51
|
Eissa IH, Elkaeed EB, Elkady H, Yousef RG, Alsfouk BA, Elzahabi HSA, Ibrahim IM, Metwaly AM, Husein DZ. Design, Molecular Modeling, MD Simulations, Essential Dynamics, ADMET, DFT, Synthesis, Anti-proliferative, and Apoptotic Evaluations of a New Anti-VEGFR-2 Nicotinamide Analogue. Curr Pharm Des 2023; 29:2902-2920. [PMID: 38031271 DOI: 10.2174/0113816128274870231102114858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVES This study aims to design and evaluate (in silico and in vitro) a new nicotinamide derivative as an inhibitor of VEGFR-2, a major mediator of angiogenesis Methods: The following in silico studies were performed; DFT calculations, molecular modelling, MD simulations, MM-GBSA, PLIP, and PCAT studies. The compound's in silico (ADMET) analysis was also conducted. Subsequently, the compound ((E)-N-(4-(1-(2-(4-(4-Chlorobenzamido)benzoyl)hydrazono)ethyl) phenyl)nicotinamide) was successfully synthesized and designated as compound X. In vitro, VEGFR-2 inhibition and cytotoxicity of compound X against HCT-116 and A549 cancer cell lines and normal Vero cell lines were conducted. Apoptosis induction and migration assay of HCT-116 cell lines after treatment with compound X were also evaluated. RESULTS DFT calculations assigned stability and reactivity of compound X. Molecular docking and MD simulations indicated its excellent binding against VEGFR-2. Furthermore, MM-GBSA analysis, PLIP experiments, and PCAT studies confirmed compound X's correct binding with optimal dynamics and energy. ADMET analysis expressed its general likeness and safety. The in vitro assays demonstrated that compound X effectively inhibited VEGFR-2, with an IC50 value of 0.319 ± 0.013 μM and displayed cytotoxicity against HCT-116 and A549 cancer cell lines, with IC50 values of 57.93 and 78.82 μM, respectively. Importantly, compound X exhibited minimal toxicity towards the non-cancerous Vero cell lines, (IC50 = 164.12 μM). Additionally, compound X significantly induced apoptosis of HCT-116 cell lines and inhibited their potential to migrate and heal. CONCLUSION In summary, the presented study has identified compound X as a promising candidate for the development of a novel apoptotic lead anticancer drug.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Heba S A Elzahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt
| |
Collapse
|
52
|
Choudhary S, Kesavan AK, Juneja V, Thakur S. Molecular modeling, simulation and docking of Rv1250 protein from Mycobacterium tuberculosis. FRONTIERS IN BIOINFORMATICS 2023; 3:1125479. [PMID: 37122997 PMCID: PMC10130521 DOI: 10.3389/fbinf.2023.1125479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Computational prediction and protein structure modeling have come to the aid of various biological problems in determining the structure of proteins. These technologies have revolutionized the biological world of research, allowing scientists and researchers to gain insights into their biological questions and design experimental research much more efficiently. Pathogenic Mycobacterium spp. is known to stay alive within the macrophages of its host. Mycobacterium tuberculosis is an acid-fast bacterium that is the most common cause of tuberculosis and is considered to be the main cause of resistance of tuberculosis as a leading health issue. The genome of Mycobacterium tuberculosis contains more than 4,000 genes, of which the majority are of unknown function. An attempt has been made to computationally model and dock one of its proteins, Rv1250 (MTV006.22), which is considered as an apparent drug-transporter, integral membrane protein, and member of major facilitator superfamily (MFS). The most widely used techniques, i.e., homology modeling, molecular docking, and molecular dynamics (MD) simulation in the field of structural bioinformatics, have been used in the present work to study the behavior of Rv1250 protein from M. tuberculosis. The structure of unknown TB protein, i.e., Rv1250 was retrived using homology modeling with the help of I-TASSER server. Further, one of the sites responsible for infection was identified and docking was done by using the specific Isoniazid ligand which is an inhibitor of this protein. Finally, the stability of protein model and analysis of stable and static interaction between protein and ligand molecular dynamic simulation was performed at 100 ns The designing of novel Rv1250 enzyme inhibitors is likely achievable with the use of proposed predicted model, which could be helpful in preventing the pathogenesis caused by M. tuberculosis. Finally, the MD simulation was done to evaluate the stability of the ligand for the specific protein.
