51
|
Schärfen L, Neugebauer KM. Transcription Regulation Through Nascent RNA Folding. J Mol Biol 2021; 433:166975. [PMID: 33811916 DOI: 10.1016/j.jmb.2021.166975] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
Folding of RNA into secondary structures through intramolecular base pairing determines an RNA's three-dimensional architecture and associated function. Simple RNA structures like stem loops can provide specialized functions independent of coding capacity, such as protein binding, regulation of RNA processing and stability, stimulation or inhibition of translation. RNA catalysis is dependent on tertiary structures found in the ribosome, tRNAs and group I and II introns. While the extent to which non-coding RNAs contribute to cellular maintenance is generally appreciated, the fact that both non-coding and coding RNA can assume relevant structural states has only recently gained attention. In particular, the co-transcriptional folding of nascent RNA of all classes has the potential to regulate co-transcriptional processing, RNP (ribonucleoprotein particle) formation, and transcription itself. Riboswitches are established examples of co-transcriptionally folded coding RNAs that directly regulate transcription, mainly in prokaryotes. Here we discuss recent studies in both prokaryotes and eukaryotes showing that structure formation may carry a more widespread regulatory logic during RNA synthesis. Local structures forming close to the catalytic center of RNA polymerases have the potential to regulate transcription by reducing backtracking. In addition, stem loops or more complex structures may alter co-transcriptional RNA processing or its efficiency. Several examples of functional structures have been identified to date, and this review provides an overview of physiologically distinct processes where co-transcriptionally folded RNA plays a role. Experimental approaches such as single-molecule FRET and in vivo structural probing to further advance our insight into the significance of co-transcriptional structure formation are discussed.
Collapse
Affiliation(s)
- Leonard Schärfen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
52
|
R-loops as Janus-faced modulators of DNA repair. Nat Cell Biol 2021; 23:305-313. [PMID: 33837288 DOI: 10.1038/s41556-021-00663-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 02/01/2023]
Abstract
R-loops are non-B DNA structures with intriguing dual consequences for gene expression and genome stability. In addition to their recognized roles in triggering DNA double-strand breaks (DSBs), R-loops have recently been demonstrated to accumulate in cis to DSBs, especially those induced in transcriptionally active loci. In this Review, we discuss whether R-loops actively participate in DSB repair or are detrimental by-products that must be removed to avoid genome instability.
Collapse
|
53
|
Rivosecchi J, Jost D, Vachez L, Gautier FD, Bernard P, Vanoosthuyse V. RNA polymerase backtracking results in the accumulation of fission yeast condensin at active genes. Life Sci Alliance 2021; 4:4/6/e202101046. [PMID: 33771877 PMCID: PMC8046420 DOI: 10.26508/lsa.202101046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/23/2022] Open
Abstract
Using both experiments and mathematical modelling, the authors show that RNA polymerase backtracking contributes to the accumulation of condensin in the termination zone of active genes. The mechanisms leading to the accumulation of the SMC complexes condensins around specific transcription units remain unclear. Observations made in bacteria suggested that RNA polymerases (RNAPs) constitute an obstacle to SMC translocation, particularly when RNAP and SMC travel in opposite directions. Here we show in fission yeast that gene termini harbour intrinsic condensin-accumulating features whatever the orientation of transcription, which we attribute to the frequent backtracking of RNAP at gene ends. Consistent with this, to relocate backtracked RNAP2 from gene termini to gene bodies was sufficient to cancel the accumulation of condensin at gene ends and to redistribute it evenly within transcription units, indicating that RNAP backtracking may play a key role in positioning condensin. Formalization of this hypothesis in a mathematical model suggests that the inclusion of a sub-population of RNAP with longer dwell-times is essential to fully recapitulate the distribution profiles of condensin around active genes. Taken together, our data strengthen the idea that dense arrays of proteins tightly bound to DNA alter the distribution of condensin on chromosomes.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| | - Daniel Jost
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| | - Laetitia Vachez
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| | - François Dr Gautier
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| | - Pascal Bernard
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| | - Vincent Vanoosthuyse
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| |
Collapse
|
54
|
Understanding transcription across scales: From base pairs to chromosomes. Mol Cell 2021; 81:1601-1616. [PMID: 33770487 DOI: 10.1016/j.molcel.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The influence of genome organization on transcription is central to our understanding of cell type specification. Higher-order genome organization is established through short- and long-range DNA interactions. Coordination of these interactions, from single atoms to entire chromosomes, plays a fundamental role in transcriptional control of gene expression. Loss of this coupling can result in disease. Analysis of transcriptional regulation typically involves disparate experimental approaches, from structural studies that define angstrom-level interactions to cell-biological and genomic approaches that assess mesoscale relationships. Thus, to fully understand the mechanisms that regulate gene expression, it is critical to integrate the findings gained across these distinct size scales. In this review, I illustrate fundamental ways in which cells regulate transcription in the context of genome organization.
