51
|
Nakagawa Y, Sakuma T, Nishimichi N, Yokosaki Y, Takeo T, Nakagata N, Yamamoto T. Culture time of vitrified/warmed zygotes before microinjection affects the production efficiency of CRISPR-Cas9-mediated knock-in mice. Biol Open 2017; 6:706-713. [PMID: 28396487 PMCID: PMC5450330 DOI: 10.1242/bio.025122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Robust reproductive engineering techniques are required for the efficient and rapid production of genetically modified mice. We have reported the efficient production of genome-edited mice using reproductive engineering techniques, such as ultra-superovulation, in vitro fertilization (IVF) and vitrification/warming of zygotes. We usually use vitrified/warmed fertilized oocytes created by IVF for microinjection because of work efficiency and flexible scheduling. Here, we investigated whether the culture time of zygotes before microinjection influences the efficiency of producing knock-in mice. Knock-in mice were generated using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system and single-stranded oligodeoxynucleotide (ssODN) or PITCh (Precise Integration into Target Chromosome) system, a method of integrating a donor vector assisted by microhomology-mediated end-joining. The cryopreserved fertilized oocytes were warmed, cultured for several hours and microinjected at different timings. Microinjection was performed with Cas9 protein, guide RNA(s), and an ssODN or PITCh donor plasmid for the ssODN knock-in and the PITCh knock-in, respectively. Different production efficiencies of knock-in mice were observed by changing the timing of microinjection. Our study provides useful information for the CRISPR-Cas9-based generation of knock-in mice. Summary: We report variable production efficiencies of CRISPR-Cas9-mediated knock-in mice depending on a series of microinjection timings using vitrified, warmed, and cultured zygotes created via ultra-superovulation and in vitro fertilization.
Collapse
Affiliation(s)
- Yoshiko Nakagawa
- Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Norihisa Nishimichi
- Cell-Matrix Frontier Laboratory, Health Administration Center, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan
| | - Yasuyuki Yokosaki
- Cell-Matrix Frontier Laboratory, Health Administration Center, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan.,Clinical Genetics, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan
| | - Toru Takeo
- Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Naomi Nakagata
- Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
52
|
Takata N, Sakakura E, Sakuma T, Yamamoto T. Genetic Tools for Self-Organizing Culture of Mouse Embryonic Stem Cells via Small Regulatory RNA-Mediated Technologies, CRISPR/Cas9, and Inducible RNAi. Methods Mol Biol 2017; 1622:269-292. [PMID: 28674815 DOI: 10.1007/978-1-4939-7108-4_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Approaches to investigate gene functions in experimental biology are becoming more diverse and reliable. Furthermore, several kinds of tissues and organs that possess their original identities can be generated in petri dishes from stem cells including embryonic, adult and induced pluripotent stem cells. Researchers now have several choices of experimental methods and their combinations to analyze gene functions in various biological systems. Here, as an example we describe one of the better protocols, which combines three-dimensional embryonic stem cell culture with small regulatory RNA-mediated technologies, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), and inducible RNA interference (RNAi). This protocol allows investigation of genes of interest to better understand gene functions in target tissues (or organs) during in vitro development.
Collapse
Affiliation(s)
- Nozomu Takata
- Laboratory for In Vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo, Kobe, Hyogo, 650-0047, Japan. .,Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, 60611, Illinois, USA.
