51
|
Stewart JB, Chinnery PF. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat Rev Genet 2021; 22:106-118. [PMID: 32989265 DOI: 10.1038/s41576-020-00284-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Contrary to the long-held view that most humans harbour only identical mitochondrial genomes, deep resequencing has uncovered unanticipated extreme genetic variation within mitochondrial DNA (mtDNA). Most, if not all, humans contain multiple mtDNA genotypes (heteroplasmy); specific patterns of variants accumulate in different tissues, including cancers, over time; and some variants are preferentially passed down or suppressed in the maternal germ line. These findings cast light on the origin and spread of mtDNA mutations at multiple scales, from the organelle to the human population, and challenge the conventional view that high percentages of a mutation are required before a new variant has functional consequences.
Collapse
Affiliation(s)
- James B Stewart
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
52
|
Garcez M, Branco-Santos J, Gracio PC, Homem CCF. Mitochondrial Dynamics in the Drosophila Ovary Regulates Germ Stem Cell Number, Cell Fate, and Female Fertility. Front Cell Dev Biol 2021; 8:596819. [PMID: 33585443 PMCID: PMC7876242 DOI: 10.3389/fcell.2020.596819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/30/2020] [Indexed: 01/07/2023] Open
Abstract
The fate and proliferative capacity of stem cells have been shown to strongly depend on their metabolic state. Mitochondria are the powerhouses of the cell being responsible for energy production via oxidative phosphorylation (OxPhos) as well as for several other metabolic pathways. Mitochondrial activity strongly depends on their structural organization, with their size and shape being regulated by mitochondrial fusion and fission, a process known as mitochondrial dynamics. However, the significance of mitochondrial dynamics in the regulation of stem cell metabolism and fate remains elusive. Here, we characterize the role of mitochondria morphology in female germ stem cells (GSCs) and in their more differentiated lineage. Mitochondria are particularly important in the female GSC lineage. Not only do they provide these cells with their energy requirements to generate the oocyte but they are also the only mitochondria pool to be inherited by the offspring. We show that the undifferentiated GSCs predominantly have fissed mitochondria, whereas more differentiated germ cells have more fused mitochondria. By reducing the levels of mitochondrial dynamics regulators, we show that both fused and fissed mitochondria are required for the maintenance of a stable GSC pool. Surprisingly, we found that disrupting mitochondrial dynamics in the germline also strongly affects nurse cells morphology, impairing egg chamber development and female fertility. Interestingly, reducing the levels of key enzymes in the Tricarboxylic Acid Cycle (TCA), known to cause OxPhos reduction, also affects GSC number. This defect in GSC self-renewal capacity indicates that at least basal levels of TCA/OxPhos are required in GSCs. Our findings show that mitochondrial dynamics is essential for female GSC maintenance and female fertility, and that mitochondria fusion and fission events are dynamically regulated during GSC differentiation, possibly to modulate their metabolic profile.
Collapse
Affiliation(s)
- Marcia Garcez
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal.,Graduate Program in Areas of Basic and Applied Biology (GABBA), Universidade do Porto, Porto, Portugal
| | - Joana Branco-Santos
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Patricia C Gracio
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Catarina C F Homem
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
53
|
Smith EM, Benbahouche N, Morris K, Wilczynska A, Gillen S, Schmidt T, Meijer H, Jukes-Jones R, Cain K, Jones C, Stoneley M, Waldron J, Bell C, Fonseca B, Blagden S, Willis A, Bushell M. The mTOR regulated RNA-binding protein LARP1 requires PABPC1 for guided mRNA interaction. Nucleic Acids Res 2021; 49:458-478. [PMID: 33332560 PMCID: PMC7797073 DOI: 10.1093/nar/gkaa1189] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/16/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a critical regulator of cell growth, integrating multiple signalling cues and pathways. Key among the downstream activities of mTOR is the control of the protein synthesis machinery. This is achieved, in part, via the co-ordinated regulation of mRNAs that contain a terminal oligopyrimidine tract (TOP) at their 5'ends, although the mechanisms by which this occurs downstream of mTOR signalling are still unclear. We used RNA-binding protein (RBP) capture to identify changes in the protein-RNA interaction landscape following mTOR inhibition. Upon mTOR inhibition, the binding of LARP1 to a number of mRNAs, including TOP-containing mRNAs, increased. Importantly, non-TOP-containing mRNAs bound by LARP1 are in a translationally-repressed state, even under control conditions. The mRNA interactome of the LARP1-associated protein PABPC1 was found to have a high degree of overlap with that of LARP1 and our data show that PABPC1 is required for the association of LARP1 with its specific mRNA targets. Finally, we demonstrate that mRNAs, including those encoding proteins critical for cell growth and survival, are translationally repressed when bound by both LARP1 and PABPC1.
