpG islands: short (>0.5 kb) stretches of DNA with a G+C content ≥55%; DNMT1: DNA methyltransferases 1; DNMT3b: DNA methyltransferases 3B; DSB: double-strand DNA breaks; ERT: endogenous retrotransposon; ERV: endogenous retroviruses; ES cells: embryonic stem cells; GAPDH: glyceraldehide phosphate dehydrogenase; H1: histone H1; HATs: histone acetyltransferases; HDACs: histone deacetylases; H3K4me3: histone 3 trimethylated at lys 4; H3K79me2: histone 3 dimethylated at lys 79; HMG: high mobility group proteins; HMT: histone methyltransferase; HP1: heterochromatin protein 1; HR: homologous recombination; HSE: heat-shock element; ICRs: imprinted control regions; IRF: interferon regulatory factor; LDH-A/-B: lactate dehydrogenase A/B; LTR: long terminal repeats; MeCP2: methyl CpG binding protein 2; OCT4: octamer-binding transcription factor 4; PAF1: RNA Polymerase II associated factor 1; piRNA: PIWI-interacting RNA; poly(A) tails: poly-adenine tails; PRC2: polycomb repressive complex 2; PTMs: post-translational modifications; SIRT 1: sirtuin 1, silent information regulator; STAT3: signal transducer and activator of transcription; tRNAs: transfer RNA; tRFs: tRNA-derived fragments; TSS: transcription start site; TE: transposable elements; UB I: polyubiquitin I; UB II: polyubiquitin II; UBE 2N: ubiquitin conjugating enzyme E2N; 5'-UTR: 5'-untranslated sequences; 3'-UTR: 3'-untranslated sequences.
Collapse
Affiliation(s)
- Jovita Mezquita-Pla
- a Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, IDIBAPS, Faculty of Medicine , University of Barcelona , Catalonia , Spain
| |
Collapse
|
79
|
Rechavi O, Lev I. Principles of Transgenerational Small RNA Inheritance in Caenorhabditis elegans. Curr Biol 2018; 27:R720-R730. [PMID: 28743023 DOI: 10.1016/j.cub.2017.05.043] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Examples of transgenerational inheritance of environmental responses are rapidly accumulating. In Caenorhabditis elegans nematodes, such heritable information transmits across generations in the form of RNA-dependent RNA polymerase-amplified small RNAs. Regulatory small RNAs enable sequence-specific gene regulation, and unlike chromatin modifications, can move between tissues, and escape from immediate germline reprogramming. In this review, we discuss the path that small RNAs take from the soma to the germline, and elaborate on the mechanisms that maintain or erase parental small RNA responses after a specific number of generations. We focus on the intricate interactions between heritable small RNAs and histone modifications, deposited on specific loci. A trace of heritable chromatin marks, in particular trimethylation of histone H3 lysine 9, is deposited on RNAi-targeted loci. However, how these modifications regulate RNAi or small RNA inheritance was until recently unclear. Integrating the very latest literature, we suggest that changes to histone marks may instigate transgenerational gene regulation indirectly, by affecting the biogenesis of heritable small RNAs. Inheritance of small RNAs could spread adaptive ancestral responses.
Collapse
Affiliation(s)
- Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel 69978.
| | - Itamar Lev
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel 69978.