Collapse
|
55
|
Agrawal P, Rao S. Super-Enhancers and CTCF in Early Embryonic Cell Fate Decisions. Front Cell Dev Biol 2021; 9:653669. [PMID: 33842482 PMCID: PMC8027350 DOI: 10.3389/fcell.2021.653669] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/18/2021] [Indexed: 12/04/2022] Open
Abstract
Cell fate decisions are the backbone of many developmental and disease processes. In early mammalian development, precise gene expression changes underly the rapid division of a single cell that leads to the embryo and are critically dependent on autonomous cell changes in gene expression. To understand how these lineage specifications events are mediated, scientists have had to look past protein coding genes to the cis regulatory elements (CREs), including enhancers and insulators, that modulate gene expression. One class of enhancers, termed super-enhancers, is highly active and cell-type specific, implying their critical role in modulating cell-type specific gene expression. Deletion or mutations within these CREs adversely affect gene expression and development and can cause disease. In this mini-review we discuss recent studies describing the potential roles of two CREs, enhancers and binding sites for CTCF, in early mammalian development.
Collapse
Affiliation(s)
- Puja Agrawal
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
56
|
Berkyurek AC, Furlan G, Lampersberger L, Beltran T, Weick E, Nischwitz E, Cunha Navarro I, Braukmann F, Akay A, Price J, Butter F, Sarkies P, Miska EA. The RNA polymerase II subunit RPB-9 recruits the integrator complex to terminate Caenorhabditis elegans piRNA transcription. EMBO J 2021; 40:e105565. [PMID: 33533030 PMCID: PMC7917558 DOI: 10.15252/embj.2020105565] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 01/03/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) are genome-encoded small RNAs that regulate germ cell development and maintain germline integrity in many animals. Mature piRNAs engage Piwi Argonaute proteins to silence complementary transcripts, including transposable elements and endogenous genes. piRNA biogenesis mechanisms are diverse and remain poorly understood. Here, we identify the RNA polymerase II (RNA Pol II) core subunit RPB-9 as required for piRNA-mediated silencing in the nematode Caenorhabditis elegans. We show that rpb-9 initiates heritable piRNA-mediated gene silencing at two DNA transposon families and at a subset of somatic genes in the germline. We provide genetic and biochemical evidence that RPB-9 is required for piRNA biogenesis by recruiting the Integrator complex at piRNA genes, hence promoting transcriptional termination. We conclude that, as a part of its rapid evolution, the piRNA pathway has co-opted an ancient machinery for high-fidelity transcription.
Collapse
Affiliation(s)
- Ahmet C Berkyurek
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Giulia Furlan
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Lisa Lampersberger
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Toni Beltran
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Eva‐Maria Weick
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Present address:
Structural Biology ProgramSloan Kettering InstituteMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Emily Nischwitz
- Quantitative ProteomicsInstitute of Molecular BiologyMainzGermany
| | - Isabela Cunha Navarro
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Fabian Braukmann
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Alper Akay
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Present address:
School of Biological SciencesUniversity of East AngliaNorwich, NorfolkUK
| | - Jonathan Price
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Falk Butter
- Quantitative ProteomicsInstitute of Molecular BiologyMainzGermany
| | - Peter Sarkies
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Eric A Miska
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Wellcome Sanger InstituteWellcome Trust Genome CampusCambridgeUK
| |
Collapse
|
57
|
Dollinger R, Gilmour DS. Regulation of Promoter Proximal Pausing of RNA Polymerase II in Metazoans. J Mol Biol 2021; 433:166897. [PMID: 33640324 DOI: 10.1016/j.jmb.2021.166897] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Regulation of transcription is a tightly choreographed process. The establishment of RNA polymerase II promoter proximal pausing soon after transcription initiation and the release of Pol II into productive elongation are key regulatory processes that occur in early elongation. We describe the techniques and tools that have become available for the study of promoter proximal pausing and their utility for future experiments. We then provide an overview of the factors and interactions that govern a multipartite pausing process and address emerging questions surrounding the mechanism of RNA polymerase II's subsequent advancement into the gene body. Finally, we address remaining controversies and future areas of study.
Collapse
Affiliation(s)
- Roberta Dollinger
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 462 North Frear, University Park, PA 16802, USA.
| | - David S Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 465A North Frear, University Park, PA 16802, USA.
| |
Collapse
|
58
|
Saldi T, Riemondy K, Erickson B, Bentley DL. Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing. Mol Cell 2021; 81:1789-1801.e5. [PMID: 33631106 DOI: 10.1016/j.molcel.2021.01.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022]
Abstract
Most RNA processing occurs co-transcriptionally. We interrogated nascent pol II transcripts by chemical and enzymatic probing and determined how the "nascent RNA structureome" relates to splicing, A-I editing and transcription speed. RNA folding within introns and steep structural transitions at splice sites are associated with efficient co-transcriptional splicing. A slow pol II mutant elicits extensive remodeling into more folded conformations with increased A-I editing. Introns that become more structured at their 3' splice sites get co-transcriptionally excised more efficiently. Slow pol II altered folding of intronic Alu elements where cryptic splicing and intron retention are stimulated, an outcome mimicked by UV, which decelerates transcription. Slow transcription also remodeled RNA folding around alternative exons in distinct ways that predict whether skipping or inclusion is favored, even though it occurs post-transcriptionally. Hence, co-transcriptional RNA folding modulates post-transcriptional alternative splicing. In summary, the plasticity of nascent transcripts has widespread effects on RNA processing.
