51
|
Petković J, Žegura B, Filipič M. Influence of TiO2nanoparticles on cellular antioxidant defense and its involvement in genotoxicity in HepG2 cells. ACTA ACUST UNITED AC 2011. [DOI: 10.1088/1742-6596/304/1/012037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
52
|
Chen JZ, Ye JY, Zhang HY, Jiang XJ, Zhang YX, Liu ZL. Freshwater toxic cyanobacteria induced DNA damage in apple (Malus pumila), rape (Brassica napus) and rice (Oryza sativa). JOURNAL OF HAZARDOUS MATERIALS 2011; 190:240-244. [PMID: 21497440 DOI: 10.1016/j.jhazmat.2011.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/21/2011] [Accepted: 03/10/2011] [Indexed: 05/30/2023]
Abstract
Cyanobacteria in freshwater ecosystems can present a harmful effect on growth and development of plants through irrigation with contaminated water. In this study, the effects of microcystins (MCs)-containing cyanobacteria extract (CE) on DNA damage of apple, rape and rice were investigated to explore the phytotoxic mechanism of MCs through DNA fragmentation and RAPD analysis. Determination of DNA fragmentation by fluorescent dye DAPI showed that significant DNA damage was observed in rice seedlings after exposure to CE while DNA fragmentation in rape seedlings and apple cultures did not differ significantly between treatment and control groups. Qualitative characterization of genomic DNA fragmentation by agarose gel electrophoresis supported the quantitative determination using DAPI. The main changes in RAPD profiles of rape seedlings following exposure of lower doses of CE were variation in band intensity for the primers F03 and S01, while higher doses of CE caused loss of normal bands and appearance of new bands except band intensity changes. The data presented here demonstrate that DNA damage in plants occurs following exposure of microcystins, and the polymorphic RAPDs may be used as an investigation tool for environmental toxicology and as a useful biomarker for the detection of genotoxic effects of microcystins on plants.
Collapse
Affiliation(s)
- J Z Chen
- School of Life Science, Huzhou University, Huzhou 313000, PR China.
| | | | | | | | | | | |
Collapse
|
53
|
Shi Y, Guo C, Sun Y, Liu Z, Xu F, Zhang Y, Wen Z, Li Z. Interaction between DNA and Microcystin-LR Studied by Spectra Analysis and Atomic Force Microscopy. Biomacromolecules 2011; 12:797-803. [DOI: 10.1021/bm101414w] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People’s Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing, 100039, People’s Republic of China
| | - Cunlan Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People’s Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing, 100039, People’s Republic of China
| | - Yujing Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People’s Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing, 100039, People’s Republic of China
| | - Zhelin Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People’s Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing, 100039, People’s Republic of China
| | - Fugang Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People’s Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing, 100039, People’s Republic of China
| | - Yue Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People’s Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing, 100039, People’s Republic of China
| | - Zhiwei Wen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People’s Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing, 100039, People’s Republic of China
| | - Zhuang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People’s Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing, 100039, People’s Republic of China
| |
Collapse
|
54
|
Žegura B, Štraser A, Filipič M. Genotoxicity and potential carcinogenicity of cyanobacterial toxins – a review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 727:16-41. [DOI: 10.1016/j.mrrev.2011.01.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 01/10/2023]
|
55
|
Gan N, Mi L, Sun X, Dai G, Chung FL, Song L. Sulforaphane protects Microcystin-LR-induced toxicity through activation of the Nrf2-mediated defensive response. Toxicol Appl Pharmacol 2010; 247:129-37. [PMID: 20600217 PMCID: PMC3577422 DOI: 10.1016/j.taap.2010.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 06/07/2010] [Accepted: 06/09/2010] [Indexed: 01/07/2023]
Abstract
Microcystins (MCs), a cyclic heptapeptide hepatotoxins, are mainly produced by the bloom-forming cyanobacerium Microcystis, which has become an environmental hazard worldwide. Long term consumption of MC-contaminated water may induce liver damage, liver cancer, and even human death. Therefore, in addition to removal of MCs in drinking water, novel strategies that prevent health damages are urgently needed. Sulforaphane (SFN), a natural-occurring isothiocyanate from cruciferous vegetables, has been reported to reduce and eliminate toxicities from xenobiotics and carcinogens. The purpose of the present study was to provide mechanistic insights into the SFN-induced antioxidative defense system against MC-LR-induced cytotoxicity. We performed cell viability assays, including MTS assay, colony formation assay and apoptotic cell sorting, to study MC-LR-induced cellular damage and the protective effects by SFN. The results showed that SFN protected MC-LR-induced damages at a nontoxic and physiological relevant dose in HepG2, BRL-3A and NIH 3T3 cells. The protection was Nrf2-mediated as evident by transactivation of Nrf2 and activation of its downstream genes, including NQO1 and HO-1, and elevated intracellular GSH level. Results of our studies indicate that pretreatment of cells with 10muM SFN for 12h significantly protected cells from MC-LR-induced damage. SFN-induced protective response was mediated through Nrf2 pathway.