Collapse
Affiliation(s)
- Ewan M Smith
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Nour El Houda Benbahouche
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Katherine Morris
- MRC Toxicology Unit, University of Cambridge, Leicester LE1 9HN, UK
| | - Ania Wilczynska
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Sarah Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Tobias Schmidt
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Hedda A Meijer
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | - Kelvin Cain
- MRC Toxicology Unit, University of Cambridge, Leicester LE1 9HN, UK
| | - Carolyn Jones
- MRC Toxicology Unit, University of Cambridge, Leicester LE1 9HN, UK
| | - Mark Stoneley
- MRC Toxicology Unit, University of Cambridge, Leicester LE1 9HN, UK
| | - Joseph A Waldron
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Cameron Bell
- Cancer Research UK Therapeutic Discovery Laboratories, London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK
| | | | - Sarah Blagden
- Department of Oncology, University of Oxford, Oxford, OX3 7LE, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Leicester LE1 9HN, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| |
Collapse
|
54
|
Qin S, Ye L, Zheng Y, Gao J. Cytosolic PINK1 orchestrates protein translation during proteasomal stress by phosphorylating the translation elongation factor eEF1A1. FEBS Lett 2021; 595:507-520. [PMID: 33354788 DOI: 10.1002/1873-3468.14030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 11/11/2022]
Abstract
Mutations in PINK1 (PTEN-induced putative kinase 1) are associated with autosomal recessive early-onset Parkinson's disease. Full-length PINK1 (PINK1-l) has been extensively studied in mitophagy; however, the functions of the short form of PINK1 (PINK1-s) remain poorly understood. Here, we report that PINK1-s is recruited to ribosome fractions after short-term inhibition of proteasomes. The expression of PINK1-s greatly inhibits protein synthesis even without proteasomal stress. Mechanistically, PINK1-s phosphorylates the translation elongation factor eEF1A1 during proteasome inhibition. The expression of the phosphorylation mimic mutation eEF1A1S396E rescues protein synthesis defects and cell viability caused by PINK1 knockout. These findings implicate an important role for PINK1-s in protecting cells against proteasome stress through inhibiting protein synthesis.
Collapse
Affiliation(s)
- Siyue Qin
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, China
| | - Ling Ye
- Lishui Center for Disease Control and Prevention, Lishui, China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Ju Gao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
55
|
Esparza-Moltó PB, Cuezva JM. Reprogramming Oxidative Phosphorylation in Cancer: A Role for RNA-Binding Proteins. Antioxid Redox Signal 2020; 33:927-945. [PMID: 31910046 DOI: 10.1089/ars.2019.7988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Cancer is a major disease imposing high personal and economic burden draining large part of National Health Care and Research budgets worldwide. In the last decade, research in cancer has underscored the reprogramming of metabolism to an enhanced aerobic glycolysis as a major trait of the cancer phenotype with great potential for targeted therapy. Recent Advances: Mitochondria are essential organelles in metabolic reprogramming for controlling the production of biological energy through oxidative phosphorylation (OXPHOS) and the supply of metabolic precursors that sustain proliferation. In addition, mitochondria are critical hubs that integrate different signaling pathways that control cellular metabolism and cell fate. The mitochondrial ATP synthase plays a fundamental role in OXPHOS and cellular signaling. Critical Issues: This review overviews mitochondrial metabolism and OXPHOS, and the major changes reported in the expression and function of mitochondrial proteins of OXPHOS in oncogenesis and in cellular differentiation. We summarize the prominent role that RNA-binding proteins (RNABPs) play in the sorting and localized translation of nuclear-encoded mRNAs that help define the mitochondrial cell-type-specific phenotype. Moreover, we emphasize the mechanisms that contribute to restrain the activity and expression of the mitochondrial ATP synthase in carcinomas, and illustrate that the dysregulation of proteins that control energy metabolism correlates with patients' survival. Future Directions: Future research should elucidate the mechanisms and RNABPs that promote the specific alterations of the mitochondrial phenotype in carcinomas arising from different tissues with the final aim of developing new therapeutic strategies to treat cancer.
