51
|
Jiang H. Quality control pathways of tail-anchored proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118922. [PMID: 33285177 DOI: 10.1016/j.bbamcr.2020.118922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/14/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022]
Abstract
Tail-anchored (TA) proteins have an N-terminal domain in the cytosol and a C-terminal transmembrane domain anchored to a variety of organelle membranes. TA proteins are recognized by targeting factors at the transmembrane domain and C-terminal sequence and are guided to distinct membranes. The promiscuity of targeting sequences and the dysfunction of targeting pathways cause mistargeting of TA proteins. TA proteins are under surveillance by quality control pathways. For resident TA proteins at mitochondrial and ER membranes, intrinsic instability or stimuli induced degrons of the cytosolic and transmembrane domains are sensed by quality control factors to initiate degradation of TA proteins. These pathways are summarized as TA protein degradation-Cytosol (TAD-C) and TAD-Membrane (TAD-M) pathways. For mistargeted and a subset of solitary TA proteins at mitochondrial and peroxisomal membranes, a unique pathway has been revealed in recent years. Msp1/ATAD1 is an AAA-ATPase dually-localized to mitochondrial and peroxisomal membranes. It directly recognizes mistargeted and solitary TA proteins and dislocates them out of membrane. Dislocated substrates are subsequently ubiquitinated by the ER-resident Doa10 ubiquitin E3 ligase complex for degradation. We summarize and discuss the substrate recognition, dislocation and degradation mechanisms of the Msp1 pathway.
Collapse
Affiliation(s)
- Hui Jiang
- National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100871, China.
| |
Collapse
|
52
|
Alsayyah C, Ozturk O, Cavellini L, Belgareh-Touzé N, Cohen MM. The regulation of mitochondrial homeostasis by the ubiquitin proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148302. [PMID: 32861697 DOI: 10.1016/j.bbabio.2020.148302] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
From mitochondrial quality control pathways to the regulation of specific functions, the Ubiquitin Proteasome System (UPS) could be compared to a Swiss knife without which mitochondria could not maintain its integrity in the cell. Here, we review the mechanisms that the UPS employs to regulate mitochondrial function and efficiency. For this purpose, we depict how Ubiquitin and the Proteasome participate in diverse quality control pathways that safeguard entry into the mitochondrial compartment. A focus is then achieved on the UPS-mediated control of the yeast mitofusin Fzo1 which provides insights into the complex regulation of this particular protein in mitochondrial fusion. We ultimately dissect the mechanisms by which the UPS controls the degradation of mitochondria by autophagy in both mammalian and yeast systems. This organization should offer a useful overview of this abundant but fascinating literature on the crosstalks between mitochondria and the UPS.
Collapse
Affiliation(s)
- Cynthia Alsayyah
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Oznur Ozturk
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Laetitia Cavellini
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Naïma Belgareh-Touzé
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Mickael M Cohen
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France.
| |
Collapse
|
53
|
Zeng M, He Y, Du H, Yang J, Wan H. Output Regulation and Function Optimization of Mitochondria in Eukaryotes. Front Cell Dev Biol 2020; 8:598112. [PMID: 33330486 PMCID: PMC7718039 DOI: 10.3389/fcell.2020.598112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
The emergence of endosymbiosis between aerobic alpha-proteobacterium and anaerobic eukaryotic cell precursors opened the chapter of eukaryotic evolution. Multiple functions of mitochondria originated from the ancient precursors of mitochondria and underwent remodeling in eukaryotic cells. Due to the dependence on mitochondrial functions, eukaryotic cells need to constantly adjust mitochondrial output based on energy demand and cellular stress. Meanwhile, eukaryotes conduct the metabolic cooperation between different cells through the involvement of mitochondria. Under some conditions, mitochondria might also be transferred to nearby cells to provide a protective mechanism. However, the endosymbiont relationship determines the existence of various types of mitochondrial injury, such as proteotoxic stress, mutational meltdown, oxidative injure, and immune activation caused by released mitochondrial contents. Eukaryotes have a repertoire of mitochondrial optimization processes, including various mitochondrial quality-control proteins, regulation of mitochondrial dynamics and activation of mitochondrial autophagy. When these quality-control processes fail, eukaryotic cells can activate apoptosis to intercept uncontrolled cell death, thereby minimizing the damage to extracellular tissue. In this review, we describe the intracellular and extracellular context-based regulation of mitochondrial output in eukaryotic cells, and introduce new findings on multifaceted quality-control processes to deal with mitochondrial defects.
Collapse
Affiliation(s)
- Miaolin Zeng
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haixia Du
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
54
|
Mammalian Homologue NME3 of DYNAMO1 Regulates Peroxisome Division. Int J Mol Sci 2020; 21:ijms21218040. [PMID: 33126676 PMCID: PMC7662248 DOI: 10.3390/ijms21218040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
Peroxisomes proliferate by sequential processes comprising elongation, constriction, and scission of peroxisomal membrane. It is known that the constriction step is mediated by a GTPase named dynamin-like protein 1 (DLP1) upon efficient loading of GTP. However, mechanism of fuelling GTP to DLP1 remains unknown in mammals. We earlier show that nucleoside diphosphate (NDP) kinase-like protein, termed dynamin-based ring motive-force organizer 1 (DYNAMO1), generates GTP for DLP1 in a red alga, Cyanidioschyzon merolae. In the present study, we identified that nucleoside diphosphate kinase 3 (NME3), a mammalian homologue of DYNAMO1, localizes to peroxisomes. Elongated peroxisomes were observed in cells with suppressed expression of NME3 and fibroblasts from a patient lacking NME3 due to the homozygous mutation at the initiation codon of NME3. Peroxisomes proliferated by elevation of NME3 upon silencing the expression of ATPase family AAA domain containing 1, ATAD1. In the wild-type cells expressing catalytically-inactive NME3, peroxisomes were elongated. These results suggest that NME3 plays an important role in peroxisome division in a manner dependent on its NDP kinase activity. Moreover, the impairment of peroxisome division reduces the level of ether-linked glycerophospholipids, ethanolamine plasmalogens, implying the physiological importance of regulation of peroxisome morphology.