Collapse
Affiliation(s)
- Nanqin Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, People’s Republic of China
| | - Lixin Mi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Xiaoyun Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, People’s Republic of China
| | - Guofei Dai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, People’s Republic of China
| | - Fung-Lung Chung
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, People’s Republic of China
| |
Collapse
|
56
|
Jasionek G, Zhdanov A, Davenport J, Bláha L, Papkovsky DB. Mitochondrial toxicity of microcystin-LR on cultured cells: application to the analysis of contaminated water samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:2535-2541. [PMID: 20192251 DOI: 10.1021/es903157h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Microcystins (MC) are potent hepatic toxins delivered into the cells by organic anion transporting peptides (OATP) where they target protein phosphatases and mitochondria. We analyzed the effects of MC-LR on primary hepatocytes, HepG2, and Jurkat T cells, and isolated rat liver mitochondria by measuring changes in O(2) consumption by optical oxygen sensing technique. Respiration of fresh primary hepatocytes was inhibited by MC-LR with EC50 = 2.74 +/- 0.65 nM, whereas an uncoupling effect on mitochondrial state 2 and state 3 respiration was observed with glutamate/malate as a substrate. HepG2 and Jurkat T cells lacking OATP showed no sensitivity to MC-LR; however, facilitated delivery of MC-LR resulted in a marked enhancement of HepG2 O(2) consumption and inhibition of Jurkat O(2) consumption at >or=0.1 nM. The respiratory response did not coincide with changes in viability, total cellular ATP, extracellular acidification, ROS formation, or protein phosphorylation, which were detectable at higher MC-LR doses. Such prominent effect on cellular respiration was therefore used for the detection of MC-LR in environmental samples. A simple and sensitive screening assay for MC-LR toxicity was developed, which uses Jurkat cells, facilitated delivery of the toxin(s) and measurement on a fluorescent reader. The assay was applied to a panel of environmental samples suspected to contain MC and benchmarked against the ELISA test. It allowed identification of toxic samples and quantification of both nonspecific and MC-LR type of toxicity.
Collapse
Affiliation(s)
- Grzegorz Jasionek
- Biochemistry Department, University College Cork, College Road, Cork, Ireland
| | | | | | | | | |
Collapse
|
57
|
Sainis I, Fokas D, Vareli K, Tzakos AG, Kounnis V, Briasoulis E. Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. Mar Drugs 2010; 8:629-57. [PMID: 20411119 PMCID: PMC2857373 DOI: 10.3390/md8030629] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/10/2010] [Accepted: 02/26/2010] [Indexed: 12/22/2022] Open
Abstract
Cyanobacterial cyclopeptides, including microcystins and nodularins, are considered a health hazard to humans due to the possible toxic effects of high consumption. From a pharmacological standpoint, microcystins are stable hydrophilic cyclic heptapeptides with a potential to cause cellular damage following uptake via organic anion-transporting polypeptides (OATP). Their intracellular biological effects involve inhibition of catalytic subunits of protein phosphatase 1 (PP1) and PP2, glutathione depletion and generation of reactive oxygen species (ROS). Interestingly, certain OATPs are prominently expressed in cancers as compared to normal tissues, qualifying MC as potential candidates for cancer drug development. In the era of targeted cancer therapy, cyanotoxins comprise a rich source of natural cytotoxic compounds with a potential to target cancers expressing specific uptake transporters. Moreover, their structure offers opportunities for combinatorial engineering to enhance the therapeutic index and resolve organ-specific toxicity issues. In this article, we revisit cyanobacterial cyclopeptides as potential novel targets for anticancer drugs by summarizing existing biomedical evidence, presenting structure-activity data and discussing developmental perspectives.