Collapse
Affiliation(s)
- Tassa Saldi
- RNA Bioscience Initiative, Department Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Kent Riemondy
- RNA Bioscience Initiative, Department Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Benjamin Erickson
- RNA Bioscience Initiative, Department Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- RNA Bioscience Initiative, Department Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
59
|
Chédin F, Hartono SR, Sanz LA, Vanoosthuyse V. Best practices for the visualization, mapping, and manipulation of R-loops. EMBO J 2021; 40:e106394. [PMID: 33411340 PMCID: PMC7883053 DOI: 10.15252/embj.2020106394] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 01/12/2023] Open
Abstract
R-loops represent an abundant class of large non-B DNA structures in genomes. Even though they form transiently and at modest frequencies, interfering with R-loop formation or dissolution has significant impacts on genome stability. Addressing the mechanism(s) of R-loop-mediated genome destabilization requires a precise characterization of their distribution in genomes. A number of independent methods have been developed to visualize and map R-loops, but their results are at times discordant, leading to confusion. Here, we review the main existing methodologies for R-loop mapping and assess their limitations as well as the robustness of existing datasets. We offer a set of best practices to improve the reproducibility of maps, hoping that such guidelines could be useful for authors and referees alike. Finally, we propose a possible resolution for the apparent contradictions in R-loop mapping outcomes between antibody-based and RNase H1-based mapping approaches.
Collapse
Affiliation(s)
- Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Stella R Hartono
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Vincent Vanoosthuyse
- Laboratoire de Biologie et Modélisation de la CelluleCNRSUMR 5239Univ LyonÉcole Normale Supérieure de LyonLyonFrance
| |
Collapse
|
60
|
Nascent RNA sequencing identifies a widespread sigma70-dependent pausing regulated by Gre factors in bacteria. Nat Commun 2021; 12:906. [PMID: 33568644 PMCID: PMC7876045 DOI: 10.1038/s41467-021-21150-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/14/2021] [Indexed: 01/29/2023] Open
Abstract
Promoter-proximal pausing regulates eukaryotic gene expression and serves as checkpoints to assemble elongation/splicing machinery. Little is known how broadly this type of pausing regulates transcription in bacteria. We apply nascent elongating transcript sequencing combined with RNase I footprinting for genome-wide analysis of σ70-dependent transcription pauses in Escherichia coli. Retention of σ70 induces strong backtracked pauses at a 10−20-bp distance from many promoters. The pauses in the 10−15-bp register of the promoter are dictated by the canonical −10 element, 6−7 nt spacer and “YR+1Y” motif centered at the transcription start site. The promoters for the pauses in the 16−20-bp register contain an additional −10-like sequence recognized by σ70. Our in vitro analysis reveals that DNA scrunching is involved in these pauses relieved by Gre cleavage factors. The genes coding for transcription factors are enriched in these pauses, suggesting that σ70 and Gre proteins regulate transcription in response to changing environmental cues. Transcription by bacterial RNA polymerase is interrupted by pausing events that play diverse regulatory roles. Here, the authors find that a large number of E. coli sigma70-dependent pauses, clustered at a 10−20-bp distance from promoters, are regulated by Gre cleavage factors constituting a mechanism for rapid response to changing environmental cues.
Collapse
|
61
|
Reimer KA, Mimoso CA, Adelman K, Neugebauer KM. Co-transcriptional splicing regulates 3' end cleavage during mammalian erythropoiesis. Mol Cell 2021; 81:998-1012.e7. [PMID: 33440169 DOI: 10.1016/j.molcel.2020.12.018] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Pre-mRNA processing steps are tightly coordinated with transcription in many organisms. To determine how co-transcriptional splicing is integrated with transcription elongation and 3' end formation in mammalian cells, we performed long-read sequencing of individual nascent RNAs and precision run-on sequencing (PRO-seq) during mouse erythropoiesis. Splicing was not accompanied by transcriptional pausing and was detected when RNA polymerase II (Pol II) was within 75-300 nucleotides of 3' splice sites (3'SSs), often during transcription of the downstream exon. Interestingly, several hundred introns displayed abundant splicing intermediates, suggesting that splicing delays can take place between the two catalytic steps. Overall, splicing efficiencies were correlated among introns within the same transcript, and intron retention was associated with inefficient 3' end cleavage. Remarkably, a thalassemia patient-derived mutation introducing a cryptic 3'SS improved both splicing and 3' end cleavage of individual β-globin transcripts, demonstrating functional coupling between the two co-transcriptional processes as a determinant of productive gene output.
Collapse
Affiliation(s)
- Kirsten A Reimer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
62
|
Noe Gonzalez M, Blears D, Svejstrup JQ. Causes and consequences of RNA polymerase II stalling during transcript elongation. Nat Rev Mol Cell Biol 2021; 22:3-21. [PMID: 33208928 DOI: 10.1038/s41580-020-00308-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The journey of RNA polymerase II (Pol II) as it transcribes a gene is anything but a smooth ride. Transcript elongation is discontinuous and can be perturbed by intrinsic regulatory barriers, such as promoter-proximal pausing, nucleosomes, RNA secondary structures and the underlying DNA sequence. More substantial blocking of Pol II translocation can be caused by other physiological circumstances and extrinsic obstacles, including other transcribing polymerases, the replication machinery and several types of DNA damage, such as bulky lesions and DNA double-strand breaks. Although numerous different obstacles cause Pol II stalling or arrest, the cell somehow distinguishes between them and invokes different mechanisms to resolve each roadblock. Resolution of Pol II blocking can be as straightforward as temporary backtracking and transcription elongation factor S-II (TFIIS)-dependent RNA cleavage, or as drastic as premature transcription termination or degradation of polyubiquitylated Pol II and its associated nascent RNA. In this Review, we discuss the current knowledge of how these different Pol II stalling contexts are distinguished by the cell, how they overlap with each other, how they are resolved and how, when unresolved, they can cause genome instability.