Collapse
Affiliation(s)
- Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
56
|
Shen Q, Liu Y, Li H, Zhang L. Effect of mitophagy in oocytes and granulosa cells on oocyte quality†. Biol Reprod 2020; 104:294-304. [PMID: 33079172 DOI: 10.1093/biolre/ioaa194] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/10/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022] Open
Abstract
Mitophagy is the process by which cells selectively remove supernumerary or damaged mitochondria through autophagy, and is crucial for mitochondrial homeostasis and cell survival. Mitochondria play vital roles in determining the developmental competence of oocytes. During the early stages of oogenesis, aberrant mitochondria can be removed by mitophagy. After oocyte formation, mitophagy is not actively initiated to clear damaged mitochondria despite the presence of mitophagy regulators in oocytes, which leads to the transmission of dysfunctional mitochondria from the oocyte to the embryo. However, granulosa cells around oocytes can improve mitochondrial function through mitophagy, thereby improving oocyte developmental capacity. Furthermore, this review discusses recent work on the substances and environmental conditions that affect mitophagy in oocytes and granulosa cells, thus providing new directions for improving oocyte quality during assisted reproductive technology treatment.
Collapse
Affiliation(s)
- Qiuzi Shen
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yu Liu
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Honggang Li
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ling Zhang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
57
|
Gitschlag BL, Tate AT, Patel MR. Nutrient status shapes selfish mitochondrial genome dynamics across different levels of selection. eLife 2020; 9:56686. [PMID: 32959778 PMCID: PMC7508553 DOI: 10.7554/elife.56686] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022] Open
Abstract
Cooperation and cheating are widespread evolutionary strategies. While cheating confers an advantage to individual entities within a group, competition between groups favors cooperation. Selfish or cheater mitochondrial DNA (mtDNA) proliferates within hosts while being selected against at the level of host fitness. How does environment shape cheater dynamics across different selection levels? Focusing on food availability, we address this question using heteroplasmic Caenorhabditis elegans. We find that the proliferation of selfish mtDNA within hosts depends on nutrient status stimulating mtDNA biogenesis in the developing germline. Interestingly, mtDNA biogenesis is not sufficient for this proliferation, which also requires the stress-response transcription factor FoxO/DAF-16. At the level of host fitness, FoxO/DAF-16 also prevents food scarcity from accelerating the selection against selfish mtDNA. This suggests that the ability to cope with nutrient stress can promote host tolerance of cheaters. Our study delineates environmental effects on selfish mtDNA dynamics at different levels of selection.
Collapse
Affiliation(s)
- Bryan L Gitschlag
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States.,Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, United States
| |
Collapse
|
58
|
Jin H, Xu W, Rahman R, Na D, Fieldsend A, Song W, Liu S, Li C, Rosbash M. TRIBE editing reveals specific mRNA targets of eIF4E-BP in Drosophila and in mammals. SCIENCE ADVANCES 2020; 6:eabb8771. [PMID: 32851185 PMCID: PMC7423359 DOI: 10.1126/sciadv.abb8771] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/30/2020] [Indexed: 05/04/2023]
Abstract
4E-BP (eIF4E-BP) represses translation initiation by binding to the 5' cap-binding protein eIF4E and inhibiting its activity. Although 4E-BP has been shown to be important in growth control, stress response, cancer, neuronal activity, and mammalian circadian rhythms, it is not understood how it preferentially represses a subset of mRNAs. We successfully used HyperTRIBE (targets of RNA binding proteins identified by editing) to identify in vivo 4E-BP mRNA targets in both Drosophila and mammals under conditions known to activate 4E-BP. The protein associates with specific mRNAs, and ribosome profiling data show that mTOR inhibition changes the translational efficiency of 4E-BP TRIBE targets more substantially compared to nontargets. In both systems, these targets have specific motifs and are enriched in translation-related pathways, which correlate well with the known activity of 4E-BP and suggest that it modulates the binding specificity of eIF4E and contributes to mTOR translational specificity.
