51
|
Hu J, Chen Q, Ding X, Zheng X, Tang X, Li S, Yang H. Glutamine metabolism in the proliferation of GS-expression pituitary tumor cells. Endocr Connect 2020; 9:223-233. [PMID: 32069221 PMCID: PMC7077521 DOI: 10.1530/ec-19-0515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
Abstract
Objective Many cancer cells cannot survive without exogenous glutamine (Gln); however, cancer cells expressing glutamine synthetase (GS) do not have this restriction. Previous metabolomics studies have indicated that glutamine metabolism is altered during pituitary tumorigenesis. However, the main role of Gln in pituitary adenoma (PA) pathophysiology remains unknown. The aim of this study was to evaluate the expression of GS and the main role of Gln in human PAs. Methods We used cell proliferation assay and flow cytometry to assess the effect of Gln depletion on three different pituitary cell lines and human primary PA cells. We then investigated the expression level of Gln synthetase (GS) in 24 human PA samples. At last, we used LC-MS/MS to identify the differences in metabolites of PA cells after the blockage of both endogenous and exogenous Gln. Results PA cell lines showed different sensitivities to Gln starvation, and the sensitivity is correlated with GS expression level. GS expressed in 21 out of the 24 human PA samples. Furthermore, a positive p53 and ki-67 index was correlated with a higher GS expression level (P < 0.05). Removal of both endogenous and exogenous Gln from GS-expressing PA cells resulted in blockage of nucleotide metabolism and cell cycle arrest. Conclusions Our data indicate that GS is needed for PA cells to undergo proliferation during Gln deprivation, and most human PA cells express GS and might have a negative response to exogenous Gln depletion. Moreover, Gln is mainly responsible for nucleotide metabolism in the proliferation of GS-expressing pituitary tumor cells.
Collapse
Affiliation(s)
- Jintao Hu
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - Qingbo Chen
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - Xiao Ding
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - Xin Zheng
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - Xuefeng Tang
- Department of Pathology, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, China
| |
Collapse
|
52
|
Cai T, Hua B, Luo D, Xu L, Cheng Q, Yuan G, Yan Z, Sun N, Hua L, Lu C. The circadian protein CLOCK regulates cell metabolism via the mitochondrial carrier SLC25A10. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:1310-1321. [PMID: 30943427 DOI: 10.1016/j.bbamcr.2019.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/11/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022]
Abstract
Physiological function and metabolic regulation are the most important outputs of circadian clock controls in mammals. Mitochondrial respiration and ROS production show rhythmic activity. Mitochondrial carriers, which are responsible for mitochondrial substance transfer, are vital for mitochondrial metabolism. Clock (Circadian Locomotor Output Cycles Kaput) is the first core circadian gene identified in mammalian animals. However, whether CLOCK protein can regulate mitochondrial functions via mitochondrial carriers is unclear. Here, we showed that CLOCK can bind to the mitochondrial carrier SLC25A10. For further analysis, we established a Slc25a10-/--Hepa1-6 cell line using CRISPR/Cas9 gene-editing technology. Slc25a10-/--Hepa1-6 cells showed disordered glucose homeostasis, increased oxidative stress levels, and damaged electron transport chains. Next, using an immunoprecipitation assay, we found that amino acids 43-84 and 169-210 in SLC25A10 are key sites that respond to CLOCK binding. Finally, forced expression of wild-type SLC25A10 in Slc25a10-/--Hepa1-6 cells could compensate for the loss of SLC25A10; the decreased glucose metabolism, severe oxidative stress and damaged electron transport chain were recovered. In addition, a mutant Slc25a10 with changes in two key sites did not show a rescue effect. In conclusion, we identified a new protein-protein interaction mechanism in which CLOCK can directly regulate cell metabolism via the mitochondrial membrane transporter SLC25A10. Our study might provide some new insights into the relationship between circadian clock and mitochondrial metabolism.
Collapse
Affiliation(s)
- Tingting Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Bingxuan Hua
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai First People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Lirong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Qianyun Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Gongsheng Yuan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Zuoqin Yan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Luchun Hua
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Chao Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
| |
Collapse
|
53
|
Petkau N, Budak H, Zhou X, Oster H, Eichele G. Acetylation of BMAL1 by TIP60 controls BRD4-P-TEFb recruitment to circadian promoters. eLife 2019; 8:e43235. [PMID: 31294688 PMCID: PMC6650244 DOI: 10.7554/elife.43235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/10/2019] [Indexed: 12/22/2022] Open
Abstract
Many physiological processes exhibit circadian rhythms driven by cellular clocks composed of interlinked activating and repressing elements. To investigate temporal regulation in this molecular oscillator, we combined mouse genetic approaches and analyses of interactions of key circadian proteins with each other and with clock gene promoters. We show that transcriptional activators control BRD4-PTEFb recruitment to E-box-containing circadian promoters. During the activating phase of the circadian cycle, the lysine acetyltransferase TIP60 acetylates the transcriptional activator BMAL1 leading to recruitment of BRD4 and the pause release factor P-TEFb, followed by productive elongation of circadian transcripts. We propose that the control of BRD4-P-TEFb recruitment is a novel temporal checkpoint in the circadian clock cycle.