Collapse
Affiliation(s)
- Sumita Choudhary
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anup Kumar Kesavan
- Department of Biotechnology and Microbiology, Kannur University, Dr. E. K. Janaki Ammal Campus, PalayadKannur, Kerala, India
- *Correspondence: Anup Kumar Kesavan, ; Sheetal Thakur,
| | - Vijay Juneja
- Eastern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Wyndmoor, PA, United States
| | - Sheetal Thakur
- University Centre for Research & Development, Department of Biotechnology, Chandigarh University, Gharuan-Mohali, Punjab, India
- *Correspondence: Anup Kumar Kesavan, ; Sheetal Thakur,
| |
Collapse
|
53
|
Dalal V, Kumari R. Screening and Identification of Natural Product‐Like Compounds as Potential Antibacterial Agents Targeting FemC of
Staphylococcus aureus
: An in‐Silico Approach. ChemistrySelect 2022. [DOI: 10.1002/slct.202201728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vikram Dalal
- Department of Anesthesiology Washington University in St. Louis Missouri 63110 USA
| | - Reena Kumari
- Department of Mathematics and Statistics Swami Vivekanand Subharti University Meerut 250005 India
| |
Collapse
|
54
|
1,2,4-Triazole Derivatives as Novel and Potent Antifungal Agents: Design, Synthesis and Biological Evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
55
|
Muhammad S, Saba A, Khera RA, Al-Sehemi AG, Algarni H, Iqbal J, Alshahrani MY, Chaudhry AR. Virtual screening of potential inhibitor against breast cancer-causing estrogen receptor alpha (ERα): molecular docking and dynamic simulations. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2072840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Afsheen Saba
- Department of Chemistry, College of Science, University of Agriculture, Faisalabad, Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, College of Science, University of Agriculture, Faisalabad, Pakistan
| | - Abdullah. G. Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - H. Algarni
- Department of Physics, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Javed Iqbal
- Department of Chemistry, College of Science, University of Agriculture, Faisalabad, Pakistan
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
56
|
Kumari R, Kumar V, Dhankhar P, Dalal V. Promising antivirals for PLpro of SARS-CoV-2 using virtual screening, molecular docking, dynamics, and MMPBSA. J Biomol Struct Dyn 2022:1-17. [PMID: 35510600 DOI: 10.1080/07391102.2022.2071340] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The recent pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (COVID-19) is a viral respiratory disease that has been spread all over the globe. Therefore, it is an urgent requirement to identify and develop drugs for this contagious infection. The papain-like protease (PLpro) of SARS-CoV-2 performs critical functions in virus replication and immune evasion, making it an enticing therapeutic target. SARS-CoV-2 and SARS-CoV PLpro proteases have significant similarities, and an inhibitor discovered for SARS-CoV PLpro is an exciting first step toward therapeutic development. Here, a set of antiviral molecules were screened at the catalytic and S-binding allosteric sites of papain-like protease (PLpro). Molecular docking results suggested that five molecules (44560613, 136277567, S5652, SC75741, and S3833) had good binding affinities at both sites of PLpro. Molecular dynamics analysis like root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), and hydrogen bond results showed that identified molecules with PLpro tend to form stable PLpro-inhibitor(s) complexes. Molecular Mechanics/Position-Boltzmann Surface Area (MMPBSA) analysis confirmed that antiviral molecules bound PLpro complex had lower energy (-184.72 ± 7.81 to -215.67 ± 6.73 kJ/mol) complexes. Noticeably, computational approaches revealed promising antivirals candidates for PLpro, which may be further tested by biochemical and cell-based assays to assess their potential for SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Reena Kumari
- Department of Mathematics and Statistics, Swami Vivekanand Subharti University, Meerut, India
| | - Viney Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Poonam Dhankhar
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Vikram Dalal
- Department of Anesthesiology, Washington University in St. Louis, St. Louis MO, USA
| |
Collapse
|