Collapse
Affiliation(s)
- Ioannis Sainis
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
| | - Demosthenes Fokas
- Department of Materials Science and Engineering, University of Ioannina, Greece; E-Mail:
(D.F.)
| | - Katerina Vareli
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- Department of Biological Applications and Technologies, University of Ioannina, Greece
| | - Andreas G. Tzakos
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- Department of Chemistry, University of Ioannina, Greece
| | | | - Evangelos Briasoulis
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- School of Medicine, University of Ioannina, Greece; E-Mail:
(V.K.)
- * Author to whom correspondence should be addressed; E-Mail:
or
; Tel.: +30-265-100-7713; Fax: +30-265-100-8087
| |
Collapse
|
58
|
The expression of Bcl-2 and Bax produced by sub-chronic intoxication with the cyanotoxin Microcystin-LR. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s10330-009-0169-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
59
|
Ortiz PA, Bruno ME, Moore T, Nesnow S, Winnik W, Ge Y. Proteomic Analysis of Propiconazole Responses in Mouse Liver: Comparison of Genomic and Proteomic Profiles. J Proteome Res 2010; 9:1268-78. [DOI: 10.1021/pr900755q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pedro A. Ortiz
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Maribel E. Bruno
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Tanya Moore
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Stephen Nesnow
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Witold Winnik
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Yue Ge
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
60
|
Differential oxidative stress responses to pure Microcystin-LR and Microcystin-containing and non-containing cyanobacterial crude extracts on Caco-2 cells. Toxicon 2010; 55:514-22. [DOI: 10.1016/j.toxicon.2009.10.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/24/2009] [Accepted: 10/06/2009] [Indexed: 12/22/2022]
|
61
|
Campos A, Vasconcelos V. Molecular mechanisms of microcystin toxicity in animal cells. Int J Mol Sci 2010; 11:268-287. [PMID: 20162015 PMCID: PMC2821003 DOI: 10.3390/ijms11010268] [Citation(s) in RCA: 358] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 12/31/2022] Open
Abstract
Microcystins (MC) are potent hepatotoxins produced by the cyanobacteria of the genera Planktothrix, Microcystis, Aphanizomenon, Nostoc and Anabaena. These cyclic heptapeptides have strong affinity to serine/threonine protein phosphatases (PPs) thereby acting as an inhibitor of this group of enzymes. Through this interaction a cascade of events responsible for the MC cytotoxic and genotoxic effects in animal cells may take place. Moreover MC induces oxidative stress in animal cells and together with the inhibition of PPs, this pathway is considered to be one of the main mechanisms of MC toxicity. In recent years new insights on the key enzymes involved in the signal-transduction and toxicity have been reported demonstrating the complexity of the interaction of these toxins with animal cells. Key proteins involved in MC up-take, biotransformation and excretion have been identified, demonstrating the ability of aquatic animals to metabolize and excrete the toxin. MC have shown to interact with the mitochondria. The consequences are the dysfunction of the organelle, induction of reactive oxygen species (ROS) and cell apoptosis. MC activity leads to the differential expression/activity of transcriptional factors and protein kinases involved in the pathways of cellular differentiation, proliferation and tumor promotion activity. This activity may result from the direct inhibition of the protein phosphatases PP1 and PP2A. This review aims to summarize the increasing data regarding the molecular mechanisms of MC toxicity in animal systems, reporting for direct MC interacting proteins and key enzymes in the process of toxicity biotransformation/excretion of these cyclic peptides.