Collapse
Affiliation(s)
- Melvin Noe Gonzalez
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Blears
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK.
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
63
|
García-Martínez J, Pérez-Martínez ME, Pérez-Ortín JE, Alepuz P. Recruitment of Xrn1 to stress-induced genes allows efficient transcription by controlling RNA polymerase II backtracking. RNA Biol 2020; 18:1458-1474. [PMID: 33258404 DOI: 10.1080/15476286.2020.1857521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A new paradigm has emerged proposing that the crosstalk between nuclear transcription and cytoplasmic mRNA stability keeps robust mRNA levels in cells under steady-state conditions. A key piece in this crosstalk is the highly conserved 5'-3' RNA exonuclease Xrn1, which degrades most cytoplasmic mRNAs but also associates with nuclear chromatin to activate transcription by not well-understood mechanisms. Here, we investigated the role of Xrn1 in the transcriptional response of Saccharomyces cerevisiae cells to osmotic stress. We show that a lack of Xrn1 results in much lower transcriptional induction of the upregulated genes but in similar high levels of their transcripts because of parallel mRNA stabilization. Unexpectedly, lower transcription in xrn1 occurs with a higher accumulation of RNA polymerase II (RNAPII) at stress-inducible genes, suggesting that this polymerase remains inactive backtracked. Xrn1 seems to be directly implicated in the formation of a competent elongation complex because Xrn1 is recruited to the osmotic stress-upregulated genes in parallel with the RNAPII complex, and both are dependent on the mitogen-activated protein kinase Hog1. Our findings extend the role of Xrn1 in preventing the accumulation of inactive RNAPII at highly induced genes to other situations of rapid and strong transcriptional upregulation.
Collapse
Affiliation(s)
- José García-Martínez
- ERI Biotecmed, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain.,Departamento De Genética, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain
| | - María E Pérez-Martínez
- ERI Biotecmed, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain.,Departamento De Bioquímica Y Biología Molecular, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain
| | - José E Pérez-Ortín
- ERI Biotecmed, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain.,Departamento De Bioquímica Y Biología Molecular, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain
| | - Paula Alepuz
- ERI Biotecmed, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain.,Departamento De Bioquímica Y Biología Molecular, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain
| |
Collapse
|
64
|
Robinson-Thiewes S, McCloskey J, Kimble J. Two classes of active transcription sites and their roles in developmental regulation. Proc Natl Acad Sci U S A 2020; 117:26812-26821. [PMID: 33033228 PMCID: PMC7604424 DOI: 10.1073/pnas.2013163117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of genes encoding powerful developmental regulators is exquisitely controlled, often at multiple levels. Here, we investigate developmental expression of three conserved genes, Caenorhabditis elegans mpk-1, lag-1, and lag-3/sel-8, which encode homologs of ERK/MAPK and core components of the Notch-dependent transcription complex, respectively. We use single-molecule FISH (smFISH) and MATLAB to visualize and quantify nuclear nascent transcripts and cytoplasmic mRNAs as a function of position along the germline developmental axis. Using differentially labeled probes, one spanning an exceptionally long first intron and the other spanning exons, we identify two classes of active transcription sites (ATS). The iATS class, for "incomplete" ATS, harbors only partial nascent transcripts; the cATS class, for "complete" ATS, harbors full-length nascent transcripts. Remarkably, the frequencies of iATS and cATS are patterned along the germline axis. For example, most mpk-1 ATS are iATS in hermaphrodite germline stem cells, but most are cATS in differentiating stem cell daughters. Thus, mpk-1 ATS class frequencies switch in a graded manner as stem cell daughters begin differentiation. Importantly, the patterns of ATS class frequency are gene-, stage-, and sex-specific, and cATS frequency strongly correlates with transcriptional output. Although the molecular mechanism underlying ATS classes is not understood, their primary difference is the extent of transcriptional progression. To generate only partial nascent transcripts in iATS, progression must be slowed, paused, or aborted midway through the gene. We propose that regulation of ATS class can be a critical mode of developmental gene regulation.
Collapse
Affiliation(s)
| | - John McCloskey
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
65
|
Eaton JD, West S. Termination of Transcription by RNA Polymerase II: BOOM! Trends Genet 2020; 36:664-675. [DOI: 10.1016/j.tig.2020.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/22/2022]
|
66
|
Yague-Sanz C, Vanrobaeys Y, Fernandez R, Duval M, Larochelle M, Beaudoin J, Berro J, Labbé S, Jacques PÉ, Bachand F. Nutrient-dependent control of RNA polymerase II elongation rate regulates specific gene expression programs by alternative polyadenylation. Genes Dev 2020; 34:883-897. [PMID: 32499400 PMCID: PMC7328516 DOI: 10.1101/gad.337212.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022]
Abstract
Transcription by RNA polymerase II (RNAPII) is a dynamic process with frequent variations in the elongation rate. However, the physiological relevance of variations in RNAPII elongation kinetics has remained unclear. Here we show in yeast that a RNAPII mutant that reduces the transcription elongation rate causes widespread changes in alternative polyadenylation (APA). We unveil two mechanisms by which APA affects gene expression in the slow mutant: 3' UTR shortening and gene derepression by premature transcription termination of upstream interfering noncoding RNAs. Strikingly, the genes affected by these mechanisms are enriched for functions involved in phosphate uptake and purine synthesis, processes essential for maintenance of the intracellular nucleotide pool. As nucleotide concentration regulates transcription elongation, our findings argue that RNAPII is a sensor of nucleotide availability and that genes important for nucleotide pool maintenance have adopted regulatory mechanisms responsive to reduced rates of transcription elongation.
