51
|
Xi WH, Yang LY, Cao ZY, Qian Y. Tivantinib (ARQ-197) exhibits anti-tumor activity with down-regulation of FAK in oral squamous cell carcinoma. Biochem Biophys Res Commun 2015; 457:723-9. [DOI: 10.1016/j.bbrc.2015.01.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 01/22/2023]
|
52
|
Calles A, Kwiatkowski N, Cammarata BK, Ercan D, Gray NS, Jänne PA. Tivantinib (ARQ 197) efficacy is independent of MET inhibition in non-small-cell lung cancer cell lines. Mol Oncol 2015; 9:260-9. [PMID: 25226813 PMCID: PMC5528687 DOI: 10.1016/j.molonc.2014.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/21/2014] [Indexed: 01/15/2023] Open
Abstract
MET targeted therapies are under clinical evaluation for non-small-cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKI) against MET have varying degrees of specificity. Tivantinib (ARQ 197) is reported to be a non-ATP competitive selective MET inhibitor. We aimed to compare the activity of tivantinib to established MET TKIs in a panel of NSCLC cell lines characterized by their MET dependency and by different relevant genotypes. A549, H3122, PC9 and HCC827, their respective resistant clones PC9 GR4 and HCC827 GR6 and the MET amplified cell lines H1993 and EBC-1 were treated in vitro with tivantinib, crizotinib or PHA-665752. Crizotinib and PHA-665752 showed growth inhibition restricted to MET dependent cell lines. The pattern of activity was related to MET inhibition and downstream signaling inhibition of AKT and ERK1/2, resulting in G0/G1 cycle arrest and apoptosis. In contrast, tivantinib possessed more potent anti-proliferative activity that was not restricted to only MET dependent cell lines. Tivantinib did not inhibit cellular MET activity or phosphorylation of downstream signaling proteins AKT or ERK1/2 in either MET dependent or independent cell lines. Cell cycle analysis demonstrated that tivantinib induced a G2/M arrest and induced apoptosis. Tivantinib but not crizotinib effected microtubule dynamics, disrupting mitotic spindles by a mechanism consistent with it functioning as a microtubule depolymerizer. Tivantinib activity is independent of MET signaling in NSCLC and suggests alternative mechanisms of action that should be considered when interpreting the results from on-going clinical studies.
Collapse
Affiliation(s)
- Antonio Calles
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicholas Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Bernard K Cammarata
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dalia Ercan
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
53
|
Saber A, van der Wekken A, Hiltermann TJ, Kok K, van den Berg A, Groen HJ. Genomic aberrations guiding treatment of non-small cell lung cancer patients. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ctrc.2015.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|