| | - Eriko Sakakura
- Laboratory for In Vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo, Kobe, Hyogo, 650-0047, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
53
|
Nikjoo H, Emfietzoglou D, Liamsuwan T, Taleei R, Liljequist D, Uehara S. Radiation track, DNA damage and response-a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:116601. [PMID: 27652826 DOI: 10.1088/0034-4885/79/11/116601] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The purpose of this paper has been to review the current status and progress of the field of radiation biophysics, and draw attention to the fact that physics, in general, and radiation physics in particular, with the aid of mathematical modeling, can help elucidate biological mechanisms and cancer therapies. We hypothesize that concepts of condensed-matter physics along with the new genomic knowledge and technologies and mechanistic mathematical modeling in conjunction with advances in experimental DNA (Deoxyrinonucleic acid molecule) repair and cell signaling have now provided us with unprecedented opportunities in radiation biophysics to address problems in targeted cancer therapy, and genetic risk estimation in humans. Obviously, one is not dealing with 'low-hanging fruit', but it will be a major scientific achievement if it becomes possible to state, in another decade or so, that we can link mechanistically the stages between the initial radiation-induced DNA damage; in particular, at doses of radiation less than 2 Gy and with structural changes in genomic DNA as a precursor to cell inactivation and/or mutations leading to genetic diseases. The paper presents recent development in the physics of radiation track structure contained in the computer code system KURBUC, in particular for low-energy electrons in the condensed phase of water for which we provide a comprehensive discussion of the dielectric response function approach. The state-of-the-art in the simulation of proton and carbon ion tracks in the Bragg peak region is also presented. The paper presents a critical discussion of the models used for elastic scattering, and the validity of the trajectory approach in low-electron transport. Brief discussions of mechanistic and quantitative aspects of microdosimetry, DNA damage and DNA repair are also included as developed by the authors' work.
Collapse
Affiliation(s)
- H Nikjoo
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260, P9-02, Stockholm 17176, Sweden
| | | | | | | | | | | |
Collapse
|
54
|
Understanding radiation damage on sub-cellular scale using RADAMOL simulation tool. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
55
|
Nikjoo H, Taleei R, Liamsuwan T, Liljequist D, Emfietzoglou D. Perspectives in radiation biophysics: From radiation track structure simulation to mechanistic models of DNA damage and repair. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
56
|
Mechanistic Modelling of DNA Repair and Cellular Survival Following Radiation-Induced DNA Damage. Sci Rep 2016; 6:33290. [PMID: 27624453 PMCID: PMC5022028 DOI: 10.1038/srep33290] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
Characterising and predicting the effects of ionising radiation on cells remains challenging, with the lack of robust models of the underlying mechanism of radiation responses providing a significant limitation to the development of personalised radiotherapy. In this paper we present a mechanistic model of cellular response to radiation that incorporates the kinetics of different DNA repair processes, the spatial distribution of double strand breaks and the resulting probability and severity of misrepair. This model enables predictions to be made of a range of key biological endpoints (DNA repair kinetics, chromosome aberration and mutation formation, survival) across a range of cell types based on a set of 11 mechanistic fitting parameters that are common across all cells. Applying this model to cellular survival showed its capacity to stratify the radiosensitivity of cells based on aspects of their phenotype and experimental conditions such as cell cycle phase and plating delay (correlation between modelled and observed Mean Inactivation Doses R(2) > 0.9). By explicitly incorporating underlying mechanistic factors, this model can integrate knowledge from a wide range of biological studies to provide robust predictions and may act as a foundation for future calculations of individualised radiosensitivity.
Collapse
|
57
|
Mladenova V, Mladenov E, Iliakis G. Novel Biological Approaches for Testing the Contributions of Single DSBs and DSB Clusters to the Biological Effects of High LET Radiation. Front Oncol 2016; 6:163. [PMID: 27446809 PMCID: PMC4923065 DOI: 10.3389/fonc.2016.00163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/15/2016] [Indexed: 01/28/2023] Open
Abstract
The adverse biological effects of ionizing radiation (IR) are commonly attributed to the generation of DNA double-strand breaks (DSBs). IR-induced DSBs are generated by clusters of ionizations, bear damaged terminal nucleotides, and frequently comprise base damages and single-strand breaks in the vicinity generating a unique DNA damage-clustering effect that increases DSB "complexity." The number of ionizations in clusters of different radiation modalities increases with increasing linear energy transfer (LET), and is thought to determine the long-known LET-dependence of the relative biological effectiveness (RBE). Multiple ionizations may also lead to the formation of DSB clusters, comprising two or more DSBs that destabilize chromatin further and compromise overall processing. DSB complexity and DSB-cluster formation are increasingly considered in the development of mathematical models of radiation action, which are then "tested" by fitting available experimental data. Despite a plethora of such mathematical models the ultimate goal, i.e., the "a priori" prediction of the radiation effect, has not yet been achieved. The difficulty partly arises from unsurmountable difficulties in testing the fundamental assumptions of such mathematical models in defined biological model systems capable of providing conclusive answers. Recently, revolutionary advances in methods allowing the generation of enzymatic DSBs at random or in well-defined locations in the genome, generate unique testing opportunities for several key assumptions frequently fed into mathematical modeling - including the role of DSB clusters in the overall effect. Here, we review the problematic of DSB-cluster formation in radiation action and present novel biological technologies that promise to revolutionize the way we address the biological consequences of such lesions. We describe new ways of exploiting the I-SceI endonuclease to generate DSB-clusters at random locations in the genome and describe the possible utility of Zn-finger nucleases and of TALENs in generating DSBs at defined genomic locations. Finally, we describe ways to harness the revolution of CRISPR/Cas9 technology to advance our understanding of the biological effects of DSBs. Collectively, these approaches promise to improve the focus of mathematical modeling of radiation action by providing testing opportunities for key assumptions on the underlying biology. They are also likely to further strengthen interactions between experimental radiation biologists and mathematical modelers.