Collapse
Affiliation(s)
- Carlo Yague-Sanz
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Yann Vanrobaeys
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Ronan Fernandez
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Maxime Duval
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Marc Larochelle
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Jude Beaudoin
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Simon Labbé
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | | | - François Bachand
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
67
|
Turowski TW, Petfalski E, Goddard BD, French SL, Helwak A, Tollervey D. Nascent Transcript Folding Plays a Major Role in Determining RNA Polymerase Elongation Rates. Mol Cell 2020; 79:488-503.e11. [PMID: 32585128 PMCID: PMC7427326 DOI: 10.1016/j.molcel.2020.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/01/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Transcription elongation rates influence RNA processing, but sequence-specific regulation is poorly understood. We addressed this in vivo, analyzing RNAPI in S. cerevisiae. Mapping RNAPI by Miller chromatin spreads or UV crosslinking revealed 5' enrichment and strikingly uneven local polymerase occupancy along the rDNA, indicating substantial variation in transcription speed. Two features of the nascent transcript correlated with RNAPI distribution: folding energy and GC content in the transcription bubble. In vitro experiments confirmed that strong RNA structures close to the polymerase promote forward translocation and limit backtracking, whereas high GC in the transcription bubble slows elongation. A mathematical model for RNAPI elongation confirmed the importance of nascent RNA folding in transcription. RNAPI from S. pombe was similarly sensitive to transcript folding, as were S. cerevisiae RNAPII and RNAPIII. For RNAPII, unstructured RNA, which favors slowed elongation, was associated with faster cotranscriptional splicing and proximal splice site use, indicating regulatory significance for transcript folding.
Collapse
Affiliation(s)
- Tomasz W Turowski
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK.
| | - Elisabeth Petfalski
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
| | - Benjamin D Goddard
- School of Mathematics and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, Edinburgh, UK
| | - Sarah L French
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Aleksandra Helwak
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
68
|
Fischer J, Song YS, Yosef N, di Iulio J, Churchman LS, Choder M. The yeast exoribonuclease Xrn1 and associated factors modulate RNA polymerase II processivity in 5' and 3' gene regions. J Biol Chem 2020; 295:11435-11454. [PMID: 32518159 DOI: 10.1074/jbc.ra120.013426] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/05/2020] [Indexed: 11/06/2022] Open
Abstract
mRNA levels are determined by the balance between mRNA synthesis and decay. Protein factors that mediate both processes, including the 5'-3' exonuclease Xrn1, are responsible for a cross-talk between the two processes that buffers steady-state mRNA levels. However, the roles of these proteins in transcription remain elusive and controversial. Applying native elongating transcript sequencing (NET-seq) to yeast cells, we show that Xrn1 functions mainly as a transcriptional activator and that its disruption manifests as a reduction of RNA polymerase II (Pol II) occupancy downstream of transcription start sites. By combining our sequencing data and mathematical modeling of transcription, we found that Xrn1 modulates transcription initiation and elongation of its target genes. Furthermore, Pol II occupancy markedly increased near cleavage and polyadenylation sites in xrn1Δ cells, whereas its activity decreased, a characteristic feature of backtracked Pol II. We also provide indirect evidence that Xrn1 is involved in transcription termination downstream of polyadenylation sites. We noted that two additional decay factors, Dhh1 and Lsm1, seem to function similarly to Xrn1 in transcription, perhaps as a complex, and that the decay factors Ccr4 and Rpb4 also perturb transcription in other ways. Interestingly, the decay factors could differentiate between SAGA- and TFIID-dominated promoters. These two classes of genes responded differently to XRN1 deletion in mRNA synthesis and were differentially regulated by mRNA decay pathways, raising the possibility that one distinction between these two gene classes lies in the mechanisms that balance mRNA synthesis with mRNA decay.