| |
Collapse
|
80
|
Yashiro R, Murota Y, Nishida KM, Yamashiro H, Fujii K, Ogai A, Yamanaka S, Negishi L, Siomi H, Siomi MC. Piwi Nuclear Localization and Its Regulatory Mechanism in Drosophila Ovarian Somatic Cells. Cell Rep 2018; 23:3647-3657. [DOI: 10.1016/j.celrep.2018.05.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/25/2018] [Accepted: 05/16/2018] [Indexed: 10/28/2022] Open
|
81
|
Teo RYW, Anand A, Sridhar V, Okamura K, Kai T. Heterochromatin protein 1a functions for piRNA biogenesis predominantly from pericentric and telomeric regions in Drosophila. Nat Commun 2018; 9:1735. [PMID: 29728561 PMCID: PMC5935673 DOI: 10.1038/s41467-018-03908-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/22/2018] [Indexed: 02/06/2023] Open
Abstract
In metazoan germline, Piwi-interacting RNAs (piRNAs) provide defence against transposons. Piwi-piRNA complex mediates transcriptional silencing of transposons in nucleus. Heterochromatin protein 1a (HP1a) has been proposed to function downstream of Piwi-piRNA complex in Drosophila. Here we show that HP1a germline knockdown (HP1a-GLKD) leads to a reduction in the total and Piwi-bound piRNAs mapping to clusters and transposons insertions, predominantly in the regions close to telomeres and centromeres, resulting in derepression of a limited number of transposons from these regions. In addition, HP1a-GLKD increases the splicing of transcripts arising from clusters in above regions, suggesting HP1a also functions upstream to piRNA processing. Evolutionarily old transposons enriched in the pericentric regions exhibit significant loss in piRNAs targeting these transposons upon HP1a-GLKD. Our study suggests that HP1a functions to repress transposons in a chromosomal compartmentalised manner.
Collapse
Affiliation(s)
- Ryan Yee Wei Teo
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
- Department of Pathology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Amit Anand
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore, Singapore.
| | - Vishweshwaren Sridhar
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore, Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
| | - Toshie Kai
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
82
|
Wu Y, Xu K, Qi H. Domain-functional analyses of PIWIL1 and PABPC1 indicate their synergistic roles in protein translation via 3′-UTRs of meiotic mRNAs†. Biol Reprod 2018; 99:773-788. [DOI: 10.1093/biolre/ioy100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 04/24/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yaoyao Wu
- School of Life Science, University of Science and Technology of China, Hefei, China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Kaibiao Xu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Huayu Qi
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
83
|
Wakisaka KT, Ichiyanagi K, Ohno S, Itoh M. Association of zygotic piRNAs derived from paternal P elements with hybrid dysgenesis in Drosophila melanogaster. Mob DNA 2018; 9:7. [PMID: 29441132 PMCID: PMC5800288 DOI: 10.1186/s13100-018-0110-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/15/2018] [Indexed: 01/27/2023] Open
Abstract
Background P-element transposition in the genome causes P-M hybrid dysgenesis in Drosophila melanogaster. Maternally deposited piRNAs suppress P-element transposition in the progeny, linking them to P-M phenotypes; however, the role of zygotic piRNAs derived from paternal P elements is poorly understood. Results To elucidate the molecular basis of P-element suppression by zygotic factors, we investigated the genomic constitution and P-element piRNA production derived from fathers. As a result, we characterized males of naturally derived Q, M’ and P strains, which show different capacities for the P-element mobilizations introduced after hybridizations with M-strain females. The amounts of piRNAs produced in ovaries of F1 hybrids varied among the strains and were influenced by the characteristics of the piRNA clusters that harbored the P elements. Importantly, while both the Q- and M’-strain fathers restrict the P-element mobilization in ovaries of their daughters, the Q-strain fathers supported the production of the highest piRNA expression in the ovaries of their daughters, and the M’ strain carries KP elements in transcriptionally active regions directing the highest expression of KP elements in their daughters. Interestingly, the zygotic P-element piRNAs, but not the KP element mRNA, contributed to the variations in P transposition immunity in the granddaughters. Conclusions The piRNA-cluster-embedded P elements and the transcriptionally active KP elements from the paternal genome are both important suppressors of P element activities that are co-inherited by the progeny. Expression levels of the P-element piRNA and KP-element mRNA vary among F1 progeny due to the constitution of the paternal genome, and are involved in phenotypic variation in the subsequent generation. Electronic supplementary material The online version of this article (10.1186/s13100-018-0110-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keiko Tsuji Wakisaka
- 1Department of Applied Biology, Kyoto Institute of Technology, Hashigamicyo Matsugasaki, Sakyo-ku, Kyoto, 606-8585 Japan
| | - Kenji Ichiyanagi
- 2Laboratory of Genome and Epigenome Dynamics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Seiko Ohno
- 3Center for Epidemiologic Research in Asia, Shiga Univesity of Medical Science, Otsu, Shiga 520-2192 Japan
| | - Masanobu Itoh
- 1Department of Applied Biology, Kyoto Institute of Technology, Hashigamicyo Matsugasaki, Sakyo-ku, Kyoto, 606-8585 Japan.,4Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Kyoto, 606-8585 Japan
| |
Collapse
|
84
|
Abstract
The assay for transposase-accessible chromatin using sequencing (ATAC-seq) was recently established as a method to profile open chromatin, which overcomes the sample size limitations of the alternative methods DNase/MNase-seq. To investigate the role of Piwi in heterochromatin formation around transposable element loci, we have used ATAC-seq to examine chromatin accessibility at target transposable elements in a Drosophila cultured cell line, ovarian somatic cells (OSCs). In this chapter, we describe our method to profile open chromatin structure in OSCs using ATAC-seq.