Collapse
|
55
|
Abstract
Mitochondria contain about 1,000-1,500 proteins that fulfil multiple functions. Mitochondrial proteins originate from two genomes: mitochondrial and nuclear. Hence, proper mitochondrial function requires synchronization of gene expression in the nucleus and in mitochondria and necessitates efficient import of mitochondrial proteins into the organelle from the cytosol. Furthermore, the mitochondrial proteome displays high plasticity to allow the adaptation of mitochondrial function to cellular requirements. Maintenance of this complex and adaptable mitochondrial proteome is challenging, but is of crucial importance to cell function. Defects in mitochondrial proteostasis lead to proteotoxic insults and eventually cell death. Different quality control systems monitor the mitochondrial proteome. The cytosolic ubiquitin-proteasome system controls protein transport across the mitochondrial outer membrane and removes damaged or mislocalized proteins. Concomitantly, a number of mitochondrial chaperones and proteases govern protein folding and degrade damaged proteins inside mitochondria. The quality control factors also regulate processing and turnover of native proteins to control protein import, mitochondrial metabolism, signalling cascades, mitochondrial dynamics and lipid biogenesis, further ensuring proper function of mitochondria. Thus, mitochondrial protein quality control mechanisms are of pivotal importance to integrate mitochondria into the cellular environment.
Collapse
|
56
|
Wang L, Walter P. Msp1/ATAD1 in Protein Quality Control and Regulation of Synaptic Activities. Annu Rev Cell Dev Biol 2020; 36:141-164. [DOI: 10.1146/annurev-cellbio-031220-015840] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial function depends on the efficient import of proteins synthesized in the cytosol. When cells experience stress, the efficiency and faithfulness of the mitochondrial protein import machinery are compromised, leading to homeostatic imbalances and damage to the organelle. Yeast Msp1 (mitochondrial sorting of proteins 1) and mammalian ATAD1 (ATPase family AAA domain–containing 1) are orthologous AAA proteins that, fueled by ATP hydrolysis, recognize and extract mislocalized membrane proteins from the outer mitochondrial membrane. Msp1 also extracts proteins that have become stuck in the import channel. The extracted proteins are targeted for proteasome-dependent degradation or, in the case of mistargeted tail-anchored proteins, are given another chance to be routed correctly. In addition, ATAD1 is implicated in the regulation of synaptic plasticity, mediating the release of neurotransmitter receptors from postsynaptic scaffolds to allow their trafficking. Here we discuss how structural and functional specialization imparts the unique properties that allow Msp1/ATAD1 ATPases to fulfill these diverse functions and also highlight outstanding questions in the field.
Collapse
Affiliation(s)
- Lan Wang
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143, USA;,
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143, USA;,
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94122, USA
| |
Collapse
|
57
|
McKenna MJ, Sim SI, Ordureau A, Wei L, Harper JW, Shao S, Park E. The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase. Science 2020; 369:eabc5809. [PMID: 32973005 PMCID: PMC8053355 DOI: 10.1126/science.abc5809] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/28/2020] [Indexed: 01/28/2023]
Abstract
Organelle identity depends on protein composition. How mistargeted proteins are selectively recognized and removed from organelles is incompletely understood. Here, we found that the orphan P5A-adenosine triphosphatase (ATPase) transporter ATP13A1 (Spf1 in yeast) directly interacted with the transmembrane segment (TM) of mitochondrial tail-anchored proteins. P5A-ATPase activity mediated the extraction of mistargeted proteins from the endoplasmic reticulum (ER). Cryo-electron microscopy structures of Saccharomyces cerevisiae Spf1 revealed a large, membrane-accessible substrate-binding pocket that alternately faced the ER lumen and cytosol and an endogenous substrate resembling an α-helical TM. Our results indicate that the P5A-ATPase could dislocate misinserted hydrophobic helices flanked by short basic segments from the ER. TM dislocation by the P5A-ATPase establishes an additional class of P-type ATPase substrates and may correct mistakes in protein targeting or topogenesis.
Collapse
Affiliation(s)
- Michael J McKenna
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sue Im Sim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Alban Ordureau
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lianjie Wei
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Eunyong Park
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
58
|
Cytosolic Events in the Biogenesis of Mitochondrial Proteins. Trends Biochem Sci 2020; 45:650-667. [DOI: 10.1016/j.tibs.2020.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/18/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023]
|
59
|
The AAA+ ATPase Msp1 is a processive protein translocase with robust unfoldase activity. Proc Natl Acad Sci U S A 2020; 117:14970-14977. [PMID: 32541053 DOI: 10.1073/pnas.1920109117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Msp1 is a conserved eukaryotic AAA+ ATPase localized to the outer mitochondrial membrane, where it is thought to extract mislocalized tail-anchored proteins. Despite recent in vivo and in vitro studies supporting this function, a mechanistic understanding of how Msp1 extracts its substrates is still lacking. Msp1's ATPase activity depends on its hexameric state, and previous characterizations of the cytosolic AAA+ domain in vitro had proved challenging due to its monomeric nature in the absence of the transmembrane domain. Here, we used a hexamerization scaffold to study the substrate-processing mechanism of the soluble Msp1 motor, the functional homo-hexameric state of which was confirmed by negative-stain electron microscopy. We demonstrate that Msp1 is a robust bidirectional protein translocase that is able to unfold diverse substrates by processive threading through its central pore. This unfoldase activity is inhibited by Pex3, a membrane protein proposed to regulate Msp1 at the peroxisome.