Collapse
Affiliation(s)
- Alexandre Campos
- Centro Interdisciplinar de Investigação Marinha e Ambiental, CIIMAR/CIMAR, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mail:
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +351-223-401-813; Fax: +351-223-390-608
| | - Vitor Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental, CIIMAR/CIMAR, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mail:
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
| |
Collapse
|
62
|
Prieto AI, Jos A, Pichardo S, Moreno I, de Sotomayor MA, Moyano R, Blanco A, Cameán AM. Time-dependent protective efficacy of Trolox (vitamin E analog) against microcystin-induced toxicity in tilapia (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY 2009; 24:563-579. [PMID: 19051281 DOI: 10.1002/tox.20458] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Microcystins (MCs), hepatotoxins from cyanobacteria, induce oxidative stress and pathological changes in fish that can be ameliorated with chemoprotectants such as vitamin E (vit E). This study investigated the time period after MCs exposure in which Trolox, a vitamin E analog, is effective against oxidative and histological damage in different organs of tilapia (Oreochromis niloticus). Fish were fed Trolox supplement (700 mg/kg diet) for 7 days, or received only commercial fish food, and then were exposed to a single oral dose of 120 microg/fish microcystin-LR, and sacrificed in 24, 48, or 72 h. The Trolox protective efficacy was evaluated based on lipid peroxidation (LPO), protein oxidation, enzymatic and non-enzymatic antioxidants, and a morphologic study. Regarding the oxidative stress biomarkers altered by MCs, the higher protective action of Trolox was observed 24 h post toxin exposure, although it extends also until 48 h in gills (superoxide dismutase (SOD), catalase (CAT)), and liver, where glutathione reductase (GR) backed to control values 48 and 72 h after the toxin application. Glutathione-S- transferase (GST) activity in the liver was ameliorated by the chemoprotectant after 24 and 48 h, although control values were not recovered. Trolox modulation of these biomarkers and its ability to quench free radicals explain the recovery of LPO values in all organs at 24 h and also in gills at 48 h. Histopathologically, Trolox efficacy was more evident after 72 h.
Collapse
Affiliation(s)
- Ana Isabel Prieto
- Area of Toxicology, Faculty of Pharmacy, University of Seville, Spain
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Labine M, Minuk G. Cyanobacterial toxins and liver diseaseThis article is one of a selection of papers published in a special issue celebrating the 125th anniversary of the Faculty of Medicine at the University of Manitoba. Can J Physiol Pharmacol 2009; 87:773-88. [DOI: 10.1139/y09-081] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Blue-green algae, also known as cyanobacteria, produce a variety of toxins, some of which have been implicated in the pathogenesis of severe and potentially life-threatening diseases in humans. As the growth of cyanobacteria within freshwater lakes increases worldwide, it is important to review our present understanding of their toxicity and potential carcinogenicity to gain insight into how these organisms impact human health. This review addresses each of these topics, with special emphasis given to cyanobacterial hepatotoxins within freshwater environments.
Collapse
Affiliation(s)
- M.A. Labine
- Section of Hepatology, Department of Medicine, and Pharmacology and Therapeutics, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - G.Y. Minuk
- Section of Hepatology, Department of Medicine, and Pharmacology and Therapeutics, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
64
|
Malécot M, Mezhoud K, Marie A, Praseuth D, Puiseux-Dao S, Edery M. Proteomic study of the effects of microcystin-LR on organelle and membrane proteins in medaka fish liver. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 94:153-161. [PMID: 19628287 DOI: 10.1016/j.aquatox.2009.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 06/16/2009] [Accepted: 06/19/2009] [Indexed: 05/28/2023]
Abstract
The microcystin-leucine-arginine toxin (MC-LR) is produced by cyanobacteria that sometimes bloom in water reservoirs. It targets the liver, thus posing potential health risks to human and animals. Microcystin inhibits the protein phosphatases PP1 and PP2A, leading to diverse cellular deregulation processes. A proteomic approach was applied to the medaka fish (Oryzias latipes) to obtain an overview of the effects of MC-LR on the liver. As membrane and organelle proteins are major structural and functional components of several cell signalling pathways, we decided to investigate here the membrane and organelle-enriched fractions from the livers of control and MC-LR treated medaka fish. Seventeen proteins were identified by proteomic analysis as being modulated in response to MC-LR treatment. This is the first time for eight of them to be reported as being involved in MC-LR effects: prohibitin, fumarylacetoacetase, protein disulfide isomerase A4 and A6, glucose regulated protein 78kDa, 40S ribosomal protein SA, cytochrome b5, and ATP synthase mitochondrial d subunit. These proteins are involved in protein maturation or in the response to oxidative stress highlighting the role of organelles in protein processing and the complex cooperation associated with oxidative stress.