Collapse
Affiliation(s)
- Hua Jin
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453, USA
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, People's Republic of China
| | - Weijin Xu
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453, USA
| | - Reazur Rahman
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453, USA
| | - Daxiang Na
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453, USA
| | - Allegra Fieldsend
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453, USA
| | - Wei Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, People's Republic of China
| | - Shaobo Liu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, People's Republic of China
| | - Chong Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, People's Republic of China
| | - Michael Rosbash
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
59
|
Affiliation(s)
- Patrick F Chinnery
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK. .,Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| |
Collapse
|
60
|
Zhang F, Pirooznia M, Xu H. Mitochondria regulate intestinal stem cell proliferation and epithelial homeostasis through FOXO. Mol Biol Cell 2020; 31:1538-1549. [PMID: 32374658 PMCID: PMC7359575 DOI: 10.1091/mbc.e19-10-0560] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A metabolic transition from glycolysis to oxidative phosphorylation is often associated with differentiation of many types of stem cells. However, the link between mitochondrial respiration and stem cells' behavior is not fully understood. We genetically disrupted electron transport chain (ETC) complexes in the intestinal stem cells (ISCs) of Drosophila. We found that ISCs carrying impaired ETC proliferated much more slowly than normal and produced very few enteroblasts, which failed to further differentiate into enterocytes. One of the main impediments to ISC proliferation and lineage specification appeared to be abnormally elevated forkhead box O (FOXO) signaling in the ETC-deficient ISCs, as genetically suppressing the signaling pathway partially restored the number of enterocytes. Contrary to common belief, reactive oxygen species (ROS) accumulation did not appear to mediate the ETC mutant phenotype. Our results demonstrate that mitochondrial respiration is essential for Drosophila ISC proliferation and lineage specification in vivo and acts at least partially by repressing endogenous FOXO signaling.
Collapse
Affiliation(s)
- Fan Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mehdi Pirooznia
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
61
|
Kim SJ, Cheresh P, Jablonski RP, Rachek L, Yeldandi A, Piseaux-Aillon R, Ciesielski MJ, Ridge K, Gottardi C, Lam AP, Pardo A, Selman M, Natarajan V, Kamp DW. Mitochondrial 8-oxoguanine DNA glycosylase mitigates alveolar epithelial cell PINK1 deficiency, mitochondrial DNA damage, apoptosis, and lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1084-L1096. [PMID: 32209025 DOI: 10.1152/ajplung.00069.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alveolar epithelial cell (AEC) apoptosis, arising from mitochondrial dysfunction and mitophagy defects, is important in mediating idiopathic pulmonary fibrosis (IPF). Our group established a role for the mitochondrial (mt) DNA base excision repair enzyme, 8-oxoguanine-DNA glycosylase 1 (mtOGG1), in preventing oxidant-induced AEC mtDNA damage and apoptosis and showed that OGG1-deficient mice have increased lung fibrosis. Herein, we determined whether mice overexpressing the mtOGG1 transgene (mtOgg1tg) are protected against lung fibrosis and whether AEC mtOGG1 preservation of mtDNA integrity mitigates phosphatase and tensin homolog-induced putative kinase 1 (PINK1) deficiency and apoptosis. Compared with wild type (WT), mtOgg1tg mice have diminished asbestos- and bleomycin-induced pulmonary fibrosis that was accompanied by reduced lung and AEC mtDNA damage and apoptosis. Asbestos and H2O2 promote the MLE-12 cell PINK1 deficiency, as assessed by reductions in the expression of PINK1 mRNA and mitochondrial protein expression. Compared with WT, Pink1-knockout (Pink1-KO) mice are more susceptible to asbestos-induced lung fibrosis and have increased lung and alveolar type II (AT2) cell mtDNA damage and apoptosis. AT2 cells from Pink1-KO mice and PINK1-silenced (siRNA) MLE-12 cells have increased mtDNA damage that is augmented by oxidative stress. Interestingly, mtOGG1 overexpression attenuates oxidant-induced MLE-12 cell mtDNA damage and apoptosis despite PINK1 silencing. mtDNA damage is increased in the lungs of patients with IPF as compared with controls. Collectively, these findings suggest that mtOGG1 maintenance of AEC mtDNA is crucial for preventing PINK1 deficiency that promotes apoptosis and lung fibrosis. Given the key role of AEC apoptosis in pulmonary fibrosis, strategies aimed at preserving AT2 cell mtDNA integrity may be an innovative target.