Collapse
|
60
|
Phillips BP, Gomez-Navarro N, Miller EA. Protein quality control in the endoplasmic reticulum. Curr Opin Cell Biol 2020; 65:96-102. [PMID: 32408120 PMCID: PMC7588826 DOI: 10.1016/j.ceb.2020.04.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 04/02/2020] [Indexed: 11/30/2022]
Abstract
Misfolded and mistargeted proteins in the early secretory pathway present significant risks to the cell. A diverse and integrated network of quality control pathways protects the cell from these threats. We focus on the discovery of new mechanisms that contribute to this protective network. Biochemical and structural advances in endoplasmic reticulum targeting fidelity, and in the redistribution of mistargeted substrates are discussed. We further review new discoveries in quality control at the inner nuclear membrane in the context of orphaned subunits. We consider developments in our understanding of cargo selection for endoplasmic reticulum export. Conflicting data on quality control by cargo receptor proteins are discussed and we look to important future questions for the field.
Collapse
|
61
|
Ravanelli S, den Brave F, Hoppe T. Mitochondrial Quality Control Governed by Ubiquitin. Front Cell Dev Biol 2020; 8:270. [PMID: 32391359 PMCID: PMC7193050 DOI: 10.3389/fcell.2020.00270] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are essential organelles important for energy production, proliferation, and cell death. Biogenesis, homeostasis, and degradation of this organelle are tightly controlled to match cellular needs and counteract chronic stress conditions. Despite providing their own DNA, the vast majority of mitochondrial proteins are encoded in the nucleus, synthesized by cytosolic ribosomes, and subsequently imported into different mitochondrial compartments. The integrity of the mitochondrial proteome is permanently challenged by defects in folding, transport, and turnover of mitochondrial proteins. Therefore, damaged proteins are constantly sequestered from the outer mitochondrial membrane and targeted for proteasomal degradation in the cytosol via mitochondrial-associated degradation (MAD). Recent studies identified specialized quality control mechanisms important to decrease mislocalized proteins, which affect the mitochondrial import machinery. Interestingly, central factors of these ubiquitin-dependent pathways are shared with the ER-associated degradation (ERAD) machinery, indicating close collaboration between both tubular organelles. Here, we summarize recently described cellular stress response mechanisms, which are triggered by defects in mitochondrial protein import and quality control. Moreover, we discuss how ubiquitin-dependent degradation is integrated with cytosolic stress responses, particularly focused on the crosstalk between MAD and ERAD.
Collapse
Affiliation(s)
- Sonia Ravanelli
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Fabian den Brave
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
62
|
Metzger MB, Scales JL, Dunklebarger MF, Loncarek J, Weissman AM. A protein quality control pathway at the mitochondrial outer membrane. eLife 2020; 9:51065. [PMID: 32118579 PMCID: PMC7136024 DOI: 10.7554/elife.51065] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/01/2020] [Indexed: 12/27/2022] Open
Abstract
Maintaining the essential functions of mitochondria requires mechanisms to recognize and remove misfolded proteins. However, quality control (QC) pathways for misfolded mitochondrial proteins remain poorly defined. Here, we establish temperature-sensitive (ts-) peripheral mitochondrial outer membrane (MOM) proteins as novel model QC substrates in Saccharomyces cerevisiae. The ts- proteins sen2-1HAts and sam35-2HAts are degraded from the MOM by the ubiquitin-proteasome system. Ubiquitination of sen2-1HAts is mediated by the ubiquitin ligase (E3) Ubr1, while sam35-2HAts is ubiquitinated primarily by San1. Mitochondria-associated degradation (MAD) of both substrates requires the SSA family of Hsp70s and the Hsp40 Sis1, providing the first evidence for chaperone involvement in MAD. In addition to a role for the Cdc48-Npl4-Ufd1 AAA-ATPase complex, Doa1 and a mitochondrial pool of the transmembrane Cdc48 adaptor, Ubx2, are implicated in their degradation. This study reveals a unique QC pathway comprised of a combination of cytosolic and mitochondrial factors that distinguish it from other cellular QC pathways.
Collapse
Affiliation(s)
- Meredith B Metzger
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, United States
| | - Jessica L Scales
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, United States
| | - Mitchell F Dunklebarger
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, United States
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, United States
| | - Allan M Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, United States
| |
Collapse
|
63
|
Abstract
Mitochondrial biogenesis requires the import of approximately 1,000 different proteins through a labyrinth of channels to reach the appropriate sub-organellar location. A new study now reports that, in response to stalled import complexes, an adaptive transcriptional response dubbed the mitoCPR is triggered to extract these stalled complexes into the cytosol for degradation.
Collapse
|
64
|
Basch M, Wagner M, Rolland S, Carbonell A, Zeng R, Khosravi S, Schmidt A, Aftab W, Imhof A, Wagener J, Conradt B, Wagener N. Msp1 cooperates with the proteasome for extraction of arrested mitochondrial import intermediates. Mol Biol Cell 2020; 31:753-767. [PMID: 32049577 PMCID: PMC7185958 DOI: 10.1091/mbc.e19-06-0329] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mitochondrial AAA ATPase Msp1 is well known for extraction of mislocalized tail-anchored ER proteins from the mitochondrial outer membrane. Here, we analyzed the extraction of precursors blocking the import pore in the outer membrane. We demonstrate strong genetic interactions of Msp1 and the proteasome with components of the TOM complex, the main translocase in the outer membrane. Msp1 and the proteasome both contribute to the removal of arrested precursor proteins that specifically accumulate in these mutants. The proteasome activity is essential for the removal as proteasome inhibitors block extraction. Furthermore, the proteasomal subunit Rpn10 copurified with Msp1. The human Msp1 homologue has been implicated in neurodegenerative diseases, and we show that the lack of the Caenorhabditis elegans Msp1 homologue triggers an import stress response in the worm, which indicates a conserved role in metazoa. In summary, our results suggest a role of Msp1 as an adaptor for the proteasome that drives the extraction of arrested and mislocalized proteins at the mitochondrial outer membrane.