Collapse
Affiliation(s)
- Veronika Mladenova
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School , Essen , Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School , Essen , Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School , Essen , Germany
| |
Collapse
|
58
|
Abstract
Programmable nucleases enable engineering of the genome by utilizing endogenous DNA double-strand break (DSB) repair pathways. Although homologous recombination (HR)-mediated gene knock-in is well established, it cannot necessarily be applied in every cell type and organism because of variable HR frequencies. We recently reported an alternative method of gene knock-in, named the PITCh (Precise Integration into Target Chromosome) system, assisted by microhomology-mediated end-joining (MMEJ). MMEJ harnesses independent machinery from HR, and it requires an extremely short homologous sequence (5-25 bp) for DSB repair, resulting in precise gene knock-in with a more easily constructed donor vector. Here we describe a streamlined protocol for PITCh knock-in, including the design and construction of the PITCh vectors, and their delivery to either human cell lines by transfection or to frog embryos by microinjection. The construction of the PITCh vectors requires only a few days, and the entire process takes ∼ 1.5 months to establish knocked-in cells or ∼ 1 week from injection to early genotyping in frog embryos.
Collapse
|
59
|
Hattori Y, Yokoya A, Watanabe R. Cellular automaton-based model for radiation-induced bystander effects. BMC SYSTEMS BIOLOGY 2015; 9:90. [PMID: 26642882 PMCID: PMC4672575 DOI: 10.1186/s12918-015-0235-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/20/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND The radiation-induced bystander effect is a biological response observed in non-irradiated cells surrounding an irradiated cell. The bystander effect is known to be induced by two intercellular signaling pathways, the medium-mediated pathway (MDP) and the gap junctional pathway (GJP). To investigate the relative contribution of each signaling pathway, we have developed a mathematical model of the cellular response through these two pathways, with a particular focus on cell-cycle modification. METHODS The model is based on a cellular automaton and consists of four components: (1) irradiation, (2) generation and diffusion of intercellular signals, (3) induction of DNA double-strand breaks (DSBs), and (4) cell-cycle modification or cell death. The intercellular signals are generated in and released from irradiated cells. The signals through the MDP and the GJP are modeled independently based on diffusion equations. The irradiation and both signals raise the number of DSBs, which determines transitions of cellular states, such as cell-cycle arrest or cell death. RESULTS Our model reproduced fairly well previously reported experimental data on the number of DSBs and cell survival curves. We examined how radiation dose and intercellular signaling dynamically affect the cell cycle. The analysis of model dynamics for the bystander cells revealed that the number of arrested cells did not increase linearly with dose. Arrested cells were more efficiently accumulated by the GJP than by the MDP. CONCLUSIONS We present here a mathematical model that integrates various bystander responses, such as MDP and GJP signaling, DSB induction, cell-cycle arrest, and cell death. Because it simulates spatial and temporal conditions of irradiation and cellular characteristics, our model will be a powerful tool to predict dynamical radiobiological responses of a cellular population in which irradiated and non-irradiated cells co-exist.