Collapse
Affiliation(s)
- Seok-Jo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Paul Cheresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Renea P Jablonski
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lyudmila Rachek
- Department of Cell Biology and Neuroscience, University of South Alabama College of Medicine, Mobile, Alabama
| | - Anjana Yeldandi
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Raul Piseaux-Aillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Mark J Ciesielski
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Karen Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Cara Gottardi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Anna P Lam
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | - David W Kamp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
62
|
A-Kinase Anchoring Protein 1: Emerging Roles in Regulating Mitochondrial Form and Function in Health and Disease. Cells 2020; 9:cells9020298. [PMID: 31991888 PMCID: PMC7072574 DOI: 10.3390/cells9020298] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023] Open
Abstract
Best known as the powerhouse of the cell, mitochondria have many other important functions such as buffering intracellular calcium and reactive oxygen species levels, initiating apoptosis and supporting cell proliferation and survival. Mitochondria are also dynamic organelles that are constantly undergoing fission and fusion to meet specific functional needs. These processes and functions are regulated by intracellular signaling at the mitochondria. A-kinase anchoring protein 1 (AKAP1) is a scaffold protein that recruits protein kinase A (PKA), other signaling proteins, as well as RNA to the outer mitochondrial membrane. Hence, AKAP1 can be considered a mitochondrial signaling hub. In this review, we discuss what is currently known about AKAP1's function in health and diseases. We focus on the recent literature on AKAP1's roles in metabolic homeostasis, cancer and cardiovascular and neurodegenerative diseases. In healthy tissues, AKAP1 has been shown to be important for driving mitochondrial respiration during exercise and for mitochondrial DNA replication and quality control. Several recent in vivo studies using AKAP1 knockout mice have elucidated the role of AKAP1 in supporting cardiovascular, lung and neuronal cell survival in the stressful post-ischemic environment. In addition, we discuss the unique involvement of AKAP1 in cancer tumor growth, metastasis and resistance to chemotherapy. Collectively, the data indicate that AKAP1 promotes cell survival throug regulating mitochondrial form and function. Lastly, we discuss the potential of targeting of AKAP1 for therapy of various disorders.
Collapse
|
63
|
Li J, Xue C, Gao Q, Tan J, Wan Z. Mitochondrial DNA heteroplasmy rises in substantial nigra of aged PINK1 KO mice. Biochem Biophys Res Commun 2020; 521:1024-1029. [PMID: 31727366 DOI: 10.1016/j.bbrc.2019.10.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/13/2019] [Indexed: 01/19/2023]
Abstract
Mutations in PINK1 and Parkin result in early-onset autosomal recessive Parkinson's disease (PD). PINK1/Parkin pathway maintain mitochondrial function by mediating the clearance of damaged mitochondria. However, the role of PINK1/Parkin in maintaining the balance of mtDNA heteroplasmy is still unknown. Here, we isolated mitochondrial DNA (mtDNA) from cortex, striatum and substantia nigra of wildtype (WT), PINK1 knockout (PINK1 KO) and Parkin knockout (Parkin KO) mice to analyze mtDNA heteroplasmy induced by PINK1/Parkin deficiency or aging. Our results showed that the Single Nucleotide Variants (SNVs) of late-onset somatic variants mainly increased with aging. Conversely, the early-onset somatic variants exhibited significant increase in the cortex and substantia nigra of PINK1 KO mice than WT mice of the same age. Increased average variant allele frequency was observed in aged PINK1 KO mice and in substantial nigra of aged Parkin KO mice than in WT mice. Cumulative variant allele frequency in the substantia nigra of PINK1 KO mice was significantly higher than that in WT mice, further supporting the pivotal role of PINK1 in mtDNA maintenance. This study presented a new evidence for PINK1 and Parkin in participating in mitochondrial quality control and provided clues for further revealing the role of PINK1 and Parkin in the pathogenesis of PD.