Collapse
Affiliation(s)
- Marion Basch
- Zell- und Entwicklungsbiologie, Department Biologie II, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Mirjam Wagner
- Zell- und Entwicklungsbiologie, Department Biologie II, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Stéphane Rolland
- Zell- und Entwicklungsbiologie, Department Biologie II, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Andres Carbonell
- Zell- und Entwicklungsbiologie, Department Biologie II, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Rachel Zeng
- Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| | - Siavash Khosravi
- Zellbiologie-Anatomie III, Biomedizinisches Centrum, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Andreas Schmidt
- Protein Analysis Unit ZfP, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Wasim Aftab
- Protein Analysis Unit ZfP, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Axel Imhof
- Protein Analysis Unit ZfP, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Johannes Wagener
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg 97080, Germany
| | - Barbara Conradt
- Zell- und Entwicklungsbiologie, Department Biologie II, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Nikola Wagener
- Zell- und Entwicklungsbiologie, Department Biologie II, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany.,Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| |
Collapse
|
65
|
Wang L, Myasnikov A, Pan X, Walter P. Structure of the AAA protein Msp1 reveals mechanism of mislocalized membrane protein extraction. eLife 2020; 9:e54031. [PMID: 31999255 PMCID: PMC7018516 DOI: 10.7554/elife.54031] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/29/2020] [Indexed: 01/03/2023] Open
Abstract
The AAA protein Msp1 extracts mislocalized tail-anchored membrane proteins and targets them for degradation, thus maintaining proper cell organization. How Msp1 selects its substrates and firmly engages them during the energetically unfavorable extraction process remains a mystery. To address this question, we solved cryo-EM structures of Msp1-substrate complexes at near-atomic resolution. Akin to other AAA proteins, Msp1 forms hexameric spirals that translocate substrates through a central pore. A singular hydrophobic substrate recruitment site is exposed at the spiral's seam, which we propose positions the substrate for entry into the pore. There, a tight web of aromatic amino acids grips the substrate in a sequence-promiscuous, hydrophobic milieu. Elements at the intersubunit interfaces coordinate ATP hydrolysis with the subunits' positions in the spiral. We present a comprehensive model of Msp1's mechanism, which follows general architectural principles established for other AAA proteins yet specializes Msp1 for its unique role in membrane protein extraction.
Collapse
Affiliation(s)
- Lan Wang
- Howard Hughes Medical InstituteChevy Chase, MarylandUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Alexander Myasnikov
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Centre for Integrative Biology, Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de StrasbourgIllkirchFrance
| | - Xingjie Pan
- UCSF/UCB Graduate Program in Bioengineering, University of California, San FranciscoSan FranciscoUnited States
| | - Peter Walter
- Howard Hughes Medical InstituteChevy Chase, MarylandUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
66
|
Abstract
Due to their topology tail-anchored (TA) proteins must target to the membrane independently of the co-translational route defined by the signal sequence recognition particle (SRP), its receptor and the translocon Sec61. More than a decade of work has extensively characterized a highly conserved pathway, the yeast GET or mammalian TRC40 pathway, which is capable of countering the biogenetic challenge posed by the C-terminal TA anchor. In this review we briefly summarize current models of this targeting route and focus on emerging aspects such as the intricate interplay with the proteostatic network of cells and with other targeting pathways. Importantly, we consider the lessons provided by the in vivo analysis of the pathway in different model organisms and by the consideration of its full client spectrum in more recent studies. This analysis of the state of the field highlights directions in which the current models may be experimentally probed and conceptually extended.
Collapse
Affiliation(s)
- Nica Borgese
- Institute of Neuroscience and BIOMETRA Department, Consiglio Nazionale delle Ricerche and Università degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy.
| | - Javier Coy-Vergara
- Department of Molecular Biology, University of Göttingen Medical Centre, Humboldtallee 23, 37073, Göttingen, Germany
| | - Sara Francesca Colombo
- Institute of Neuroscience and BIOMETRA Department, Consiglio Nazionale delle Ricerche and Università degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Blanche Schwappach
- Department of Molecular Biology, University of Göttingen Medical Centre, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
67
|
Kater L, Wagener N, Berninghausen O, Becker T, Neupert W, Beckmann R. Structure of the Bcs1 AAA-ATPase suggests an airlock-like translocation mechanism for folded proteins. Nat Struct Mol Biol 2020; 27:142-149. [DOI: 10.1038/s41594-019-0364-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/13/2019] [Indexed: 11/09/2022]
|
68
|
Vitali DG, Drwesh L, Cichocki BA, Kolb A, Rapaport D. The Biogenesis of Mitochondrial Outer Membrane Proteins Show Variable Dependence on Import Factors. iScience 2019; 23:100779. [PMID: 31945731 PMCID: PMC6965732 DOI: 10.1016/j.isci.2019.100779] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/12/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Biogenesis of mitochondrial outer membrane proteins involves their integration into the lipid bilayer. Among these proteins are those that form a single-span topology, but our understanding of their biogenesis is scarce. In this study, we found that the MIM complex is required for the membrane insertion of some single-span proteins. However, other such proteins integrate into the membrane in a MIM-independent manner. Moreover, the biogenesis of the studied proteins was dependent to a variable degree on the TOM receptors Tom20 and Tom70. We found that Atg32 C-terminal domain mediates dependency on Tom20, whereas the cytosolic domains of Atg32 and Gem1 facilitate MIM involvement. Collectively, our findings (1) enlarge the repertoire of MIM substrates to include also tail-anchored proteins, (2) provide new mechanistic insights to the functions of the MIM complex and TOM import receptors, and (3) demonstrate that the biogenesis of MOM single-span proteins shows variable dependence on import factors.
Collapse
Affiliation(s)
- Daniela G Vitali
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Layla Drwesh
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Bogdan A Cichocki
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Antonia Kolb
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.
| |
Collapse
|
69
|
Kampinga HH, Mayer MP, Mogk A. Protein quality control: from mechanism to disease : EMBO Workshop, Costa de la Calma (Mallorca), Spain, April 28 - May 03, 2019. Cell Stress Chaperones 2019; 24:1013-1026. [PMID: 31713048 PMCID: PMC6882752 DOI: 10.1007/s12192-019-01040-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
The cellular protein quality control machinery with its central constituents of chaperones and proteases is vital to maintain protein homeostasis under physiological conditions and to protect against acute stress conditions. Imbalances in protein homeostasis also are keys to a plethora of genetic and acquired, often age-related, diseases as well as aging in general. At the EMBO Workshop, speakers covered all major aspects of cellular protein quality control, from basic mechanisms at the molecular, cellular, and organismal level to medical translation. In this report, the highlights of the meeting will be summarized.