Collapse
Affiliation(s)
- Mélodie Malécot
- CNRS, FRE 3206 Molécules de communication et adaptation des microorganismes, and MNHN, USM 505 Cyanobactéries, cyanotoxines et environnement, Département Régulations, développement et diversité moléculaire, Muséum national d'Histoire naturelle, Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
65
|
Gaudin J, Le Hegarat L, Nesslany F, Marzin D, Fessard V. In vivo genotoxic potential of microcystin-LR: a cyanobacterial toxin, investigated both by the unscheduled DNA synthesis (UDS) and the comet assays after intravenous administration. ENVIRONMENTAL TOXICOLOGY 2009; 24:200-209. [PMID: 18561296 DOI: 10.1002/tox.20417] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microcystin-LR (MC-LR) is a toxin produced by freshwater cyanobacteria and is a potential threat to human health. MC-LR has been shown to be both a specific inhibitor of serine/threonine protein phosphatases PP1 and PP2A and a potent tumor promoter in rat liver. However, the genotoxic potential of MCs remains unclear. In this article, we investigated the ability of MC-LR to induce DNA damage on rat hepatocytes following intravenous (iv) administration by using two in vivo genotoxicity assays: the unscheduled DNA synthesis (UDS) and the comet assays. The UDS assay measures DNA synthesis induced from the excision repair of DNA damaged regions and the comet assay is a very sensitive technique for detecting various forms of DNA damage. After an exposure time of 2-4 h or 12-16 h and a dose ranging from 12.5 to 50 microg/kg bw, no DNA damage could be observed in both assays on rat hepatocytes following iv administration. These findings have been discussed and compared with recently published genotoxic results obtained in other organs from mice after oral and intraperitoneal treatments to better understand the mechanism of action of this toxin in relation with its cancerogenicity potential.
Collapse
Affiliation(s)
- Julien Gaudin
- AFSSA, Agence Française de Sécurité Sanitaire des Aliments, Laboratoire d'Etudes et de Recherches sur Médicaments Vétérinaires et Désinfectants, Unité de Toxicologie Génétique des Contaminants Alimentaire, La Haute Marche, 35302 Fougères Cedex, France
| | | | | | | | | |
Collapse
|
66
|
Schnackenberg LK, Chen M, Sun J, Holland RD, Dragan Y, Tong W, Welsh W, Beger RD. Evaluations of the trans-sulfuration pathway in multiple liver toxicity studies. Toxicol Appl Pharmacol 2009; 235:25-32. [DOI: 10.1016/j.taap.2008.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 11/13/2008] [Accepted: 11/20/2008] [Indexed: 10/21/2022]
|
67
|
Li Y, Ye H, Du M, Zhang Y, Ye B, Pu Y, Wang D. Induction of chemotaxis to sodium chloride and diacetyl and thermotaxis defects by microcystin-LR exposure in nematode Caenorhabditis elegans. J Environ Sci (China) 2009; 21:971-979. [PMID: 19862965 DOI: 10.1016/s1001-0742(08)62370-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Apart from the liver disruption, embryotoxicity and genotoxicity, microcystin (MC)-LR also could cause neurotoxicity. Nematode Caenorhabditis elegans was explored as a model to study the neurotoxicity. In the present study, we provided evidence to indicate the neurotoxicity on chemotaxis to NaCl and diacetyl, and thermotaxis from MC-LR exposure to C. elegans. As a result, higher concentrations of MC-LR caused significantly severe defects of chemotaxis to NaCl and diacetyl, and thermotaxis. The neurotoxicity on chemotaxis to NaCl and diacetyl, and thermotaxis from MC-LR exposure might be largely mediated by the damage on the corresponding sensory neurons (ASE, AWA, and AFD) and interneuron AIY The expression levels of che-1 and odr-7 were significantly decreased (P < 0.01) in animals exposed to MC-LR at concentrations lower than 10 microg/L, whereas the expression levels of ttx-1 and ttx-3 could be significantly (P < 0.01) lowered in animals even exposed to 1 microg/L of MC-LR. Moreover, both the chemotaxis to NaCl and diacetyl and the thermotaxis were more significantly reduced in MC-LR exposed mutants of che-1(p674), odr-7(ky4), ttx-1(p767), and ttx-3(ks5) than those in exposed wild-type N2 animals at the same concentrations.