Collapse
Affiliation(s)
- Yuya Hattori
- Research Group for Radiation Effect Analysis, Japan Atomic Energy Agency, 2-4, Shirakata Shirane, Tokai, Ibaraki, 319-1195, Japan.
| | - Akinari Yokoya
- Research Group for Radiation and Biomolecular Science, Japan Atomic Energy Agency, Ibaraki, 319-1195, Japan.
| | - Ritsuko Watanabe
- Research Group for Radiation Effect Analysis, Japan Atomic Energy Agency, 2-4, Shirakata Shirane, Tokai, Ibaraki, 319-1195, Japan.
| |
Collapse
|
60
|
Sridharan DM, Chappell LJ, Whalen MK, Cucinotta FA, Pluth JM. Defining the Biological Effectiveness of Components of High-LET Track Structure. Radiat Res 2015; 184:105-19. [PMID: 26114329 DOI: 10.1667/rr13684.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During space travel, astronauts are exposed to a wide array of high-linear energy transfer (LET) particles, with differing energies and resulting biological effects. Risk assessment of these exposures carries a large uncertainty predominantly due to the unique track structure of the particle's energy deposition. The complex damage elicited by high charge and energy (HZE) particles results from both lesions along the track core and from energetic electrons, δ rays, generated as a consequence of particle traversal. To better define how cells respond to this complex radiation exposure, a normal hTERT immortalized skin fibroblast cell line was exposed to a defined panel of particles carefully chosen to tease out track structure effects. Phosphorylation kinetics for several key double-strand break (DSB) response proteins (γ-H2AX, pATF2 and pSMC1) were defined after exposure to ten different high-LET radiation qualities and one low-LET radiation (X ray), at two doses (0.5-2 Gy) and time points (2 and 24 h). The results reveal that the lower energy particles (Fe 300, Si 93 and Ti 300 MeV/u), with a narrower track width and higher number and intensity of δ rays, cause the highest degree of persistent damage response. The persistent γ-H2AX signal at lower energies suggests that damage from these exposures are more difficult to resolve, likely due to the greater complexity of the associated DNA lesions. However, different kinetics were observed for the solely ATM-mediated phosphorylations (pATF2 and pSMC1), revealing a shallow induction at early times and a higher level of residual phosphorylation compared to γ-H2AX. The differing phospho-protein profiles exhibited, compared to γ-H2AX, suggests additional functions for these proteins within the cell. The strong correspondence between the predicted curves for energy deposition per nucleosome for each ion/energy combination and the persistent levels of γ-H2AX indicates that the nature of energy distribution defines residual levels of γ-H2AX, an indicator of unrepaired DSBs. Our results suggest that decreasing the energy of a particle results in more complex damage that may increase genomic instability and increase the risk of carcinogenesis.
Collapse
Affiliation(s)
- Deepa M Sridharan
- a Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, California 94710
| | - Lori J Chappell
- b NASA, Lyndon B. Johnson Space Center, Houston, Texas 77058; and
| | - Mary K Whalen
- a Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, California 94710
| | - Francis A Cucinotta
- c University of Nevada, Las Vegas, Health Physics and Diagnostic Sciences, Las Vegas, Nevada 89154
| | - Janice M Pluth
- a Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, California 94710
| |
Collapse
|
61
|
Kimura Y, Oda M, Nakatani T, Sekita Y, Monfort A, Wutz A, Mochizuki H, Nakano T. CRISPR/Cas9-mediated reporter knock-in in mouse haploid embryonic stem cells. Sci Rep 2015; 5:10710. [PMID: 26039937 PMCID: PMC4454075 DOI: 10.1038/srep10710] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/29/2015] [Indexed: 12/26/2022] Open
Abstract
Mouse parthenogenetic haploid embryonic stem cells (ESCs) are pluripotent cells generated from chemically activated oocytes. Haploid ESCs provide an opportunity to study the effect of genetic alterations because of their hemizygotic characteristics. However, their further application for the selection of unique phenotypes remains limited since ideal reporters to monitor biological processes such as cell differentiation are missing. Here, we report the application of CRISPR/Cas9-mediated knock-in of a reporter cassette, which does not disrupt endogenous target genes in mouse haploid ESCs. We first validated the system by inserting the P2A-Venus reporter cassette into the housekeeping gene locus. In addition to the conventional strategy using the Cas9 nuclease, we employed the Cas9 nickase and truncated sgRNAs to reduce off-target mutagenesis. These strategies induce targeted insertions with an efficiency that correlated with sgRNA guiding activity. We also engineered the neural marker gene Sox1 locus and verified the precise insertion of the P2A-Venus reporter cassette and its functionality by monitoring neural differentiation. Our data demonstrate the successful application of the CRISPR/Cas9-mediated knock-in system for establishing haploid knock-in ESC lines carrying gene specific reporters. Genetically modified haploid ESCs have potential for applications in forward genetic screening of developmental pathways.