Collapse
Affiliation(s)
- Jie Li
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Chunyan Xue
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qingtao Gao
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhengqing Wan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
64
|
Abstract
Resource limitation underlies competition in the living world, even between intracellular populations of mitochondria. A new study shows that reducing the availability of an essential cellular resource, namely the enzyme that replicates mitochondrial DNA (mtDNA), can alter the selective advantage of one mtDNA type over another.
Collapse
Affiliation(s)
- Bryan L Gitschlag
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
65
|
Bayne AN, Trempe JF. Mechanisms of PINK1, ubiquitin and Parkin interactions in mitochondrial quality control and beyond. Cell Mol Life Sci 2019; 76:4589-4611. [PMID: 31254044 PMCID: PMC11105328 DOI: 10.1007/s00018-019-03203-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a degenerative movement disorder resulting from the loss of specific neuron types in the midbrain. Early environmental and pathophysiological studies implicated mitochondrial damage and protein aggregation as the main causes of PD. These findings are now vindicated by the characterization of more than 20 genes implicated in rare familial forms of the disease. In particular, two proteins encoded by the Parkin and PINK1 genes, whose mutations cause early-onset autosomal recessive PD, function together in a mitochondrial quality control pathway. In this review, we will describe recent development in our understanding of their mechanisms of action, structure, and function. We explain how PINK1 acts as a mitochondrial damage sensor via the regulated proteolysis of its N-terminus and the phosphorylation of ubiquitin tethered to outer mitochondrial membrane proteins. In turn, phospho-ubiquitin recruits and activates Parkin via conformational changes that increase its ubiquitin ligase activity. We then describe how the formation of polyubiquitin chains on mitochondria triggers the recruitment of the autophagy machinery or the formation of mitochondria-derived vesicles. Finally, we discuss the evidence for the involvement of these mechanisms in physiological processes such as immunity and inflammation, as well as the links to other PD genes.
Collapse
Affiliation(s)
- Andrew N Bayne
- Department of Pharmacology and Therapeutics and Centre for Structural Biology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics and Centre for Structural Biology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
66
|
A Genome-wide Screen Reveals that Reducing Mitochondrial DNA Polymerase Can Promote Elimination of Deleterious Mitochondrial Mutations. Curr Biol 2019; 29:4330-4336.e3. [PMID: 31786061 PMCID: PMC6926476 DOI: 10.1016/j.cub.2019.10.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/09/2019] [Accepted: 10/29/2019] [Indexed: 02/05/2023]
Abstract
A mutant mitochondrial genome arising amid the pool of mitochondrial genomes within a cell must compete with existing genomes to survive to the next generation. Even weak selective forces can bias transmission of one genome over another to affect the inheritance of mitochondrial diseases and guide the evolution of mitochondrial DNA (mtDNA). Studies in several systems suggested that purifying selection in the female germline reduces transmission of detrimental mitochondrial mutations [1, 2, 3, 4, 5, 6, 7]. In contrast, some selfish genomes can take over despite a cost to host fitness [8, 9, 10, 11, 12, 13]. Within individuals, the outcome of competition is therefore influenced by multiple selective forces. The nuclear genome, which encodes most proteins within mitochondria, and all external regulators of mitochondrial biogenesis and dynamics can influence the competition between mitochondrial genomes [14, 15, 16, 17, 18], yet little is known about how this works. Previously, we established a Drosophila line transmitting two mitochondrial genomes in a stable ratio enforced by purifying selection benefiting one genome and a selfish advantage favoring the other [8]. Here, to find nuclear genes that impact mtDNA competition, we screened heterozygous deletions tiling ∼70% of the euchromatic regions and examined their influence on this ratio. This genome-wide screen detected many nuclear modifiers of this ratio and identified one as the catalytic subunit of mtDNA polymerase gene (POLG), tam. A reduced dose of tam drove elimination of defective mitochondrial genomes. This study suggests that our approach will uncover targets for interventions that would block propagation of pathogenic mitochondrial mutations. Multiple nuclear factors affect selective transmission of mitochondrial genomes Reducing mtDNA polymerase restricts the transmission of detrimental mtDNA mutants