Collapse
|
85
|
Jankovics F, Bence M, Sinka R, Faragó A, Bodai L, Pettkó-Szandtner A, Ibrahim K, Takács Z, Szarka-Kovács AB, Erdélyi M. Drosophila small ovary gene is required for transposon silencing and heterochromatin organisation and ensures germline stem cell maintenance and differentiation. Development 2018; 145:dev.170639. [DOI: 10.1242/dev.170639] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
Abstract
Self-renewal and differentiation of stem cells is one of the fundamental biological phenomena relying on proper chromatin organisation. In our study, we describe a novel chromatin regulator encoded by the Drosophila small ovary (sov) gene. We demonstrate that sov is required in both the germline stem cells (GSCs) and the surrounding somatic niche cells to ensure GSC survival and differentiation. Sov maintains niche integrity and function by repressing transposon mobility, not only in the germline, but also in the soma. Protein interactome analysis of Sov revealed an interaction between Sov and HP1a. In the germ cell nuclei, Sov co-localises with HP1a, suggesting that Sov affects transposon repression as a component of the heterochromatin. In a position effect variegation assay, we found a dominant genetic interaction between sov and HP1a, indicating their functional cooperation in promoting the spread of heterochromatin. An in vivo tethering assay and FRAP analysis revealed that Sov enhances heterochromatin formation by supporting the recruitment of HP1a to the chromatin. We propose a model in which sov maintains GSC niche integrity by regulating transposon silencing and heterochromatin formation.
Collapse
Affiliation(s)
- Ferenc Jankovics
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Melinda Bence
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Anikó Faragó
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Aladár Pettkó-Szandtner
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Karam Ibrahim
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsanett Takács
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | - Miklós Erdélyi
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
86
|
Yamashiro H, Siomi MC. PIWI-Interacting RNA in Drosophila: Biogenesis, Transposon Regulation, and Beyond. Chem Rev 2017; 118:4404-4421. [PMID: 29281264 DOI: 10.1021/acs.chemrev.7b00393] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are germline-enriched small RNAs that control transposons to maintain genome integrity. To achieve this, upon being processed from piRNA precursors, most of which are transcripts of intergenic piRNA clusters, piRNAs bind PIWI proteins, germline-specific Argonaute proteins, to form effector complexes. The mechanism of this piRNA-mediated transposon silencing pathway is fundamentally similar to that of siRNA/miRNA-dependent gene silencing in that a small RNA guides its partner Argonaute protein to target gene transcripts for repression via RNA-RNA base pairing. However, the uniqueness of this piRNA pathway has emerged through intensive genetic, biochemical, bioinformatic, and structural investigations. Here, we review the studies that elucidated the piRNA pathway, mainly in Drosophila, by describing both historical and recent progress. Studies in other species that have made important contributions to the field are also described.