Collapse
Affiliation(s)
- Harm H Kampinga
- Department of Biomedical Science of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Matthias P Mayer
- Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| | - Axel Mogk
- Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| |
Collapse
|
70
|
Hegde RS, Zavodszky E. Recognition and Degradation of Mislocalized Proteins in Health and Disease. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033902. [PMID: 30833453 DOI: 10.1101/cshperspect.a033902] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A defining feature of eukaryotic cells is the segregation of complex biochemical processes among different intracellular compartments. The protein targeting, translocation, and trafficking pathways that sustain compartmentalization must recognize a diverse range of clients via degenerate signals. This recognition is imperfect, resulting in polypeptides at incorrect cellular locations. Cells have evolved mechanisms to selectively recognize mislocalized proteins and triage them for degradation or rescue. These spatial quality control pathways maintain cellular protein homeostasis, become especially important during organelle stress, and might contribute to disease when they are impaired or overwhelmed.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Eszter Zavodszky
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
71
|
Molecular pathways of mitochondrial outer membrane protein degradation. Biochem Soc Trans 2019; 47:1437-1447. [DOI: 10.1042/bst20190275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 01/23/2023]
Abstract
Abstract
Mitochondrial outer membrane (MOM) encloses inner compartments of mitochondria and integrates cytoplasmic signals to regulate essential mitochondrial processes, such as protein import, dynamics, metabolism, cell death, etc. A substantial understanding of MOM associated proteostatic stresses and quality control pathways has been obtained in recent years. Six MOM associated protein degradation (MAD) pathways center on three AAA ATPases: Cdc48 in the cytoplasm, Msp1 integral to MOM, and Yme1 integral to the inner membrane. These pathways survey MOM proteome from the cytoplasmic and the inter-membrane space (IMS) sides. They detect and degrade MOM proteins with misfolded cytoplasmic and IMS domains, remove mistargeted tail-anchored proteins, and clear mitochondrial precursor proteins clogged in the TOM import complex. These MOM associated protein quality control pathways collaboratively maintain mitochondrial proteostasis and cell viability.
Collapse
|
72
|
Matsumoto S, Nakatsukasa K, Kakuta C, Tamura Y, Esaki M, Endo T. Msp1 Clears Mistargeted Proteins by Facilitating Their Transfer from Mitochondria to the ER. Mol Cell 2019; 76:191-205.e10. [DOI: 10.1016/j.molcel.2019.07.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/03/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
|
73
|
Fresenius HL, Wohlever ML. Sorting out how Msp1 maintains mitochondrial membrane proteostasis. Mitochondrion 2019; 49:128-134. [PMID: 31394253 DOI: 10.1016/j.mito.2019.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
Robust membrane proteostasis networks are essential for cells to withstand proteotoxic stress arising from environmental insult and intrinsic errors in protein production (Labbadia and Morimoto, 2015; Hegde and Zavodszky, 2019). Failures in mitochondrial membrane proteostasis are associated with cancer, aging, and a range of cardiovascular and neurodegenerative diseases (Wallace et al., 2010; Martin, 2012; Gustafsson and Gottlieb, 2007). As a result, mitochondria possess numerous pathways to maintain proteostasis (Avci and Lemberg, 2015; Shi et al., 2016; Weidberg and Amon, 2018; Shpilka and Haynes, 2018; Quirós et al., 2016; Sorrentino et al., 2017). Mitochondrial Sorting of Proteins 1 (Msp1) is a membrane anchored AAA ATPase that extracts proteins from the outer mitochondrial membrane (OMM) (Chen et al., 2014; Okreglak and Walter, 2014). In the past few years, several papers have addressed various aspects of Msp1 function. Here, we summarize these recent advances to build a basic model for how Msp1 maintains mitochondrial membrane proteostasis while also highlighting outstanding questions in the field.
Collapse
Affiliation(s)
- Heidi L Fresenius
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Matthew L Wohlever
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
74
|
Becker T, Song J, Pfanner N. Versatility of Preprotein Transfer from the Cytosol to Mitochondria. Trends Cell Biol 2019; 29:534-548. [PMID: 31030976 DOI: 10.1016/j.tcb.2019.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022]
Abstract
Mitochondrial biogenesis requires the import of a large number of precursor proteins from the cytosol. Although specific membrane-bound preprotein translocases have been characterized in detail, it was assumed that protein transfer from the cytosol to mitochondria mainly involved unselective binding to molecular chaperones. Recent findings suggest an unexpected versatility of protein transfer to mitochondria. Cytosolic factors have been identified that bind to selected subsets of preproteins and guide them to mitochondrial receptors in a post-translational manner. Cotranslational import processes are emerging. Mechanisms for crosstalk between protein targeting to mitochondria and other cell organelles, in particular the endoplasmic reticulum (ER) and peroxisomes, have been uncovered. We discuss how a network of cytosolic machineries and targeting pathways promote and regulate preprotein transfer into mitochondria.
Collapse
Affiliation(s)
- Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany.