Collapse
Affiliation(s)
- Nikolai Petkau
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Harun Budak
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Xunlei Zhou
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Henrik Oster
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Gregor Eichele
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| |
Collapse
|
54
|
Tani N, Ikeda T, Aoki Y, Shida A, Oritani S, Ishikawa T. Pathophysiological significance of clock genes BMAL1 and PER2 as erythropoietin-controlling factors in acute blood hemorrhage. Hum Cell 2019; 32:275-284. [PMID: 30941700 DOI: 10.1007/s13577-019-00248-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/13/2019] [Indexed: 12/18/2022]
Abstract
This study aimed to characterize the pathophysiology, including possible correlations, of clock gene expression and erythropoietin (EPO) production in the acute stage of blood hemorrhage. Specimens of human cortical tissues (right and left kidneys) and cardiac blood were collected at autopsy from 52 cases following mortality due to acute-stage blood hemorrhage following sharp instrument injury. BMAL1 and PER2 mRNA levels were determined by reverse transcription-polymerase chain reaction; BMAL1 and PER2 protein levels were assessed using immunohistochemistry; BMAL1 protein levels were quantitatively measured by western blotting; and serum EPO levels were measured by chemiluminescent enzyme immunoassay. Separately, a rat model of hemorrhagic conditions was generated and used to confirm the results obtained with autopsy-derived specimens. A positive correlation was observed between BMAL1 protein and serum EPO levels, but not between BMAL1 mRNA levels and serum EPO levels. We also noted that Per2 mRNA expression became elevated in humans who survived for > 3 h after acute hemorrhagic events, with subsequent decreases in serum EPO levels. The rat model showed that even short (30-min) intervals of blood loss yielded increases in both Bmal1 mRNA and serum EPO levels; longer (60-min) intervals resulted in increases in Per2 mRNA expression along with decreases in serum EPO. Thus, the acute-stage human hemorrhage cases and the rat hemorrhage model yielded similar tendencies for clock gene expression and EPO secretion. In conclusion, our results indicated that clock genes are involved in the regulation of EPO production during the early stages of hypoxia/ischemia resulting from the acute hemorrhagic events.
Collapse
Affiliation(s)
- Naoto Tani
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan.
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan.
| | - Tomoya Ikeda
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan
| | - Yayoi Aoki
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan
| | - Alissa Shida
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan
| | - Shigeki Oritani
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan
| | - Takaki Ishikawa
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan
| |
Collapse
|
55
|
Yuan G, Xu L, Cai T, Hua B, Sun N, Yan Z, Lu C, Qian R. Clock mutant promotes osteoarthritis by inhibiting the acetylation of NFκB. Osteoarthritis Cartilage 2019; 27:922-931. [PMID: 30716535 DOI: 10.1016/j.joca.2019.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2018] [Accepted: 01/20/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To examine the effect of the circadian gene Clock on posttranscriptional function and pro-inflammatory mechanisms in osteoarthritis (OA). METHODS The cartilage from Clock mutant mice was assessed using histology, (OA) score, and real-time polymerase chain reaction (PCR) quantification of key pro-inflammatory genes. Nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) translocation, posttranslational state and expression levels during day and night conditions were assessed using immunoblot and IP. The regulation of transcription by Clock in cartilage tissue was assessed by using chromatin immunoprecipitation (ChIP) and luciferase assays. Total acetylation level and pattern over 24 h were quantified using immunoblot and real-time PCR. Finally, the effects of exogenous Clock nanoparticle treatment were quantified by histology and immunoblot. RESULTS The Clock mutation significantly promoted the degradation of cartilage and the expression of the key pro-inflammatory mediators, IL-1β, IL-6 and MCP-1. The Clock mutation significantly promoted NFκB nuclear translocation. The circadian protein CLOCK positively regulates NFκB at the transcriptional level by binding the E-box domain. The Clock mutation significantly inhibited the total lysine acetylation level in cartilage and inhibited NFκB acetylation at the Lys310 residue but promoted phosphorylation at the Ser276 residue. The forced expression of Clock in vivo inhibited NFκB activation by increasing acetylation and decreasing phosphorylation levels and by decreasing cartilage damage and inflammation. CONCLUSIONS This study demonstrates the mutation of Clock promotes inflammatory activity by mediating the posttranscriptional regulation of NFκB in OA pathogenesis.
Collapse
Affiliation(s)
- G Yuan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Center on Aging and Medicine, Fudan University, Shanghai 200032, China
| | - L Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - T Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - B Hua
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - N Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Center on Aging and Medicine, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Z Yan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - C Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Center on Aging and Medicine, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
| | - R Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Center on Aging and Medicine, Fudan University, Shanghai 200032, China.
| |
Collapse
|
56
|
Abstract
Cancer cells reprogramme metabolism to maximize the use of nitrogen and carbon for the anabolic synthesis of macromolecules that are required during tumour proliferation and growth. To achieve this aim, one strategy is to reduce catabolism and nitrogen disposal. The urea cycle (UC) in the liver is the main metabolic pathway to convert excess nitrogen into disposable urea. Outside the liver, UC enzymes are differentially expressed, enabling the use of nitrogen for the synthesis of UC intermediates that are required to accommodate cellular needs. Interestingly, the expression of UC enzymes is altered in cancer, revealing a revolutionary mechanism to maximize nitrogen incorporation into biomass. In this Review, we discuss the metabolic benefits underlying UC deregulation in cancer and the relevance of these alterations for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Peter Szlosarek
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
- Barts Health NHS Trust, St Bartholomew's Hospital, London, UK
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|