Collapse
Affiliation(s)
- Jonathan Fischer
- Computer Science Division, University of California, Berkeley, California, USA.,Department of Statistics, University of California, Berkeley, California, USA
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, California, USA.,Department of Statistics, University of California, Berkeley, California, USA.,Chan Zuckerberg BioHub, San Francisco, California, USA
| | - Nir Yosef
- Chan Zuckerberg BioHub, San Francisco, California, USA.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Julia di Iulio
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Mordechai Choder
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
69
|
Antosz W, Deforges J, Begcy K, Bruckmann A, Poirier Y, Dresselhaus T, Grasser KD. Critical Role of Transcript Cleavage in Arabidopsis RNA Polymerase II Transcriptional Elongation. THE PLANT CELL 2020; 32:1449-1463. [PMID: 32152189 PMCID: PMC7203918 DOI: 10.1105/tpc.19.00891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/10/2020] [Accepted: 03/05/2020] [Indexed: 05/14/2023]
Abstract
Transcript elongation factors associate with elongating RNA polymerase II (RNAPII) to control the efficiency of mRNA synthesis and consequently modulate plant growth and development. Encountering obstacles during transcription such as nucleosomes or particular DNA sequences may cause backtracking and transcriptional arrest of RNAPII. The elongation factor TFIIS stimulates the intrinsic transcript cleavage activity of the polymerase, which is required for efficient rescue of backtracked/arrested RNAPII. A TFIIS mutant variant (TFIISmut) lacks the stimulatory activity to promote RNA cleavage, but instead efficiently inhibits unstimulated transcript cleavage by RNAPII. We could not recover viable Arabidopsis (Arabidopsis thaliana) tfIIs plants constitutively expressing TFIISmut. Induced, transient expression of TFIISmut in tfIIs plants provoked severe growth defects, transcriptomic changes and massive, transcription-related redistribution of elongating RNAPII within transcribed regions toward the transcriptional start site. The predominant site of RNAPII accumulation overlapped with the +1 nucleosome, suggesting that upon inhibition of RNA cleavage activity, RNAPII arrest prevalently occurs at this position. In the presence of TFIISmut, the amount of RNAPII was reduced, which could be reverted by inhibiting the proteasome, indicating proteasomal degradation of arrested RNAPII. Our findings suggest that polymerase backtracking/arrest frequently occurs in plant cells, and RNAPII-reactivation is essential for correct transcriptional output and proper growth/development.
Collapse
Affiliation(s)
- Wojciech Antosz
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93040 Regensburg, Germany
| | - Jules Deforges
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Kevin Begcy
- Environmental Horticulture Department, University of Florida, Gainesville, Florida 32611
| | - Astrid Bruckmann
- Department for Biochemistry I, Biochemistry Centre, University of Regensburg, D-93040 Regensburg, Germany
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Thomas Dresselhaus
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93040 Regensburg, Germany
| | - Klaus D Grasser
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
70
|
Leng X, Ivanov M, Kindgren P, Malik I, Thieffry A, Brodersen P, Sandelin A, Kaplan CD, Marquardt S. Organismal benefits of transcription speed control at gene boundaries. EMBO Rep 2020; 21:e49315. [PMID: 32103605 PMCID: PMC7132196 DOI: 10.15252/embr.201949315] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase II (RNAPII) transcription is crucial for gene expression. RNAPII density peaks at gene boundaries, associating these key regions for gene expression control with limited RNAPII movement. The connections between RNAPII transcription speed and gene regulation in multicellular organisms are poorly understood. Here, we directly modulate RNAPII transcription speed by point mutations in the second largest subunit of RNAPII in Arabidopsis thaliana. A RNAPII mutation predicted to decelerate transcription is inviable, while accelerating RNAPII transcription confers phenotypes resembling auto-immunity. Nascent transcription profiling revealed that RNAPII complexes with accelerated transcription clear stalling sites at both gene ends, resulting in read-through transcription. The accelerated transcription mutant NRPB2-Y732F exhibits increased association with 5' splice site (5'SS) intermediates and enhanced splicing efficiency. Our findings highlight potential advantages of RNAPII stalling through local reduction in transcription speed to optimize gene expression for the development of multicellular organisms.
Collapse
Affiliation(s)
- Xueyuan Leng
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksbergDenmark
| | - Maxim Ivanov
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksbergDenmark
| | - Peter Kindgren
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksbergDenmark
| | - Indranil Malik
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
- Present address:
Department of NeurologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Axel Thieffry
- Biotech Research and Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Peter Brodersen
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Albin Sandelin
- Biotech Research and Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Craig D Kaplan
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
- Department of Biological SciencesUniversity of PittsburghPittsburghPAUSA
| | - Sebastian Marquardt
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
71
|
Abstract
RNA polymerase II (Pol II) transcribes all protein-coding genes and many noncoding RNAs in eukaryotic genomes. Although Pol II is a complex, 12-subunit enzyme, it lacks the ability to initiate transcription and cannot consistently transcribe through long DNA sequences. To execute these essential functions, an array of proteins and protein complexes interact with Pol II to regulate its activity. In this review, we detail the structure and mechanism of over a dozen factors that govern Pol II initiation (e.g., TFIID, TFIIH, and Mediator), pausing, and elongation (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis for Pol II transcription regulation has advanced rapidly in the past decade, largely due to technological innovations in cryoelectron microscopy. Here, we summarize a wealth of structural and functional data that have enabled a deeper understanding of Pol II transcription mechanisms; we also highlight mechanistic questions that remain unanswered or controversial.
Collapse
Affiliation(s)
- Allison C Schier
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
72
|
Begley V, Corzo D, Jordán-Pla A, Cuevas-Bermúdez A, Miguel-Jiménez LD, Pérez-Aguado D, Machuca-Ostos M, Navarro F, Chávez MJ, Pérez-Ortín JE, Chávez S. The mRNA degradation factor Xrn1 regulates transcription elongation in parallel to Ccr4. Nucleic Acids Res 2019; 47:9524-9541. [PMID: 31392315 PMCID: PMC6765136 DOI: 10.1093/nar/gkz660] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 01/05/2023] Open
Abstract
Co-transcriptional imprinting of mRNA by Rpb4 and Rpb7 subunits of RNA polymerase II (RNAPII) and by the Ccr4-Not complex conditions its post-transcriptional fate. In turn, mRNA degradation factors like Xrn1 are able to influence RNAPII-dependent transcription, making a feedback loop that contributes to mRNA homeostasis. In this work, we have used repressible yeast GAL genes to perform accurate measurements of transcription and mRNA degradation in a set of mutants. This genetic analysis uncovered a link from mRNA decay to transcription elongation. We combined this experimental approach with computational multi-agent modelling and tested different possibilities of Xrn1 and Ccr4 action in gene transcription. This double strategy brought us to conclude that both Xrn1-decaysome and Ccr4-Not regulate RNAPII elongation, and that they do it in parallel. We validated this conclusion measuring TFIIS genome-wide recruitment to elongating RNAPII. We found that xrn1Δ and ccr4Δ exhibited very different patterns of TFIIS versus RNAPII occupancy, which confirmed their distinct role in controlling transcription elongation. We also found that the relative influence of Xrn1 and Ccr4 is different in the genes encoding ribosomal proteins as compared to the rest of the genome.