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
75
|
Costello JL, Passmore JB, Islinger M, Schrader M. Multi-localized Proteins: The Peroxisome-Mitochondria Connection. Subcell Biochem 2019; 89:383-415. [PMID: 30378033 DOI: 10.1007/978-981-13-2233-4_17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peroxisomes and mitochondria are dynamic, multifunctional organelles that play pivotal cooperative roles in the metabolism of cellular lipids and reactive oxygen species. Their functional interplay, the "peroxisome-mitochondria connection", also includes cooperation in anti-viral signalling and defence, as well as coordinated biogenesis by sharing key division proteins. In this review, we focus on multi-localised proteins which are shared by peroxisomes and mitochondria in mammals. We first outline the targeting and sharing of matrix proteins which are involved in metabolic cooperation. Next, we discuss shared components of peroxisomal and mitochondrial dynamics and division, and we present novel insights into the dual targeting of tail-anchored membrane proteins. Finally, we provide an overview of what is currently known about the role of shared membrane proteins in disease. What emerges is that sharing of proteins between these two organelles plays a key role in their cooperative functions which, based on new findings, may be more extensive than originally envisaged. Gaining a better insight into organelle interplay and the targeting of shared proteins is pivotal to understanding how organelle cooperation contributes to human health and disease.
Collapse
Affiliation(s)
| | | | - Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine & Medical Technology Mannheim, Medical Faculty Manheim, University of Heidelberg, 68167, Mannheim, Germany
| | | |
Collapse
|
76
|
Dederer V, Khmelinskii A, Huhn AG, Okreglak V, Knop M, Lemberg MK. Cooperation of mitochondrial and ER factors in quality control of tail-anchored proteins. eLife 2019; 8:45506. [PMID: 31172943 PMCID: PMC6586462 DOI: 10.7554/elife.45506] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/06/2019] [Indexed: 01/04/2023] Open
Abstract
Tail-anchored (TA) proteins insert post-translationally into the endoplasmic reticulum (ER), the outer mitochondrial membrane (OMM) and peroxisomes. Whereas the GET pathway controls ER-targeting, no dedicated factors are known for OMM insertion, posing the question of how accuracy is achieved. The mitochondrial AAA-ATPase Msp1 removes mislocalized TA proteins from the OMM, but it is unclear, how Msp1 clients are targeted for degradation. Here we screened for factors involved in degradation of TA proteins mislocalized to mitochondria. We show that the ER-associated degradation (ERAD) E3 ubiquitin ligase Doa10 controls cytoplasmic level of Msp1 clients. Furthermore, we identified the uncharacterized OMM protein Fmp32 and the ectopically expressed subunit of the ER-mitochondria encounter structure (ERMES) complex Gem1 as native clients for Msp1 and Doa10. We propose that productive localization of TA proteins to the OMM is ensured by complex assembly, while orphan subunits are extracted by Msp1 and eventually degraded by Doa10.
Collapse
Affiliation(s)
- Verena Dederer
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Anton Khmelinskii
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Institute of Molecular Biology (IMB), Mainz, Germany
| | - Anna Gesine Huhn
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Voytek Okreglak
- Calico Life Sciences LLC, South San Francisco, United States
| | - Michael Knop
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Cell Morphogenesis and Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marius K Lemberg
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
77
|
Yang Y, Gunasekara M, Muhammednazaar S, Li Z, Hong H. Proteolysis mediated by the membrane-integrated ATP-dependent protease FtsH has a unique nonlinear dependence on ATP hydrolysis rates. Protein Sci 2019; 28:1262-1275. [PMID: 31008538 DOI: 10.1002/pro.3629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/17/2019] [Indexed: 12/16/2022]
Abstract
ATPases associated with diverse cellular activities (AAA+) proteases utilize ATP hydrolysis to actively unfold native or misfolded proteins and translocate them into a protease chamber for degradation. This basic mechanism yields diverse cellular consequences, including the removal of misfolded proteins, control of regulatory circuits, and remodeling of protein conformation. Among various bacterial AAA+ proteases, FtsH is only membrane-integrated and plays a key role in membrane protein quality control. Previously, we have shown that FtsH has substantial unfoldase activity for degrading membrane proteins overcoming a dual energetic burden of substrate unfolding and membrane dislocation. Here, we asked how efficiently FtsH utilizes ATP hydrolysis to degrade membrane proteins. To answer this question, we measured degradation rates of the model membrane substrate GlpG at various ATP hydrolysis rates in the lipid bilayers. We find that the dependence of degradation rates on ATP hydrolysis rates is highly nonlinear: (i) FtsH cannot degrade GlpG until it reaches a threshold ATP hydrolysis rate; (ii) after exceeding the threshold, the degradation rates steeply increase and saturate at the ATP hydrolysis rates far below the maxima. During the steep increase, FtsH efficiently utilizes ATP hydrolysis for degradation, consuming only 40-60% of the total ATP cost measured at the maximal ATP hydrolysis rates. This behavior does not fundamentally change against water-soluble substrates as well as upon addition of the macromolecular crowding agent Ficoll 70. The Hill analysis shows that the nonlinearity stems from coupling of three to five ATP hydrolysis events to degradation, which represents unique cooperativity compared to other AAA+ proteases including ClpXP, HslUV, Lon, and proteasomes.