Collapse
Affiliation(s)
- Haruna Yamashiro
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| |
Collapse
|
87
|
piRNA-mediated regulation of transposon alternative splicing in the soma and germ line. Nature 2017; 552:268-272. [PMID: 29211718 PMCID: PMC5933846 DOI: 10.1038/nature25018] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Transposable elements can drive genome evolution, but their enhanced activity is detrimental to the host and therefore must be tightly regulated1. The piwi-interacting small RNAs (piRNAs) pathway is critically important for transposable element regulation, by inducing transcriptional silencing or post-transcriptional decay of mRNAs2. Here, we show that piRNAs and piRNA biogenesis components regulate pre-mRNA splicing of P transposable element transcripts in vivo, leading to the production of the non-transposase-encoding mature mRNA isoform in germ cells. Unexpectedly, we show that the piRNA pathway components do not act to reduce P-element transposon transcript levels during P-M hybrid dysgenesis, a syndrome that affects germline development in Drosophila3,4. Instead, splicing regulation is mechanistically achieved in concert with piRNA-mediated changes to repressive chromatin states, and relies on the function of the Piwi-piRNA complex proteins Asterix/Gtsf15–7 and Panoramix/Silencio8,9, as well as Heterochromatin Protein 1a (Su(var)205/HP1a). Furthermore, we show that this machinery, together with the piRNA Flamenco cluster10, not only controls the accumulation of Gypsy retrotransposon transcripts11 but also regulates splicing of Gypsy mRNAs in cultured ovarian somatic cells, a process required for the production of infectious particles that can lead to heritable transposition events12,13. Our findings identify splicing regulation as a new role and essential function for the Piwi pathway in protecting the genome against transposon mobility, and provide a model system for studying the role of chromatin structure in modulating alternative splicing during development.
Collapse
|
88
|
Wakisaka KT, Ichiyanagi K, Ohno S, Itoh M. Diversity of P-element piRNA production among M' and Q strains and its association with P-M hybrid dysgenesis in Drosophila melanogaster. Mob DNA 2017; 8:13. [PMID: 29075336 PMCID: PMC5654125 DOI: 10.1186/s13100-017-0096-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/13/2017] [Indexed: 01/24/2023] Open
Abstract
Background Transposition of P elements in the genome causes P–M hybrid dysgenesis in Drosophila melanogaster. For the P strain, the P–M phenotypes are associated with the ability to express a class of small RNAs, called piwi-interacting small RNAs (piRNAs), that suppress the P elements in female gonads. However, little is known about the extent to which piRNAs are involved in the P–M hybrid dysgenesis in M′ and Q strains, which show different abilities to regulate the P elements from P strains. Results To elucidate the molecular basis of the suppression of paternally inherited P elements, we analyzed the mRNA and piRNA levels of P elements in the F1 progeny between males of a P strain and nine-line females of M′ or Q strains (M′ or Q progenies). M′ progenies showed the hybrid dysgenesis phenotype, while Q progenies did not. Consistently, the levels of P-element mRNA in both the ovaries and F1 embryos were higher in M′ progenies than in Q progenies, indicating that the M′ progenies have a weaker ability to suppress P-element expression. The level of P-element mRNA was inversely correlated to the level of piRNAs in F1 embryos. Importantly, the M′ progenies were characterized by a lower abundance of P-element piRNAs in both young ovaries and F1 embryonic bodies. The Q progenies showed various levels of piRNAs in both young ovaries and F1 embryonic bodies despite all of the Q progenies suppressing P-element transposition in their gonad. Conclusions Our results are consistent with an idea that the level of P-element piRNAs is a determinant for dividing strain types between M′ and Q and that the suppression mechanisms of transposable elements, including piRNAs, are varied between natural populations. Electronic supplementary material The online version of this article (10.1186/s13100-017-0096-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keiko Tsuji Wakisaka
- Department of Applied Biology, Kyoto Institute of Technology, Hashigamicyo, Matsugasaki, Sakyo-ku, Kyoto, 606-8585 Japan
| | - Kenji Ichiyanagi
- Laboratory of Genome and Epigenome Dynamics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Seiko Ohno
- Center for Epidemiologic Research in Asia, Shiga Univesity of Medical Science, Otsu, Shiga 520-2192 Japan
| | - Masanobu Itoh
- Department of Applied Biology, Kyoto Institute of Technology, Hashigamicyo, Matsugasaki, Sakyo-ku, Kyoto, 606-8585 Japan.,Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Kyoto, 606-8585 Japan
