51
|
Marrink SJ, Monticelli L, Melo MN, Alessandri R, Tieleman DP, Souza PCT. Two decades of Martini: Better beads, broader scope. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials University of Groningen Groningen The Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras Portugal
| | - Riccardo Alessandri
- Pritzker School of Molecular Engineering University of Chicago Chicago Illinois USA
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences University of Calgary Alberta Canada
| | - Paulo C. T. Souza
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| |
Collapse
|
52
|
Holec PV, Camacho KV, Breuckman KC, Mou J, Birnbaum ME. Proteome-Scale Screening to Identify High-Expression Signal Peptides with Minimal N-Terminus Biases via Yeast Display. ACS Synth Biol 2022; 11:2405-2416. [PMID: 35687717 DOI: 10.1021/acssynbio.2c00101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Signal peptides are critical for the efficient expression and routing of extracellular and secreted proteins. Most protein production and screening technologies rely upon a relatively small set of signal peptides. Despite their central role in biotechnology, there are limited studies comprehensively examining the interplay between signal peptides and expressed protein sequences. Here, we describe a high-throughput method to screen novel signal peptides that maintain a high degree of surface expression across a range of protein scaffolds with highly variable N-termini. We find that the canonical signal peptide used in yeast surface display, derived from Aga2p, fails to achieve high surface expression for 42.5% of constructs containing diverse N-termini. To circumvent this, we have identified two novel signal peptides derived from endogenous yeast proteins, SRL1 and KISH, which are highly tolerant to diverse N-terminal sequences. This pipeline can be used to expand our understanding of signal peptide function, identify improved signal peptides for protein expression, and refine the computational tools used for signal peptide prediction.
Collapse
Affiliation(s)
- Patrick V Holec
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Karen V Camacho
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kathryn C Breuckman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jody Mou
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael E Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
53
|
Hu C, Fan J, He G, Dong C, Zhou S, Zheng Y. Signal peptidase complex catalytic subunit SEC11A upregulation is a biomarker of poor prognosis in patients with head and neck squamous cell carcinoma. PLoS One 2022; 17:e0269166. [PMID: 35653344 PMCID: PMC9162331 DOI: 10.1371/journal.pone.0269166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/15/2022] [Indexed: 11/25/2022] Open
Abstract
In the current study, we aimed to investigate the expression of the five microsomal signal peptidase complex (SPC) subunit genes (SEC11A, SEC11C, SPCS1, SPCS2, and SPCS3) in head and neck squamous cell carcinoma (HNSC) and to explore their prognostic value. Data from the HNSC subset of The Cancer Genome Atlas (TCGA) and one previous single-cell RNA-seq dataset was used. Subgroup analysis was conducted in tumors from different anatomic sites. Gene set enrichment analysis (GSEA), and immune cell infiltration analysis were performed to check the influence of SEC11A on the tumor microenvironment. Among the genes significantly upregulated in the tumor group, only SEC11A expression (as a continuous variable) is independently associated with poorer progression-free survival (PFS) (HR: 2.075, 95%CI: 1.447–2.977, p<0.001) and disease-specific survival (DSS) (HR: 2.023, 95%CI: 1.284–3.187, p = 0.002). Subgroup analysis confirmed the prognostic value in tumors from three anatomic origins, including laryngeal squamous cell carcinoma, oral cavity-related squamous cell carcinoma, and oropharynx-related squamous cell carcinoma. SEC11A is expressed in all subtypes of cells in the tumor microenvironment. Its expression showed a moderate positive correlation with its gene-level copy number (Pearson’s r = 0.53, p<0.001). SEC11A expression was negatively correlated with CD8+ T cells and B cells, but was positively correlated with cancer-associated fibroblast and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. In summary, SEC11A upregulation is a result of gene amplification in head and neck squamous cell carcinoma. Its upregulation might serve as an independent prognostic biomarker and a predictor of the infiltration of certain types of immune cells.
Collapse
Affiliation(s)
- Chunmei Hu
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Gang He
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chuan Dong
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shijie Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
- * E-mail: (SZ); (YZ)
| | - Yun Zheng
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail: (SZ); (YZ)
| |
Collapse
|
54
|
Chen NP, Aretz J, Fässler R. CDK1-cyclin-B1-induced kindlin degradation drives focal adhesion disassembly at mitotic entry. Nat Cell Biol 2022; 24:723-736. [PMID: 35469017 PMCID: PMC9106588 DOI: 10.1038/s41556-022-00886-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/03/2022] [Indexed: 12/25/2022]
Abstract
The disassembly of integrin-containing focal adhesions (FAs) at mitotic entry is essential for cell rounding, mitotic retraction fibre formation, bipolar spindle positioning and chromosome segregation. The mechanism that drives FA disassembly at mitotic entry is unknown. Here, we show that the CDK1–cyclin B1 complex phosphorylates the integrin activator kindlin, which results in the recruitment of the cullin 9–FBXL10 ubiquitin ligase complex that mediates kindlin ubiquitination and degradation. This molecular pathway is essential for FA disassembly and cell rounding, as phospho-inhibitory mutations of the CDK1 motif prevent kindlin degradation, FA disassembly and mitotic cell rounding. Conversely, phospho-mimetic mutations promote kindlin degradation in interphase, accelerate mitotic cell rounding and impair mitotic retraction fibre formation. Despite the opposing effects on kindlin stability, both types of mutations cause severe mitotic spindle defects, apoptosis and aneuploidy. Thus, the exquisite regulation of kindlin levels at mitotic entry is essential for cells to progress accurately through mitosis. Chen et al. report that at mitotic entry, cyclin B1–CDK1 phosphorylates the focal adhesion protein kindlin to induce its proteasomal degradation and promote focal adhesion disassembly and mitotic rounding.