Collapse
Affiliation(s)
- Yunhui Li
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Nanjing 210009, China.
| | | | | | | | | | | | | |
Collapse
|
68
|
Radyuk SN, Rebrin I, Luchak JM, Michalak K, Klichko VI, Sohal RS, Orr WC. The catalytic subunit of Drosophila glutamate-cysteine ligase is a nucleocytoplasmic shuttling protein. J Biol Chem 2008; 284:2266-74. [PMID: 19036725 DOI: 10.1074/jbc.m805913200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
GSH concentration is considerably lower in the nucleus than in the cytoplasm; however, it is significantly elevated during active cell proliferation. The main purpose of this study was to understand the mechanism underlying these variations in nuclear/cytoplasmic distribution of GSH. The rate-limiting step in the de novo GSH biosynthesis pathway is catalyzed by glutamate cysteine ligase (GCL), a heterodimer, composed of a catalytic subunit (GCLc) and a modulatory subunit (GCLm). In Drosophila, GCLc, but not GCLm, contains a nuclear localization signal (NLS). Drosophila S2 cells, constitutively expressing regular GCLc protein or expressing GCLc protein with a mutated NLS motif, were generated by transfection. In quiescent S2 cells, GCLc is aggregated in the perinuclear cytosol and the nucleus, whereas GLCm resides solely in the cytosol. In actively proliferating S2 cells, expressing the normal NLS motif, GCLc migrates from the perinuclear cytoplasm into the nucleus, and the nuclear GSH level becomes elevated; in contrast, in proliferating cells, expressing the mutated NLS motif, neither does the GCLc migrate into the nucleus nor does the nuclear GSH amount rise. In S2 cells expressing wild type GCLc, perturbation of cellular redox state by exposure to cadmium resulted in the migration of GCLc into the nucleus but not in cells expressing GCLc with the mutated NLS motif. Overall, results indicated that GSH biosynthesis in the nucleus is associated with migration of only the GCLc subunit from the cytoplasm into the nucleus, and this migration requires the presence of an intact NLS.
Collapse
Affiliation(s)
- Svetlana N Radyuk
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Arisawa S, Ishida K, Kameyama N, Ueyama J, Hattori A, Tatsumi Y, Hayashi H, Yano M, Hayashi K, Katano Y, Goto H, Takagi K, Wakusawa S. Ursodeoxycholic acid induces glutathione synthesis through activation of PI3K/Akt pathway in HepG2 cells. Biochem Pharmacol 2008; 77:858-66. [PMID: 19073151 DOI: 10.1016/j.bcp.2008.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 11/10/2008] [Accepted: 11/18/2008] [Indexed: 02/07/2023]
Abstract
Ursodeoxycholic acid (UDCA) is widely recognized as an effective compound in the treatment of chronic hepatitis and is known to modulate the redox state of the liver accompanied by an increase of GSH. In the present study, to access the antioxidative effect of UDCA and to clarify the molecular basis of the action on GSH level, we evaluated its effects in HepG2 cells exposed to excessive iron. UDCA inhibited both a decrease in the GSH level and an increase in the reactive oxygen species caused by excessive iron in the cells. UDCA increased the gene expression of the catalytic- and modifier-units of glutamine-cysteine ligase (GCL), which is a key enzyme in GSH synthesis. We further investigated the effect of UDCA on the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, and obtained results showing that UDCA-induced increase in the GSH level was prevented by LY294002, a PI3K inhibitor. In addition, Western blot analysis of Akt showed that, while the total Akt level remained unchanged, the phosphorylated Akt level was increased by UDCA, and this increase was also prevented by LY294002. Moreover, UDCA promoted the translocation of a transcription factor, nuclear factor-E2-related factor-2 (Nrf2), into the nucleus, and this action was inhibited by LY294002. From these results, it was indicated that UDCA increased the GSH synthesis through an activation of the PI3K/Akt/Nrf2 pathway. This may be a primary mechanism of antioxidative action of UDCA concerned with its therapeutic effectiveness in chronic hepatitis.