Collapse
Affiliation(s)
- Yasuyoshi Kimura
- Department of Pathology
- Department of Neurology, Graduate School of Medicine
| | - Masaaki Oda
- Department of Pathology
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Yoichi Sekita
- Department of Pathology
- Department of Biosciences, Kitasato University School of Science, Kanagawa, Japan
| | - Asun Monfort
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Hönggerberg, 8049 Zürich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Hönggerberg, 8049 Zürich, Switzerland
| | | | - Toru Nakano
- Department of Pathology
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- JST, CREST.
| |
Collapse
|
62
|
Watanabe R, Rahmanian S, Nikjoo H. Spectrum of Radiation-Induced Clustered Non-DSB Damage - A Monte Carlo Track Structure Modeling and Calculations. Radiat Res 2015; 183:525-40. [PMID: 25909147 DOI: 10.1667/rr13902.1] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aim of this report is to present the spectrum of initial radiation-induced cellular DNA damage [with particular focus on non-double-strand break (DSB) damage] generated by computer simulations. The radiation types modeled in this study were monoenergetic electrons (100 eV-1.5 keV), ultrasoft X-ray photons Ck, AlK and TiK, as well as some selected ions including 3.2 MeV/u proton; 0.74 and 2.4 MeV/u helium ions; 29 MeV/u nitrogen ions and 950 MeV/u iron ions. Monte Carlo track structure methods were used to simulate damage induction by these radiation types in a cell-mimetic condition from a single-track action. The simulations took into account the action of direct energy deposition events and the reaction of hydroxyl radicals on atomistic linear B-DNA segments of a few helical turns including the water of hydration. Our results permitted the following conclusions: a. The absolute levels of different types of damage [base damage, simple and complex single-strand breaks (SSBs) and DSBs] vary depending on the radiation type; b. Within each damage class, the relative proportions of simple and complex damage vary with radiation type, the latter being higher with high-LET radiations; c. Overall, for both low- and high-LET radiations, the ratios of the yields of base damage to SSBs are similar, being about 3.0 ± 0.2; d. Base damage contributes more to the complexity of both SSBs and DSBs, than additional SSB damage and this is true for both low- and high-LET radiations; and e. The average SSB/DSB ratio for low-LET radiations is about 18, which is about 5 times higher than that for high-LET radiations. The hypothesis that clustered DNA damage is more difficult for cells to repair has gained currency among radiobiologists. However, as yet, there is no direct in vivo experimental method to validate the dependence of kinetics of DNA repair on DNA damage complexity (both DSB and non-DSB types). The data on the detailed spectrum of DNA damage presented here, in particular the non-DSB type, provide a good basis for testing mechanistic models of DNA repair kinetics such as base excision repair.
Collapse
Affiliation(s)
- Ritsuko Watanabe
- a Research Group for Radiation Effect Analysis, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan
| | | | | |
Collapse
|
63
|
Byrne HL, Domanova W, McNamara AL, Incerti S, Kuncic Z. The cytoplasm as a radiation target: an in silico study of microbeam cell irradiation. Phys Med Biol 2015; 60:2325-37. [PMID: 25715947 DOI: 10.1088/0031-9155/60/6/2325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We performed in silico microbeam cell irradiation modelling to quantitatively investigate ionisations resulting from soft x-ray and alpha particle microbeams targeting the cytoplasm of a realistic cell model. Our results on the spatial distribution of ionisations show that as x-rays are susceptible to scatter within a cell that can lead to ionisations in the nucleus, soft x-ray microbeams may not be suitable for investigating the DNA damage response to radiation targeting the cytoplasm alone. In contrast, ionisations from an ideal alpha microbeam are tightly confined to the cytoplasm, but a realistic alpha microbeam degrades upon interaction with components upstream of the cellular target. Thus it is difficult to completely rule out a contribution from alpha particle hits to the nucleus when investigating DNA damage response to cytoplasmic irradiation. We find that although the cytoplasm targeting efficiency of an alpha microbeam is better than that of a soft x-ray microbeam (the probability of stray alphas hitting the nucleus is 0.2% compared to 3.6% for x-rays), stray alphas produce more ionisations in the nucleus and thus have greater potential for initiating damage responses therein. Our results suggest that observed biological responses to cytoplasmic irradiation include a small component that can be attributed to stray ionisations in the nucleus resulting from the stochastic nature of particle interactions that cause out-of-beam scatter. This contribution is difficult to isolate experimentally, thus demonstrating the value of the in silico approach.