Collapse
|
67
|
Wang ZH, Liu Y, Chaitankar V, Pirooznia M, Xu H. Electron transport chain biogenesis activated by a JNK-insulin-Myc relay primes mitochondrial inheritance in Drosophila. eLife 2019; 8:49309. [PMID: 31612862 PMCID: PMC6809605 DOI: 10.7554/elife.49309] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/13/2019] [Indexed: 12/25/2022] Open
Abstract
Oogenesis features an enormous increase in mitochondrial mass and mtDNA copy number, which are required to furnish mature eggs with an adequate supply of mitochondria and to curb the transmission of deleterious mtDNA variants. Quiescent in dividing germ cells, mtDNA replication initiates upon oocyte determination in the Drosophila ovary, which necessitates active mitochondrial respiration. However, the underlying mechanism for this dynamic regulation remains unclear. Here, we show that an feedforward insulin-Myc loop promotes mitochondrial respiration and biogenesis by boosting the expression of electron transport chain subunits and of factors essential for mtDNA replication and expression, and for the import of mitochondrial proteins. We further reveal that transient activation of JNK enhances the expression of the insulin receptor and initiates the insulin-Myc signaling loop. This signaling relay promotes mitochondrial biogenesis in the ovary, and thereby plays a role in limiting the transmission of deleterious mtDNA mutations. Our study demonstrates cellular mechanisms that couple mitochondrial biogenesis and inheritance with oocyte development.
Collapse
Affiliation(s)
- Zong-Heng Wang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Yi Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Vijender Chaitankar
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Mehdi Pirooznia
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
68
|
Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline. Nature 2019; 570:380-384. [PMID: 31092924 PMCID: PMC6614061 DOI: 10.1038/s41586-019-1213-4] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
Mitochondria contain their own genomes, and unlike nuclear genomes, mitochondrial genomes are inherited maternally. With a high mutation rate and little recombination, special selection mechanisms exist in the female germline to prevent the accumulation of deleterious mutations1–5. The molecular mechanisms underpinning selection remain poorly understood6. Here, using an allele-specific fluorescent in situ-hybridization approach to distinguish wildtype from mutant mtDNA, we have visualized germline selection for the first time. Selection first manifests in the early stages of Drosophila oogenesis, triggered by reduction of the pro-fusion protein Mitofusin. This leads to the physical separation of mitochondrial genomes into different mitochondrial fragments, preventing the mixing of genomes and their products, and thereby reducing complementation. Once fragmentated, mitochondria harboring mutant genomes are less able to make ATP, which marks them for selection through a process requiring the mitophagy proteins Atg1 and BNIP3. Surprisingly, a reduction in Atg1 or BNIP3 decreases the amount of wildtype mtDNA, suggesting a link between mitochondrial turnover and mtDNA replication. Remarkably, fragmentation is not only necessary for selection in germline tissues, but also sufficient to induce selection in somatic tissues where selection is normally absent. Our studies posit a generalizable mechanism to select against deleterious mtDNA mutations that may allow the development of strategies for treatment of mtDNA disorders.
Collapse
|
69
|
Chen Z, Zhang F, Xu H. Human mitochondrial DNA diseases and Drosophila models. J Genet Genomics 2019; 46:201-212. [DOI: 10.1016/j.jgg.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
|