51
|
Sanchez A, Lee D, Kim DI, Miller KM. Making Connections: Integrative Signaling Mechanisms Coordinate DNA Break Repair in Chromatin. Front Genet 2021; 12:747734. [PMID: 34659365 PMCID: PMC8514019 DOI: 10.3389/fgene.2021.747734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 01/25/2023] Open
Abstract
DNA double-strand breaks (DSBs) are hazardous to genome integrity and can promote mutations and disease if not handled correctly. Cells respond to these dangers by engaging DNA damage response (DDR) pathways that are able to identify DNA breaks within chromatin leading ultimately to their repair. The recognition and repair of DSBs by the DDR is largely dependent on the ability of DNA damage sensing factors to bind to and interact with nucleic acids, nucleosomes and their modified forms to target these activities to the break site. These contacts orientate and localize factors to lesions within chromatin, allowing signaling and faithful repair of the break to occur. Coordinating these events requires the integration of several signaling and binding events. Studies are revealing an enormously complex array of interactions that contribute to DNA lesion recognition and repair including binding events on DNA, as well as RNA, RNA:DNA hybrids, nucleosomes, histone and non-histone protein post-translational modifications and protein-protein interactions. Here we examine several DDR pathways that highlight and provide prime examples of these emerging concepts. A combination of approaches including genetic, cellular, and structural biology have begun to reveal new insights into the molecular interactions that govern the DDR within chromatin. While many questions remain, a clearer picture has started to emerge for how DNA-templated processes including transcription, replication and DSB repair are coordinated. Multivalent interactions with several biomolecules serve as key signals to recruit and orientate proteins at DNA lesions, which is essential to integrate signaling events and coordinate the DDR within the milieu of the nucleus where competing genome functions take place. Genome architecture, chromatin structure and phase separation have emerged as additional vital regulatory mechanisms that also influence genome integrity pathways including DSB repair. Collectively, recent advancements in the field have not only provided a deeper understanding of these fundamental processes that maintain genome integrity and cellular homeostasis but have also started to identify new strategies to target deficiencies in these pathways that are prevalent in human diseases including cancer.
Collapse
Affiliation(s)
- Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Doohyung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Dae In Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
53
|
Stanic M, Mekhail K. Integration of DNA damage responses with dynamic spatial genome organization. Trends Genet 2021; 38:290-304. [PMID: 34598804 DOI: 10.1016/j.tig.2021.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022]
Abstract
The maintenance of genome stability and cellular homeostasis depends on the temporal and spatial coordination of successive events constituting the classical DNA damage response (DDR). Recent findings suggest close integration and coordination of DDR signaling with specific cellular processes. The mechanisms underlying such coordination remain unclear. We review emerging crosstalk between DNA repair factors, chromatin remodeling, replication, transcription, spatial genome organization, cytoskeletal forces, and liquid-liquid phase separation (LLPS) in mediating DNA repair. We present an overarching DNA repair framework within which these dynamic processes intersect in nuclear space over time. Collectively, this interplay ensures the efficient assembly of DNA repair proteins onto shifting genome structures to preserve genome stability and cell survival.
Collapse
Affiliation(s)
- Mia Stanic
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, MaRS Centre, West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, MaRS Centre, West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Canada Research Chairs Program, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
54
|
Zentout S, Smith R, Jacquier M, Huet S. New Methodologies to Study DNA Repair Processes in Space and Time Within Living Cells. Front Cell Dev Biol 2021; 9:730998. [PMID: 34589495 PMCID: PMC8473836 DOI: 10.3389/fcell.2021.730998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
DNA repair requires a coordinated effort from an array of factors that play different roles in the DNA damage response from recognizing and signaling the presence of a break, creating a repair competent environment, and physically repairing the lesion. Due to the rapid nature of many of these events, live-cell microscopy has become an invaluable method to study this process. In this review we outline commonly used tools to induce DNA damage under the microscope and discuss spatio-temporal analysis tools that can bring added information regarding protein dynamics at sites of damage. In particular, we show how to go beyond the classical analysis of protein recruitment curves to be able to assess the dynamic association of the repair factors with the DNA lesions as well as the target-search strategies used to efficiently find these lesions. Finally, we discuss how the use of mathematical models, combined with experimental evidence, can be used to better interpret the complex dynamics of repair proteins at DNA lesions.
Collapse
Affiliation(s)
- Siham Zentout
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Marine Jacquier
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
55
|
Etourneaud L, Moussa A, Rass E, Genet D, Willaume S, Chabance-Okumura C, Wanschoor P, Picotto J, Thézé B, Dépagne J, Veaute X, Dizet E, Busso D, Barascu A, Irbah L, Kortulewski T, Campalans A, Le Chalony C, Zinn-Justin S, Scully R, Pennarun G, Bertrand P. Lamin B1 sequesters 53BP1 to control its recruitment to DNA damage. SCIENCE ADVANCES 2021; 7:eabb3799. [PMID: 34452908 PMCID: PMC8397269 DOI: 10.1126/sciadv.abb3799] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/07/2021] [Indexed: 05/09/2023]
Abstract
Double-strand breaks (DSBs) are harmful lesions and a major cause of genome instability. Studies have suggested a link between the nuclear envelope and the DNA damage response. Here, we show that lamin B1, a major component of the nuclear envelope, interacts directly with 53BP1 protein, which plays a pivotal role in the DSB repair. This interaction is dissociated after DNA damage. Lamin B1 overexpression impedes 53BP1 recruitment to DNA damage sites and leads to a persistence of DNA damage, a defect in nonhomologous end joining and an increased sensitivity to DSBs. The identification of interactions domains between lamin B1 and 53BP1 allows us to demonstrate that the defect of 53BP1 recruitment and the DSB persistence upon lamin B1 overexpression are due to sequestration of 53BP1 by lamin B1. This study highlights lamin B1 as a factor controlling the recruitment of 53BP1 to DNA damage sites upon injury.
Collapse
Affiliation(s)
- Laure Etourneaud
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Angela Moussa
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Emilie Rass
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Diane Genet
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Simon Willaume
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Caroline Chabance-Okumura
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Paul Wanschoor
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Julien Picotto
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Benoît Thézé
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Jordane Dépagne
- Genetic Engineering and Expression Platform (CIGEX), iRCM, DRF, CEA, Fontenay-aux-Roses, France
| | - Xavier Veaute
- Genetic Engineering and Expression Platform (CIGEX), iRCM, DRF, CEA, Fontenay-aux-Roses, France
| | - Eléa Dizet
- Genetic Engineering and Expression Platform (CIGEX), iRCM, DRF, CEA, Fontenay-aux-Roses, France
| | - Didier Busso
- Genetic Engineering and Expression Platform (CIGEX), iRCM, DRF, CEA, Fontenay-aux-Roses, France
| | - Aurélia Barascu
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Lamya Irbah
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- Imaging platform, iRCM, DRF, CEA, F-92265 Fontenay-aux-Roses, France
| | - Thierry Kortulewski
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "Radiopathology" Team, iRCM/IBFJ, DRF, CEA, France
| | - Anna Campalans
- Université de Paris and Université Paris Saclay, iRCM/IBFJ, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, "Genetic Instability Research" Team, F-92265 Fontenay-aux-Roses, France
| | - Catherine Le Chalony
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Sophie Zinn-Justin
- Laboratory of Structural Biology and Radiobiology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France
| | - Ralph Scully
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Gaëlle Pennarun
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Pascale Bertrand
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France.
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| |
Collapse
|