Collapse
Affiliation(s)
- H L Byrne
- Institute of Medical Physics, School of Physics, University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
64
|
Belov OV, Krasavin EA, Lyashko MS, Batmunkh M, Sweilam NH. A quantitative model of the major pathways for radiation-induced DNA double-strand break repair. J Theor Biol 2015; 366:115-30. [DOI: 10.1016/j.jtbi.2014.09.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 12/11/2022]
|
65
|
Taleei R, Girard PM, Nikjoo H. DSB repair model for mammalian cells in early S and G1 phases of the cell cycle: application to damage induced by ionizing radiation of different quality. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 779:5-14. [PMID: 25813721 DOI: 10.1016/j.mrgentox.2015.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 01/01/2023]
Abstract
The purpose of this work is to test the hypothesis that kinetics of double strand breaks (DSB) repair is governed by complexity of DSB. To test the hypothesis we used our recent published mechanistic mathematical model of DSB repair for DSB induced by selected protons, deuterons, and helium ions of different energies representing radiations of different qualities. In light of recent advances in experimental and computational techniques, the most appropriate method to study cellular responses in radiation therapy, and exposures to low doses of ionizing radiations is using mechanistic approaches. To this end, we proposed a 'bottom-up' approach to study cellular response that starts with the DNA damage. Monte Carlo track structure method was employed to simulate initial damage induced in the genomic DNA by direct and indirect effects. Among the different types of DNA damage, DSB are known to be induced in simple and complex forms. The DSB repair model in G1 and early S phases of the cell cycle was employed to calculate the repair kinetics. The model considers the repair of simple and complex DSB, and the DSB produced in the heterochromatin. The inverse sampling method was used to calculate the repair kinetics for each individual DSB. The overall repair kinetics for 500 DSB induced by single tracks of the radiation under test were compared with experimental results. The results show that the model is capable of predicting the repair kinetics for the DSB induced by radiations of different qualities within an accepted range of uncertainty.
Collapse
Affiliation(s)
- Reza Taleei
- Department of Radiation Physics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter M Girard
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institute, Stockholm SE171 76, Sweden
| | - Hooshang Nikjoo
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institute, Stockholm SE171 76, Sweden.
| |
Collapse
|
66
|
Hufnagl A, Herr L, Friedrich T, Durante M, Taucher-Scholz G, Scholz M. The link between cell-cycle dependent radiosensitivity and repair pathways: a model based on the local, sister-chromatid conformation dependent switch between NHEJ and HR. DNA Repair (Amst) 2015; 27:28-39. [PMID: 25629437 DOI: 10.1016/j.dnarep.2015.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/24/2014] [Accepted: 01/08/2015] [Indexed: 11/29/2022]
Abstract
The different DNA damage repair pathways like homologous recombination (HR) and non-homologous end joining (NHEJ) have been linked to the variation of radiosensitivity throughout the cell cycle. However, no attempts have been made to test the various hypotheses derived from these studies in a quantitative way e.g. by using modeling approaches. Here we present the first modeling approach that allows predicting the cell cycle dependent radiosensitivity of repair proficient as well as of repair deficient cell lines after photon irradiation based on a small set of parameters and assumptions. A key element of the model is the classification of DNA damage according to its complexity on the level of chromatin loops of about 2Mbp size. Isolated DSB (iDSB), characterized by a single DSB within a chromatin loop, are distinguished from clustered DSB (cDSB), characterized by two or more DSB within a chromatin loop. The class of iDSB is further subdivided into two sub-classes, characterized by the replication status of the corresponding chromatin loop. For iDSB in replicated loops that are in close contact, error-free homologous recombination is assumed to be effective; in unreplicated loops or in replicated loops that have already been separated, iDSB are assumed to be repaired by error-prone non-homologous end joining. cDSB are assumed not to be repairable effectively by neither HR nor NHEJ. Assigning empirically derived lethalities to these three damage classes and pathways, we demonstrate that the model is able to accurately reproduce cell cycle dependent survival probabilities. Notably, the relevant parameters are derived solely from two survival curves for normal, repair proficient cells in G1 and late-S phase. Based on a comparison of model predictions with a large data set reported in the literature, we show that the lethality values for wild type cells are simultaneously predictive for the cell cycle dependent variation of sensitivity observed for HR-deficient and NHEJ-deficient cells.