| |
Collapse
|
89
|
Fefelova EA, Stolyarenko AD, Yakushev EY, Gvozdev VA, Klenov MS. Participation of the piRNA pathway in recruiting a component of RNA polymerase I transcription initiation complex to germline cell nucleoli. Mol Biol 2017. [DOI: 10.1134/s0026893317050089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
90
|
Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol 2017; 19:192-206. [PMID: 29018282 DOI: 10.1038/nrm.2017.94] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Together with core histones, which make up the nucleosome, the linker histone (H1) is one of the five main histone protein families present in chromatin in eukaryotic cells. H1 binds to the nucleosome to form the next structural unit of metazoan chromatin, the chromatosome, which may help chromatin to fold into higher-order structures. Despite their important roles in regulating the structure and function of chromatin, linker histones have not been studied as extensively as core histones. Nevertheless, substantial progress has been made recently. The first near-atomic resolution crystal structure of a chromatosome core particle and an 11 Å resolution cryo-electron microscopy-derived structure of the 30 nm nucleosome array have been determined, revealing unprecedented details about how linker histones interact with the nucleosome and organize higher-order chromatin structures. Moreover, several new functions of linker histones have been discovered, including their roles in epigenetic regulation and the regulation of DNA replication, DNA repair and genome stability. Studies of the molecular mechanisms of H1 action in these processes suggest a new paradigm for linker histone function beyond its architectural roles in chromatin.
Collapse
|
91
|
Clark JP, Rahman R, Yang N, Yang LH, Lau NC. Drosophila PAF1 Modulates PIWI/piRNA Silencing Capacity. Curr Biol 2017; 27:2718-2726.e4. [PMID: 28844648 DOI: 10.1016/j.cub.2017.07.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/06/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023]
Abstract
To test the directness of factors in initiating PIWI-directed gene silencing, we employed a Piwi-interacting RNA (piRNA)-targeted reporter assay in Drosophila ovary somatic sheet (OSS) cells [1]. This assay confirmed direct silencing roles for piRNA biogenesis factors and PIWI-associated factors [2-12] but suggested that chromatin-modifying proteins may act downstream of the initial silencing event. Our data also revealed that RNA-polymerase-II-associated proteins like PAF1 and RTF1 antagonize PIWI-directed silencing. PAF1 knockdown enhances PIWI silencing of reporters when piRNAs target the transcript region proximal to the promoter. Loss of PAF1 suppresses endogenous transposable element (TE) transcript maturation, whereas a subset of gene transcripts and long-non-coding RNAs adjacent to TE insertions are affected by PAF1 knockdown in a similar fashion to piRNA-targeted reporters. Additionally, transcription activation at specific TEs and TE-adjacent loci during PIWI knockdown is suppressed when PIWI and PAF1 levels are both reduced. Our study suggests a mechanistic conservation between fission yeast PAF1 repressing AGO1/small interfering RNA (siRNA)-directed silencing [13, 14] and Drosophila PAF1 opposing PIWI/piRNA-directed silencing.
Collapse
Affiliation(s)
- Josef P Clark
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Reazur Rahman
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Nachen Yang
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Linda H Yang
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Nelson C Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
92
|
Small RNA Pathways That Protect the Somatic Genome. Int J Mol Sci 2017; 18:ijms18050912. [PMID: 28445427 PMCID: PMC5454825 DOI: 10.3390/ijms18050912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022] Open
Abstract
Transposable elements (TEs) are DNA elements that can change their position within the genome, with the potential to create mutations and destabilize the genome. As such, special molecular systems have been adopted in animals to control TE activity in order to protect the genome. PIWI proteins, in collaboration with PIWI-interacting RNAs (piRNAs), are well known to play a critical role in silencing germline TEs. Although initially thought to be germline-specific, the role of PIWI–piRNA pathways in controlling TEs in somatic cells has recently begun to be explored in various organisms, together with the role of endogenous small interfering RNAs (endo-siRNAs). This review summarizes recent results suggesting that these small RNA pathways have been critically implicated in the silencing of somatic TEs underlying various physiological traits, with a special focus on the Drosophila model organism.