Collapse
Affiliation(s)
- Yiqing Yang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824
| | - Mihiravi Gunasekara
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824
| | | | - Zhen Li
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824
| | - Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
78
|
Nicolas E, Tricarico R, Savage M, Golemis EA, Hall MJ. Disease-Associated Genetic Variation in Human Mitochondrial Protein Import. Am J Hum Genet 2019; 104:784-801. [PMID: 31051112 PMCID: PMC6506819 DOI: 10.1016/j.ajhg.2019.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction has consequences not only for cellular energy output but also for cellular signaling pathways. Mitochondrial dysfunction, often based on inherited gene variants, plays a role in devastating human conditions such as mitochondrial neuropathies, myopathies, cardiovascular disorders, and Parkinson and Alzheimer diseases. Of the proteins essential for mitochondrial function, more than 98% are encoded in the cell nucleus, translated in the cytoplasm, sorted based on the presence of encoded mitochondrial targeting sequences (MTSs), and imported to specific mitochondrial sub-compartments based on the integrated activity of a series of mitochondrial translocases, proteinases, and chaperones. This import process is typically dynamic; as cellular homeostasis is coordinated through communication between the mitochondria and the nucleus, many of the adaptive responses to stress depend on modulation of mitochondrial import. We here describe an emerging class of disease-linked gene variants that are found to impact the mitochondrial import machinery itself or to affect the proteins during their import into mitochondria. As a whole, this class of rare defects highlights the importance of correct trafficking of mitochondrial proteins in the cell and the potential implications of failed targeting on metabolism and energy production. The existence of this variant class could have importance beyond rare neuromuscular disorders, given an increasing body of evidence suggesting that aberrant mitochondrial function may impact cancer risk and therapeutic response.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Rossella Tricarico
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Michelle Savage
- Cancer Prevention and Control Program, Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Michael J Hall
- Cancer Prevention and Control Program, Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
79
|
Li L, Zheng J, Wu X, Jiang H. Mitochondrial AAA-ATPase Msp1 detects mislocalized tail-anchored proteins through a dual-recognition mechanism. EMBO Rep 2019; 20:embr.201846989. [PMID: 30858337 DOI: 10.15252/embr.201846989] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/28/2019] [Accepted: 02/11/2019] [Indexed: 01/09/2023] Open
Abstract
The conserved AAA-ATPase Msp1 is embedded in the outer mitochondrial membrane and removes mislocalized tail-anchored (TA) proteins upon dysfunction of the guided entry of tail-anchored (GET) pathway. It remains unclear how Msp1 recognizes its substrates. Here, we extensively characterize Msp1 and its substrates, including the mitochondrially targeted Pex15Δ30, and full-length Pex15, which mislocalizes to mitochondria upon dysfunction of Pex19 but not the GET pathway. Moreover, we identify two new substrates, Frt1 and Ysy6. Our results suggest that mislocalized TA proteins expose hydrophobic surfaces in the cytoplasm and are recognized by Msp1 through conserved hydrophobic residues. Introducing a hydrophobic patch into mitochondrial TA proteins transforms them into Msp1 substrates. In addition, Pex15Δ30 and Frt1 contain basic inter-membrane space (IMS) residues critical for their mitochondrial mistargeting. Remarkably, Msp1 recognizes this feature through the acidic D12 residue in its IMS domain. This dual-recognition mechanism involving interactions at the cytoplasmic and IMS domains of Msp1 and substrates greatly facilitates substrate recognition and is required by Msp1 to safeguard mitochondrial functions.
Collapse
Affiliation(s)
- Lanlan Li
- College of Life Sciences, Beijing Normal University, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China
| | - Jing Zheng
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Xi Wu
- National Institute of Biological Sciences, Beijing, China
| | - Hui Jiang
- National Institute of Biological Sciences, Beijing, China .,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
80
|
Mitochondrial presequence import: Multiple regulatory knobs fine-tune mitochondrial biogenesis and homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:930-944. [PMID: 30802482 DOI: 10.1016/j.bbamcr.2019.02.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
Mitochondria are pivotal organelles for cellular signaling and metabolism, and their dysfunction leads to severe cellular stress. About 60-70% of the mitochondrial proteome consists of preproteins synthesized in the cytosol with an amino-terminal cleavable presequence targeting signal. The TIM23 complex transports presequence signals towards the mitochondrial matrix. Ultimately, the mature protein segments are either transported into the matrix or sorted to the inner membrane. To ensure accurate preprotein import into distinct mitochondrial sub-compartments, the TIM23 machinery adopts specific functional conformations and interacts with different partner complexes. Regulatory subunits modulate the translocase dynamics, tailoring the import reaction to the incoming preprotein. The mitochondrial membrane potential and the ATP generated via oxidative phosphorylation are key energy sources in driving the presequence import pathway. Thus, mitochondrial dysfunctions have rapid repercussions on biogenesis. Cellular mechanisms exploit the presequence import pathway to monitor mitochondrial dysfunctions and mount transcriptional and proteostatic responses to restore functionality.
Collapse
|
81
|
Germany EM, Zahayko N, Huebsch ML, Fox JL, Prahlad V, Khalimonchuk O. The AAA ATPase Afg1 preserves mitochondrial fidelity and cellular health by maintaining mitochondrial matrix proteostasis. J Cell Sci 2018; 131:jcs.219956. [PMID: 30301782 DOI: 10.1242/jcs.219956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial functions are critical for cellular physiology; therefore, several conserved mechanisms are in place to maintain the functional integrity of mitochondria. However, many of the molecular details and components involved in ensuring mitochondrial fidelity remain obscure. Here, we identify a novel role for the conserved mitochondrial AAA ATPase Afg1 in mediating mitochondrial protein homeostasis during aging and in response to various cellular challenges. Saccharomyces cerevisiae cells lacking functional Afg1 are hypersensitive to oxidative insults, unable to tolerate protein misfolding in the matrix compartment and exhibit progressive mitochondrial failure as they age. Loss of the Afg1 ortholog LACE-1 in Caenorhabditis elegans is associated with reduced lifespan, impeded oxidative stress tolerance, impaired mitochondrial proteostasis in the motor neuron circuitry and altered behavioral plasticity. Our results indicate that Afg1 is a novel protein quality control factor, which plays an important evolutionarily conserved role in mitochondrial surveillance, and cellular and organismal health.
Collapse
Affiliation(s)
- Edward M Germany
- Department of Biochemistry, Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Nataliya Zahayko
- Department of Biochemistry, Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Mason L Huebsch
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA
| | - Jennifer L Fox
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA .,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
82
|
Abstract
The billions of proteins inside a eukaryotic cell are organized among dozens of sub-cellular compartments, within which they are further organized into protein complexes. The maintenance of both levels of organization is crucial for normal cellular function. Newly made proteins that fail to be segregated to the correct compartment or assembled into the appropriate complex are defined as orphans. In this review, we discuss the challenges faced by a cell of minimizing orphaned proteins, the quality control systems that recognize orphans, and the consequences of excess orphans for protein homeostasis and disease.