Collapse
Affiliation(s)
- Victoria Begley
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain
| | - Daniel Corzo
- Escuela Técnica Superior de Informática, Universidad de Sevilla, Seville 41012, Spain
| | - Antonio Jordán-Pla
- E.R.I. Biotecmed, Universitat de València; Burjassot, Valencia 46100, Spain
| | - Abel Cuevas-Bermúdez
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén 23071, Spain
| | - Lola de Miguel-Jiménez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain
| | - David Pérez-Aguado
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain
| | - Mercedes Machuca-Ostos
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén 23071, Spain
| | - María José Chávez
- Departamento de Matemática Aplicada I and Instituto de Matemáticas, Universidad de Sevilla, Seville 41012, Spain
| | - José E Pérez-Ortín
- E.R.I. Biotecmed, Universitat de València; Burjassot, Valencia 46100, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain
| |
Collapse
|
73
|
Control of RNA Pol II Speed by PNUTS-PP1 and Spt5 Dephosphorylation Facilitates Termination by a "Sitting Duck Torpedo" Mechanism. Mol Cell 2019; 76:896-908.e4. [PMID: 31677974 DOI: 10.1016/j.molcel.2019.09.031] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/14/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
Control of transcription speed, which influences many co-transcriptional processes, is poorly understood. We report that PNUTS-PP1 phosphatase is a negative regulator of RNA polymerase II (Pol II) elongation rate. The PNUTS W401A mutation, which disrupts PP1 binding, causes genome-wide acceleration of transcription associated with hyper-phosphorylation of the Spt5 elongation factor. Immediately downstream of poly(A) sites, Pol II decelerates from >2 kb/min to <1 kb/min, which correlates with Spt5 dephosphorylation. Pol II deceleration and Spt5 dephosphorylation require poly(A) site recognition and the PNUTS-PP1 complex, which is in turn necessary for transcription termination. These results lead to a model for termination, the "sitting duck torpedo" mechanism, where poly(A) site-dependent deceleration caused by PNUTS-PP1 and Spt5 dephosphorylation is required to convert Pol II into a viable target for the Xrn2 terminator exonuclease. Spt5 and its bacterial homolog NusG therefore have related functions controlling kinetic competition between RNA polymerases and the termination factors that pursue them.
Collapse
|
74
|
Zatreanu D, Han Z, Mitter R, Tumini E, Williams H, Gregersen L, Dirac-Svejstrup AB, Roma S, Stewart A, Aguilera A, Svejstrup JQ. Elongation Factor TFIIS Prevents Transcription Stress and R-Loop Accumulation to Maintain Genome Stability. Mol Cell 2019; 76:57-69.e9. [PMID: 31519522 PMCID: PMC6863433 DOI: 10.1016/j.molcel.2019.07.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/28/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023]
Abstract
Although correlations between RNA polymerase II (RNAPII) transcription stress, R-loops, and genome instability have been established, the mechanisms underlying these connections remain poorly understood. Here, we used a mutant version of the transcription elongation factor TFIIS (TFIISmut), aiming to specifically induce increased levels of RNAPII pausing, arrest, and/or backtracking in human cells. Indeed, TFIISmut expression results in slower elongation rates, relative depletion of polymerases from the end of genes, and increased levels of stopped RNAPII; it affects mRNA splicing and termination as well. Remarkably, TFIISmut expression also dramatically increases R-loops, which may form at the anterior end of backtracked RNAPII and trigger genome instability, including DNA strand breaks. These results shed light on the relationship between transcription stress and R-loops and suggest that different classes of R-loops may exist, potentially with distinct consequences for genome stability.
Collapse
Affiliation(s)
- Diana Zatreanu
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Zhong Han
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emanuela Tumini
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Hannah Williams
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Lea Gregersen
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - A Barbara Dirac-Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stefania Roma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Aengus Stewart
- Bioinformatics and Biostatistics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andres Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
75
|
The hunt for RNA polymerase II elongation factors: a historical perspective. Nat Struct Mol Biol 2019; 26:771-776. [PMID: 31439940 DOI: 10.1038/s41594-019-0283-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
The discovery of the three eukaryotic nuclear RNA polymerases paved the way for serious biochemical investigations of eukaryotic transcription and the identification of eukaryotic transcription factors. Here we describe this adventure from our vantage point, with a focus on the hunt for factors that regulate elongation by RNA polymerase II.