Collapse
|
93
|
Lev I, Seroussi U, Gingold H, Bril R, Anava S, Rechavi O. MET-2-Dependent H3K9 Methylation Suppresses Transgenerational Small RNA Inheritance. Curr Biol 2017; 27:1138-1147. [DOI: 10.1016/j.cub.2017.03.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/13/2017] [Accepted: 03/06/2017] [Indexed: 10/19/2022]
|
94
|
Andreyeva EN, Bernardo TJ, Kolesnikova TD, Lu X, Yarinich LA, Bartholdy BA, Guo X, Posukh OV, Healton S, Willcockson MA, Pindyurin AV, Zhimulev IF, Skoultchi AI, Fyodorov DV. Regulatory functions and chromatin loading dynamics of linker histone H1 during endoreplication in Drosophila. Genes Dev 2017; 31:603-616. [PMID: 28404631 PMCID: PMC5393055 DOI: 10.1101/gad.295717.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/03/2017] [Indexed: 12/22/2022]
Abstract
Eukaryotic DNA replicates asynchronously, with discrete genomic loci replicating during different stages of S phase. Drosophila larval tissues undergo endoreplication without cell division, and the latest replicating regions occasionally fail to complete endoreplication, resulting in underreplicated domains of polytene chromosomes. Here we show that linker histone H1 is required for the underreplication (UR) phenomenon in Drosophila salivary glands. H1 directly interacts with the Suppressor of UR (SUUR) protein and is required for SUUR binding to chromatin in vivo. These observations implicate H1 as a critical factor in the formation of underreplicated regions and an upstream effector of SUUR. We also demonstrate that the localization of H1 in chromatin changes profoundly during the endocycle. At the onset of endocycle S (endo-S) phase, H1 is heavily and specifically loaded into late replicating genomic regions and is then redistributed during the course of endoreplication. Our data suggest that cell cycle-dependent chromosome occupancy of H1 is governed by several independent processes. In addition to the ubiquitous replication-related disassembly and reassembly of chromatin, H1 is deposited into chromatin through a novel pathway that is replication-independent, rapid, and locus-specific. This cell cycle-directed dynamic localization of H1 in chromatin may play an important role in the regulation of DNA replication timing.
Collapse
Affiliation(s)
- Evgeniya N Andreyeva
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Travis J Bernardo
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Tatyana D Kolesnikova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Xingwu Lu
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Lyubov A Yarinich
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Xiaohan Guo
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Olga V Posukh
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Sean Healton
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Michael A Willcockson
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Alexey V Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Igor F Zhimulev
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
95
|
Histone H1 defect in escort cells triggers germline tumor in Drosophila ovary. Dev Biol 2017; 424:40-49. [PMID: 28232075 DOI: 10.1016/j.ydbio.2017.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/19/2017] [Accepted: 02/19/2017] [Indexed: 12/19/2022]
Abstract
Drosophila ovary is recognized as one of the best model systems to study stem cell biology in vivo. We had previously identified an autonomous role of the histone H1 in germline stem cell (GSC) maintenance. Here, we found that histone H1 depletion in escort cells (ECs) resulted in an increase of spectrosome-containing cells (SCCs), an ovary tumor-like phenotype. Further analysis showed that the Dpp pathway is excessively activated in these SCC cells, while the expression of bam is attenuated. In the H1-depleted ECs, both transposon activity and DNA damage had increased dramatically, followed by EC apoptosis, which is consistent with the role of H1 in other somatic cells. Surprisingly, H1-depleted ECs acquired cap cell characteristics including dpp expression, and the resulting abnormal Dpp level inhibits SCC further differentiation. Most interestingly, double knockdown of H1 and dpp in ECs can reduce the number of SCCs to the normal level, indicating that the additional Dpp secreted by ECs contributes to the germline tumor. Taken together, our findings indicate that histone H1 is an important epigenetic factor in controlling EC characteristics and a key suppressor of germline tumor.