Collapse
Affiliation(s)
- Sakiko Arisawa
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Zegura B, Volcic M, Lah TT, Filipic M. Different sensitivities of human colon adenocarcinoma (CaCo-2), astrocytoma (IPDDC-A2) and lymphoblastoid (NCNC) cell lines to microcystin-LR induced reactive oxygen species and DNA damage. Toxicon 2008; 52:518-25. [PMID: 18657565 DOI: 10.1016/j.toxicon.2008.06.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/26/2008] [Accepted: 06/30/2008] [Indexed: 10/21/2022]
Abstract
Microcystins, which are hepatotoxins produced by cyanobacteria, have been reported to be potent tumour promoters, and there is an indication that they can also act as tumour initiators. They thus constitute a potential threat to human and animal health, at concentrations that do not cause acute hepatotoxic effects. The main target organ of microcystin toxicity is the liver; however, several studies have shown that other organs and tissues may also be affected. We have investigated the effect of non-cytotoxic concentrations of microcystin-LR (MCLR) on the generation of intracellular reactive oxygen species (ROS) and on DNA damage in human colon adenocarcinoma CaCo-2, human astrocytoma IPDDC-A2 and human B-lymphoblastoid NCNC cell lines. The viability of CaCo-2 cells exposed to 10 microg/MCLR for 24 and 48 h was reduced by about 40%, while that of NCNC and IPDDC-2A cells was not affected. Intracellular ROS production was increased in CaCo-2 and IPDDC-2A, but not NCNC, cells. Using the comet assay, it was shown that MCLR, at non-cytotoxic concentrations, induced a time and dose dependent increase of DNA damage in CaCo-2 cells, but not significantly in IPDDC-2A and NCNC cells. Thus, CaCo-2 cells were the most sensitive. Their sensitivity is comparable to that observed in our previous study with human hepatoma HepG2 cells. These results indicate that, in addition to liver cells, colon cells should also be considered as a target for microcystin toxicity, and that exposure to low doses of microcystins may affect intestinal tissue.
Collapse
Affiliation(s)
- Bojana Zegura
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Vecna Pot 111, 1000 Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
71
|
Nong Q, Komatsu M, Izumo K, Indo HP, Xu B, Aoyama K, Majima HJ, Horiuchi M, Morimoto K, Takeuchi T. Involvement of reactive oxygen species in Microcystin-LR-induced cytogenotoxicity. Free Radic Res 2008; 41:1326-37. [PMID: 17963120 DOI: 10.1080/10715760701704599] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Microcystin-LR (MCLR) is a potent hepatotoxin. Oxidative stress is thought to be implicated in the cytotoxicity of MCLR, but the mechanisms by which MCLR produces reactive oxygen species (ROS) are still unclear. This study investigated the role and possible sources of ROS generation in MCLR-induced cytogenotoxicity in HepG2, a human hepatoma cell line. MCLR increased DNA strand breaks, 8-hydroxydeoxiguanosine formation, lipid peroxidation, as well as LDH release, all of which were inhibited by ROS scavengers. ROS scavengers partly suppressed MCLR-induced cytotoxicity determined by the MTT assay. MCLR induced the generation of ROS, as confirmed by confocal microscopy with 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid, and upregulated the expression of CYP2E1 mRNA. In addition, CYP2E1 inhibitors chlormethiazole and diallyl dulphide inhibited both ROS generation and cytotoxicity induced by MCLR. The results suggest that ROS contribute to MCLR-induced cytogenotoxicity. CYP2E1 might be a potential source responsible for ROS generation by MCLR.
Collapse
Affiliation(s)
- Qingqing Nong
- Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Patterns of microcystin-LR induced alteration of the expression of genes involved in response to DNA damage and apoptosis. Toxicon 2008; 51:615-23. [DOI: 10.1016/j.toxicon.2007.11.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 11/19/2022]
|
73
|
Analysis of chemokines and reactive oxygen species formation by rat and human neutrophils induced by microcystin-LA, -YR and -LR. Toxicon 2008; 51:1274-80. [PMID: 18405933 DOI: 10.1016/j.toxicon.2008.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 02/15/2008] [Accepted: 02/20/2008] [Indexed: 11/21/2022]
Abstract
Microcystins (MC), a family of heptapeptide toxins produced by some genera of Cyanobacteria, have potent hepatotoxicity and tumor-promoting activity. Leukocyte infiltration in the liver was observed in MC-induced acute intoxication. Although the mechanisms of hepatotoxicity are still unclear, neutrophil infiltration in the liver may play an important role in triggering toxic injury and tumor development. The present study reports the effects of MC-LA, MC-YR and MC-LR (1 and 1000 nM) on human and rat neutrophils functions in vitro. Cell viability, DNA fragmentation, mitochondrial membrane depolarization and intracellular reactive oxygen species (ROS) levels were measured by flow cytometry. Extracellular ROS content was measured by lucigenin-amplified chemiluminescence, and cytokines were determined by ELISA. We found that these MC increased interleukin-8 (IL-8), cytokine-induced neutrophil chemoattractant-2alphabeta (CINC-2alphabeta) and extracellular ROS levels in human and rat neutrophils. Apart from neutrophil presence during the inflammatory process of MC-induced injury, our results suggest that hepatic neutrophil accumulation is further increased by MC-induced neutrophil-derived chemokine.
Collapse
|