51
|
Almeida MV, Dietz S, Redl S, Karaulanov E, Hildebrandt A, Renz C, Ulrich HD, König J, Butter F, Ketting RF. GTSF-1 is required for formation of a functional RNA-dependent RNA Polymerase complex in Caenorhabditis elegans. EMBO J 2018; 37:embj.201899325. [PMID: 29769402 DOI: 10.15252/embj.201899325] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 11/09/2022] Open
Abstract
Argonaute proteins and their associated small RNAs (sRNAs) are evolutionarily conserved regulators of gene expression. Gametocyte-specific factor 1 (Gtsf1) proteins, characterized by two tandem CHHC zinc fingers and an unstructured C-terminal tail, are conserved in animals and have been shown to interact with Piwi clade Argonautes, thereby assisting their activity. We identified the Caenorhabditis elegans Gtsf1 homolog, named it gtsf-1 and characterized it in the context of the sRNA pathways of C. elegans We report that GTSF-1 is not required for Piwi-mediated gene silencing. Instead, gtsf-1 mutants show a striking depletion of 26G-RNAs, a class of endogenous sRNAs, fully phenocopying rrf-3 mutants. We show, both in vivo and in vitro, that GTSF-1 interacts with RRF-3 via its CHHC zinc fingers. Furthermore, we demonstrate that GTSF-1 is required for the assembly of a larger RRF-3 and DCR-1-containing complex (ERIC), thereby allowing for 26G-RNA generation. We propose that GTSF-1 homologs may act to drive the assembly of larger complexes that act in sRNA production and/or in imposing sRNA-mediated silencing activities.
Collapse
Affiliation(s)
| | - Sabrina Dietz
- Quantitative Proteomics Group, Institute of Molecular Biology, Mainz, Germany
| | - Stefan Redl
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Mainz, Germany
| | - Emil Karaulanov
- Bioinformatics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Andrea Hildebrandt
- Genomic Views of Splicing Regulation Group, Institute of Molecular Biology, Mainz, Germany
| | - Christian Renz
- Maintenance of Genome Stability Group, Institute of Molecular Biology, Mainz, Germany
| | - Helle D Ulrich
- Maintenance of Genome Stability Group, Institute of Molecular Biology, Mainz, Germany
| | - Julian König
- Genomic Views of Splicing Regulation Group, Institute of Molecular Biology, Mainz, Germany
| | - Falk Butter
- Quantitative Proteomics Group, Institute of Molecular Biology, Mainz, Germany
| | - René F Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Mainz, Germany
| |
Collapse
|
52
|
Parikh RY, Lin H, Gangaraju VK. A critical role for nucleoporin 358 (Nup358) in transposon silencing and piRNA biogenesis in Drosophila. J Biol Chem 2018; 293:9140-9147. [PMID: 29735528 DOI: 10.1074/jbc.ac118.003264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/27/2018] [Indexed: 01/10/2023] Open
Abstract
Piwi-interacting RNAs (piRNAs) are a class of small noncoding RNAs that bind Piwi proteins to silence transposons and to regulate gene expression. In Drosophila germ cells, the Aubergine (Aub)-Argonaute 3 (Ago3)-dependent ping-pong cycle generates most germline piRNAs. Loading of antisense piRNAs amplified by this cycle enables Piwi to enter the nucleus and silence transposons. Nuclear localization is crucial for Piwi function in transposon silencing, but how this process is regulated remains unknown. It is also not known whether any of the components of the nuclear pore complex (NPC) directly function in the piRNA pathway. Here, we show that nucleoporin 358 (Nup358) and Piwi interact with each other and that a germline knockdown (GLKD) of Nup358 with short hairpin RNA prevents Piwi entry into the nucleus. The Nup358 GLKD also activated transposons, increased genomic instability, and derailed piRNA biogenesis because of a combination of decreased piRNA precursor transcription and a collapse of the ping-pong cycle. Our results point to a critical role for Nup358 in the piRNA pathway, laying the foundation for future studies to fully elucidate the mechanisms by which Nup358 contributes to piRNA biogenesis and transposon silencing.