Collapse
|
96
|
Nishibuchi G, Déjardin J. The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals. Chromosome Res 2017; 25:77-87. [PMID: 28078514 DOI: 10.1007/s10577-016-9547-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
Abstract
Constitutive heterochromatin is composed mainly of repetitive elements and represents the typical inert chromatin structure in eukaryotic cells. Approximately half of the mammalian genome is made of repeat sequences, such as satellite DNA, telomeric DNA, and transposable elements. As essential genes are not present in these regions, most of these repeat sequences were considered as junk DNA in the past. However, it is now clear that these regions are essential for chromosome stability and the silencing of neighboring genes. Genetic and biochemical studies have revealed that histone methylation at H3K9 and its recognition by heterochromatin protein 1 represent the fundamental mechanism by which heterochromatin forms. Although this molecular mechanism is highly conserved from yeast to human cells, its detailed epigenetic regulation is more complex and dynamic for each distinct constitutive heterochromatin structure in higher eukaryotes. It can also vary according to the developmental stage. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis is a powerful tool to investigate the epigenetic regulation of eukaryote genomes, but non-unique reads are usually discarded during standard ChIP-seq data alignment to reference genome databases. Therefore, specific methods to obtain global epigenetic information concerning repetitive elements are needed. In this review, we focus on such approaches and we summarize the latest molecular models for distinct constitutive heterochromatin types in mammals.
Collapse
Affiliation(s)
- Gohei Nishibuchi
- Biology of Repetitive Sequences, CNRS UPR1142, 141 rue de la Cardonille, 34000, Montpellier, France
| | - Jérôme Déjardin
- Biology of Repetitive Sequences, CNRS UPR1142, 141 rue de la Cardonille, 34000, Montpellier, France.
| |
Collapse
|
97
|
Vrettos N, Maragkakis M, Alexiou P, Mourelatos Z. Kc167, a widely used Drosophila cell line, contains an active primary piRNA pathway. RNA (NEW YORK, N.Y.) 2017; 23:108-118. [PMID: 27789612 PMCID: PMC5159643 DOI: 10.1261/rna.059139.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/22/2016] [Indexed: 06/02/2023]
Abstract
PIWI family proteins bind to small RNAs known as PIWI-interacting RNAs (piRNAs) and play essential roles in the germline by silencing transposons and by promoting germ cell specification and function. Here we report that the widely used Kc167 cell line, derived from Drosophila melanogaster embryos, expresses piRNAs that are loaded to Aub and Piwi. Kc167 piRNAs are produced by a canonical, primary piRNA biogenesis pathway, from phased processing of precursor transcripts by the Zuc endonuclease, Armi helicase, and dGasz mitochondrial scaffold protein. Kc167 piRNAs derive from cytoplasmic transcripts, notably tRNAs and mRNAs, and their abundance correlates with that of parent transcripts. The expression of Aub is robust in Kc167, that of Piwi is modest, while Ago3 is undetectable, explaining the lack of transposon-related piRNA amplification by the Aub-Ago3, ping-pong mechanism. We propose that the default state of the primary piRNA biogenesis machinery is random transcript sampling to allow generation of piRNAs from any transcript, including newly acquired retrotransposons. This state is unmasked in Kc167, likely because they do not express piRNA cluster transcripts in sufficient amounts and do not amplify transposon piRNAs. We use Kc167 to characterize an inactive isoform of Aub protein. Since most Kc167 piRNAs are genic, they can be mapped uniquely to the genome, facilitating computational analyses. Furthermore, because Kc167 is a widely used and well-characterized cell line that is easily amenable to experimental manipulations, we expect that it will serve as an excellent system to study piRNA biogenesis and piRNA-related factors.
Collapse
Affiliation(s)
- Nicholas Vrettos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Manolis Maragkakis
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Panagiotis Alexiou
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
98
|
Abstract
The third Japanese meeting entitled “Biological Function and Evolution through Interactions between Hosts and Transposable Elements (TEs)” was held on 5–6 September 2016 at National Institute of Genetics (NIG), Mishima, Japan. Supported by NIG, the goal of the meeting was to bring together researchers who study diverse biological phenomena such as schizophrenia, carcinogenesis, cellular reprograming, skin function, placental formation, plant mutagenesis and epigenetics, and small RNA-mediated heterochromatinization, where TEs are involved in various ways. The meeting included 13 invited speakers. Here we present highlights of these invited talks.
Collapse
|