Collapse
|
76
|
Kamieniarz-Gdula K, Proudfoot NJ. Transcriptional Control by Premature Termination: A Forgotten Mechanism. Trends Genet 2019; 35:553-564. [PMID: 31213387 PMCID: PMC7471841 DOI: 10.1016/j.tig.2019.05.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022]
Abstract
The concept of early termination as an important means of transcriptional control has long been established. Even so, its role in metazoan gene expression is underappreciated. Recent technological advances provide novel insights into premature transcription termination (PTT). This process is frequent, widespread, and can occur close to the transcription start site (TSS), or within the gene body. Stable prematurely terminated transcripts contribute to the transcriptome as instances of alternative polyadenylation (APA). Independently of transcript stability and function, premature termination opposes the formation of full-length transcripts, thereby negatively regulating gene expression, especially of transcriptional regulators. Premature termination can be beneficial or harmful, depending on its context. As a result, multiple factors have evolved to control this process.
Collapse
Affiliation(s)
- Kinga Kamieniarz-Gdula
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK; Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland; Center for Advanced Technology, Adam Mickiewicz University, Umultowska 89c, 61-614 Poznań, Poland.
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
77
|
Bradley CC, Gordon AJE, Halliday JA, Herman C. Transcription fidelity: New paradigms in epigenetic inheritance, genome instability and disease. DNA Repair (Amst) 2019; 81:102652. [PMID: 31326363 DOI: 10.1016/j.dnarep.2019.102652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA transcription errors are transient, yet frequent, events that do have consequences for the cell. However, until recently we lacked the tools to empirically measure and study these errors. Advances in RNA library preparation and next generation sequencing (NGS) have allowed the spectrum of transcription errors to be empirically measured over the entire transcriptome and in nascent transcripts. Combining these powerful methods with forward and reverse genetic strategies has refined our understanding of transcription factors known to enhance RNA accuracy and will enable the discovery of new candidates. Furthermore, these approaches will shed additional light on the complex interplay between transcription fidelity and other DNA transactions, such as replication and repair, and explore a role for transcription errors in cellular evolution and disease.
Collapse
Affiliation(s)
- Catherine C Bradley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA; Robert and Janice McNair Foundation/ McNair Medical Institute M.D./Ph.D. Scholars Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alasdair J E Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jennifer A Halliday
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
78
|
Scheidegger A, Dunn CJ, Samarakkody A, Koney NKK, Perley D, Saha RN, Nechaev S. Genome-wide RNA pol II initiation and pausing in neural progenitors of the rat. BMC Genomics 2019; 20:477. [PMID: 31185909 PMCID: PMC6558777 DOI: 10.1186/s12864-019-5829-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/23/2019] [Indexed: 12/29/2022] Open
Abstract
Background Global RNA sequencing technologies have revealed widespread RNA polymerase II (Pol II) transcription outside of gene promoters. Small 5′-capped RNA sequencing (Start-seq) originally developed for the detection of promoter-proximal Pol II pausing has helped improve annotation of Transcription Start Sites (TSSs) of genes as well as identification of non-genic regulatory elements. However, apart from the most well studied genomes of human and mouse, mammalian transcription has not been profiled with sufficiently high precision. Results We prepared and sequenced Start-seq libraries from rat (Rattus norgevicus) primary neural progenitor cells. Over 48 million uniquely mappable reads from two independent biological replicates allowed us to define the TSSs of 7365 known genes in the rn6 genome, reannotating 2503 TSSs by more than 5 base pairs, characterize promoter-associated antisense transcription, and profile Pol II pausing. By combining TSS data with polyA-selected RNA sequencing, we also identified thousands of potential new genes producing stable RNA as well as non-genic transcripts representing possible regulatory elements. Conclusions Our study has produced the first Start-seq dataset for the rat. Apart from profiling transcription initiation, our data reaffirm the prevalence of Pol II pausing across the rat genome and indicate conservation of pausing mechanisms across metazoan genomes. We suggest that pausing location, at least in mammals, is constrained by a distance from initiation of transcription, whether it occurs at or outside of a gene promoter. Abundant antisense transcription initiation around protein coding genes indicates that Pol II recruited to the vicinity of a promoter is distributed to available start sites of transcription at either DNA strand. Transcriptome profiling of neural progenitors presented here will facilitate further studies of other rat cell types as well as other organisms. Electronic supplementary material The online version of this article (10.1186/s12864-019-5829-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam Scheidegger
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA.,Present address: Omega Therapeutics, Cambridge, MA, 02139, USA
| | - Carissa J Dunn
- Molecular and Cell Biology Department, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Ann Samarakkody
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA.,Present address: Department of Pediatric Hematology-Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nii Koney-Kwaku Koney
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA
| | - Danielle Perley
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Sergei Nechaev
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA.
| |
Collapse
|
79
|
Abstract
In this review, Core et al. discuss the recent advances in our understanding of the early steps in Pol II transcription, highlighting the events and factors involved in the establishment and release of paused Pol II. They also discuss a number of unanswered questions about the regulation and function of Pol II pausing. Precise spatio–temporal control of gene activity is essential for organismal development, growth, and survival in a changing environment. Decisive steps in gene regulation involve the pausing of RNA polymerase II (Pol II) in early elongation, and the controlled release of paused polymerase into productive RNA synthesis. Here we describe the factors that enable pausing and the events that trigger Pol II release into the gene. We also discuss open questions in the field concerning the stability of paused Pol II, nucleosomes as obstacles to elongation, and potential roles of pausing in defining the precision and dynamics of gene expression.
Collapse
Affiliation(s)
- Leighton Core
- Department of Molecular and Cell Biology, Institute of Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|