Collapse
Affiliation(s)
- Nan-Peng Chen
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Jonas Aretz
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
55
|
Martini 3 Model of Cellulose Microfibrils: On the Route to Capture Large Conformational Changes of Polysaccharides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030976. [PMID: 35164241 PMCID: PMC8838816 DOI: 10.3390/molecules27030976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/18/2022]
Abstract
High resolution data from all-atom molecular simulations is used to parameterize a Martini 3 coarse-grained (CG) model of cellulose I allomorphs and cellulose type-II fibrils. In this case, elementary molecules are represented by four effective beads centred in the positions of O2, O3, C6, and O6 atoms in the D-glucose cellulose subunit. Non-bonded interactions between CG beads are tuned according to a low statistical criterion of structural deviation using the Martini 3 type of interactions and are capable of being indistinguishable for all studied cases. To maintain the crystalline structure of each single cellulose chain in the microfibrils, elastic potentials are employed to retain the ribbon-like structure in each chain. We find that our model is capable of describing different fibril-twist angles associated with each type of cellulose fibril in close agreement with atomistic simulation. Furthermore, our CG model poses a very small deviation from the native-like structure, making it appropriate to capture large conformational changes such as those that occur during the self-assembly process. We expect to provide a computational model suitable for several new applications such as cellulose self-assembly in different aqueous solutions and the thermal treatment of fibrils of great importance in bioindustrial applications.
Collapse
|
56
|
Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:143. [PMID: 35008565 PMCID: PMC8745461 DOI: 10.3390/ijms23010143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.
Collapse
Affiliation(s)
- Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Sarah Haßdenteufel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| |
Collapse
|
57
|
Inhibitors of the Sec61 Complex and Novel High Throughput Screening Strategies to Target the Protein Translocation Pathway. Int J Mol Sci 2021; 22:ijms222112007. [PMID: 34769437 PMCID: PMC8585047 DOI: 10.3390/ijms222112007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Proteins targeted to the secretory pathway start their intracellular journey by being transported across biological membranes such as the endoplasmic reticulum (ER). A central component in this protein translocation process across the ER is the Sec61 translocon complex, which is only intracellularly expressed and does not have any enzymatic activity. In addition, Sec61 translocon complexes are difficult to purify and to reconstitute. Screening for small molecule inhibitors impairing its function has thus been notoriously difficult. However, such translocation inhibitors may not only be valuable tools for cell biology, but may also represent novel anticancer drugs, given that cancer cells heavily depend on efficient protein translocation into the ER to support their fast growth. In this review, different inhibitors of protein translocation will be discussed, and their specific mode of action will be compared. In addition, recently published screening strategies for small molecule inhibitors targeting the whole SRP-Sec61 targeting/translocation pathway will be summarized. Of note, slightly modified assays may be used in the future to screen for substances affecting SecYEG, the bacterial ortholog of the Sec61 complex, in order to identify novel antibiotic drugs.
Collapse
|
58
|
Take Me Home, Protein Roads: Structural Insights into Signal Peptide Interactions during ER Translocation. Int J Mol Sci 2021; 22:ijms222111871. [PMID: 34769302 PMCID: PMC8584900 DOI: 10.3390/ijms222111871] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Cleavable endoplasmic reticulum (ER) signal peptides (SPs) and other non-cleavable signal sequences target roughly a quarter of the human proteome to the ER. These short peptides, mostly located at the N-termini of proteins, are highly diverse. For most proteins targeted to the ER, it is the interactions between the signal sequences and the various ER targeting and translocation machineries such as the signal recognition particle (SRP), the protein-conducting channel Sec61, and the signal peptidase complex (SPC) that determine the proteins’ target location and provide translocation fidelity. In this review, we follow the signal peptide into the ER and discuss the recent insights that structural biology has provided on the governing principles of those interactions.
Collapse
|
59
|
Insights into the bilayer-mediated toppling mechanism of a folate-specific ECF transporter by cryo-EM. Proc Natl Acad Sci U S A 2021; 118:2105014118. [PMID: 34408021 DOI: 10.1073/pnas.2105014118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Energy-coupling factor (ECF)-type transporters are small, asymmetric membrane protein complexes (∼115 kDa) that consist of a membrane-embedded, substrate-binding protein (S component) and a tripartite ATP-hydrolyzing module (ECF module). They import micronutrients into bacterial cells and have been proposed to use a highly unusual transport mechanism, in which the substrate is dragged across the membrane by a toppling motion of the S component. However, it remains unclear how the lipid bilayer could accommodate such a movement. Here, we used cryogenic electron microscopy at 200 kV to determine structures of a folate-specific ECF transporter in lipid nanodiscs and detergent micelles at 2.7- and 3.4-Å resolution, respectively. The structures reveal an irregularly shaped bilayer environment around the membrane-embedded complex and suggest that toppling of the S component is facilitated by protein-induced membrane deformations. In this way, structural remodeling of the lipid bilayer environment is exploited to guide the transport process.
Collapse
|