Collapse
|
83
|
Nithianantham S, McNally FJ, Al-Bassam J. Structural basis for disassembly of katanin heterododecamers. J Biol Chem 2018; 293:10590-10605. [PMID: 29752405 DOI: 10.1074/jbc.ra117.001215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/20/2018] [Indexed: 11/06/2022] Open
Abstract
The reorganization of microtubules in mitosis, meiosis, and development requires the microtubule-severing activity of katanin. Katanin is a heterodimer composed of an ATPase associated with diverse cellular activities (AAA) subunit and a regulatory subunit. Microtubule severing requires ATP hydrolysis by katanin's conserved AAA ATPase domains. Whereas other AAA ATPases form stable hexamers, we show that katanin forms only a monomer or dimers of heterodimers in solution. Katanin oligomers consistent with hexamers of heterodimers or heterododecamers were only observed for an ATP hydrolysis-deficient mutant in the presence of ATP. X-ray structures of katanin's AAA ATPase in monomeric nucleotide-free and pseudo-oligomeric ADP-bound states revealed conformational changes in the AAA subdomains that explained the structural basis for the instability of the katanin heterododecamer. We propose that the rapid dissociation of katanin AAA oligomers may lead to an autoinhibited state that prevents inappropriate microtubule severing or that cyclical disassembly into heterodimers may critically contribute to the microtubule-severing mechanism.
Collapse
Affiliation(s)
- Stanley Nithianantham
- From the Department of Molecular Cellular Biology University of California, Davis, California 95616
| | - Francis J McNally
- From the Department of Molecular Cellular Biology University of California, Davis, California 95616
| | - Jawdat Al-Bassam
- From the Department of Molecular Cellular Biology University of California, Davis, California 95616
| |
Collapse
|
84
|
Weidberg H, Amon A. MitoCPR-A surveillance pathway that protects mitochondria in response to protein import stress. Science 2018; 360:eaan4146. [PMID: 29650645 PMCID: PMC6528467 DOI: 10.1126/science.aan4146] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 12/19/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022]
Abstract
Mitochondrial functions are essential for cell viability and rely on protein import into the organelle. Various disease and stress conditions can lead to mitochondrial import defects. We found that inhibition of mitochondrial import in budding yeast activated a surveillance mechanism, mitoCPR, that improved mitochondrial import and protected mitochondria during import stress. mitoCPR induced expression of Cis1, which associated with the mitochondrial translocase to reduce the accumulation of mitochondrial precursor proteins at the mitochondrial translocase. Clearance of precursor proteins depended on the Cis1-interacting AAA+ adenosine triphosphatase Msp1 and the proteasome, suggesting that Cis1 facilitates degradation of unimported proteins. mitoCPR was required for maintaining mitochondrial functions when protein import was compromised, demonstrating the importance of mitoCPR in protecting the mitochondrial compartment.
Collapse
Affiliation(s)
- Hilla Weidberg
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
85
|
Figueiredo Costa B, Cassella P, Colombo SF, Borgese N. Discrimination between the endoplasmic reticulum and mitochondria by spontaneously inserting tail‐anchored proteins. Traffic 2018; 19:182-197. [DOI: 10.1111/tra.12550] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Bruna Figueiredo Costa
- CNR Institute of Neuroscience and BIOMETRA DepartmentUniversità degli Studi di Milano Milan Italy
| | - Patrizia Cassella
- CNR Institute of Neuroscience and BIOMETRA DepartmentUniversità degli Studi di Milano Milan Italy
| | | | | |
Collapse
|
86
|
Using Pull Down Strategies to Analyze the Interactome of Peroxisomal Membrane Proteins in Human Cells. Subcell Biochem 2018; 89:261-285. [PMID: 30378027 DOI: 10.1007/978-981-13-2233-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Different pull-down strategies were successfully applied to gain novel insight into the interactome of human membrane-associated proteins. Here, we compare the outcome, efficiency and potential of pull-down strategies applied to human peroxisomal membrane proteins. Stable membrane-bound protein complexes can be affinity-purified from genetically engineered human cells or subfractions thereof after detergent solubilization, followed by size exclusion chromatography and analysis by mass spectrometry (MS). As exemplified for Protein A-tagged human PEX14, one of the central constituents of the peroxisomal matrix protein import machinery, MS analyses of the affinity-purified complexes revealed an unexpected association of PEX14 with other protein assemblies like the microtubular network or the insertion apparatus for peroxisomal membrane proteins comprising PEX3, PEX16 and PEX19. The latter association was recently supported by using a different pull-down strategy following in vivo proximity labeling with biotin, named BioID, which enabled the identification of various membrane proteins in close proximity of PEX16 in living cells.
Collapse
|
87
|
Weir NR, Kamber RA, Martenson JS, Denic V. The AAA protein Msp1 mediates clearance of excess tail-anchored proteins from the peroxisomal membrane. eLife 2017; 6:28507. [PMID: 28906250 PMCID: PMC5633344 DOI: 10.7554/elife.28507] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/12/2017] [Indexed: 12/29/2022] Open
Abstract
Msp1 is a conserved AAA ATPase in budding yeast localized to mitochondria where it prevents accumulation of mistargeted tail-anchored (TA) proteins, including the peroxisomal TA protein Pex15. Msp1 also resides on peroxisomes but it remains unknown how native TA proteins on mitochondria and peroxisomes evade Msp1 surveillance. We used live-cell quantitative cell microscopy tools and drug-inducible gene expression to dissect Msp1 function. We found that a small fraction of peroxisomal Pex15, exaggerated by overexpression, is turned over by Msp1. Kinetic measurements guided by theoretical modeling revealed that Pex15 molecules at mitochondria display age-independent Msp1 sensitivity. By contrast, Pex15 molecules at peroxisomes are rapidly converted from an initial Msp1-sensitive to an Msp1-resistant state. Lastly, we show that Pex15 interacts with the peroxisomal membrane protein Pex3, which shields Pex15 from Msp1-dependent turnover. In sum, our work argues that Msp1 selects its substrates on the basis of their solitary membrane existence.
Collapse
Affiliation(s)
- Nicholas R Weir
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Roarke A Kamber
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - James S Martenson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|