Collapse
Affiliation(s)
- Rasesh Y Parikh
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University, New Haven, Connecticut 06510
| | - Vamsi K Gangaraju
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425 and
| |
Collapse
|
53
|
Teo RYW, Anand A, Sridhar V, Okamura K, Kai T. Heterochromatin protein 1a functions for piRNA biogenesis predominantly from pericentric and telomeric regions in Drosophila. Nat Commun 2018; 9:1735. [PMID: 29728561 PMCID: PMC5935673 DOI: 10.1038/s41467-018-03908-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/22/2018] [Indexed: 02/06/2023] Open
Abstract
In metazoan germline, Piwi-interacting RNAs (piRNAs) provide defence against transposons. Piwi-piRNA complex mediates transcriptional silencing of transposons in nucleus. Heterochromatin protein 1a (HP1a) has been proposed to function downstream of Piwi-piRNA complex in Drosophila. Here we show that HP1a germline knockdown (HP1a-GLKD) leads to a reduction in the total and Piwi-bound piRNAs mapping to clusters and transposons insertions, predominantly in the regions close to telomeres and centromeres, resulting in derepression of a limited number of transposons from these regions. In addition, HP1a-GLKD increases the splicing of transcripts arising from clusters in above regions, suggesting HP1a also functions upstream to piRNA processing. Evolutionarily old transposons enriched in the pericentric regions exhibit significant loss in piRNAs targeting these transposons upon HP1a-GLKD. Our study suggests that HP1a functions to repress transposons in a chromosomal compartmentalised manner.
Collapse
Affiliation(s)
- Ryan Yee Wei Teo
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
- Department of Pathology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Amit Anand
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore, Singapore.
| | - Vishweshwaren Sridhar
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore, Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
| | - Toshie Kai
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
54
|
Abstract
Temperature has a major impact on gene expression in ectotherms. But until recently, it was not clear in which way, if any, small non-coding RNAs such as miRNAs or piRNAs contribute to thermosensitive gene regulation. We have recently shown that temperature-responsive miRNAs in Drosophila drive adaptation to different ambient temperatures on the transcriptome level. Moreover, we demonstrated that higher temperatures lead to a more efficient piRNA-dependent transposon silencing, possibly due to heat-induced unfolding of RNA secondary structures. In this commentary, we will dwell upon particular interesting aspects connected to our findings, hoping that our point of view may encourage other scientists to address some of the questions raised here. We will particularly focus on aspects related to climate-dependent transposon propagation in evolution and putative transgenerational epigenetic effects of altered small RNA transcriptomes. We further briefly indicate how temperature-responsive miRNAs may confound the interpretation of data obtained from experiments comprising heat-shock treatment which is a widely used technique not only in Drosophila genetics.
Collapse
Affiliation(s)
- Isabel Fast
- a Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz , Germany
| | - David Rosenkranz
- a Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz , Germany
| |
Collapse
|
55
|
Yamashiro H, Siomi MC. PIWI-Interacting RNA in Drosophila: Biogenesis, Transposon Regulation, and Beyond. Chem Rev 2017; 118:4404-4421. [PMID: 29281264 DOI: 10.1021/acs.chemrev.7b00393] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are germline-enriched small RNAs that control transposons to maintain genome integrity. To achieve this, upon being processed from piRNA precursors, most of which are transcripts of intergenic piRNA clusters, piRNAs bind PIWI proteins, germline-specific Argonaute proteins, to form effector complexes. The mechanism of this piRNA-mediated transposon silencing pathway is fundamentally similar to that of siRNA/miRNA-dependent gene silencing in that a small RNA guides its partner Argonaute protein to target gene transcripts for repression via RNA-RNA base pairing. However, the uniqueness of this piRNA pathway has emerged through intensive genetic, biochemical, bioinformatic, and structural investigations. Here, we review the studies that elucidated the piRNA pathway, mainly in Drosophila, by describing both historical and recent progress. Studies in other species that have made important contributions to the field are also described.
Collapse
Affiliation(s)
- Haruna Yamashiro
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| |
Collapse
|