Collapse
Affiliation(s)
- Antonia Hufnagl
- GSI Helmholtzzentrum für Schwerionenforschung (GSI), Department of Biophysics, Darmstadt, Germany
| | - Lisa Herr
- GSI Helmholtzzentrum für Schwerionenforschung (GSI), Department of Biophysics, Darmstadt, Germany
| | - Thomas Friedrich
- GSI Helmholtzzentrum für Schwerionenforschung (GSI), Department of Biophysics, Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung (GSI), Department of Biophysics, Darmstadt, Germany; Technische Universität Darmstadt, Darmstadt, Germany
| | - Gisela Taucher-Scholz
- GSI Helmholtzzentrum für Schwerionenforschung (GSI), Department of Biophysics, Darmstadt, Germany
| | - Michael Scholz
- GSI Helmholtzzentrum für Schwerionenforschung (GSI), Department of Biophysics, Darmstadt, Germany.
| |
Collapse
|
67
|
Sankaranarayanan K, Nikjoo H. Genome-based, mechanism-driven computational modeling of risks of ionizing radiation: The next frontier in genetic risk estimation? MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 764:1-15. [PMID: 26041262 DOI: 10.1016/j.mrrev.2014.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
Abstract
Research activity in the field of estimation of genetic risks of ionizing radiation to human populations started in the late 1940s and now appears to be passing through a plateau phase. This paper provides a background to the concepts, findings and methods of risk estimation that guided the field through the period of its growth to the beginning of the 21st century. It draws attention to several key facts: (a) thus far, genetic risk estimates have been made indirectly using mutation data collected in mouse radiation studies; (b) important uncertainties and unsolved problems remain, one notable example being that we still do not know the sensitivity of human female germ cells to radiation-induced mutations; and (c) the concept that dominated the field thus far, namely, that radiation exposures to germ cells can result in single gene diseases in the descendants of those exposed has been replaced by the concept that radiation exposure can cause DNA deletions, often involving more than one gene. Genetic risk estimation now encompasses work devoted to studies on DNA deletions induced in human germ cells, their expected frequencies, and phenotypes and associated clinical consequences in the progeny. We argue that the time is ripe to embark on a human genome-based, mechanism-driven, computational modeling of genetic risks of ionizing radiation, and we present a provisional framework for catalyzing research in the field in the 21st century.
Collapse
Affiliation(s)
- K Sankaranarayanan
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260, P9-02, Stockholm SE 17176, Sweden
| | - H Nikjoo
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260, P9-02, Stockholm SE 17176, Sweden.
| |
Collapse
|
68
|
Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 2014; 5:5560. [PMID: 25410609 PMCID: PMC4263139 DOI: 10.1038/ncomms6560] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/11/2014] [Indexed: 01/14/2023] Open
Abstract
Genome engineering using programmable nucleases enables homologous recombination (HR)-mediated gene knock-in. However, the labour used to construct targeting vectors containing homology arms and difficulties in inducing HR in some cell type and organisms represent technical hurdles for the application of HR-mediated knock-in technology. Here, we introduce an alternative strategy for gene knock-in using transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) mediated by microhomology-mediated end-joining, termed the PITCh (Precise Integration into Target Chromosome) system. TALEN-mediated PITCh, termed TAL-PITCh, enables efficient integration of exogenous donor DNA in human cells and animals, including silkworms and frogs. We further demonstrate that CRISPR/Cas9-mediated PITCh, termed CRIS-PITCh, can be applied in human cells without carrying the plasmid backbone sequence. Thus, our PITCh-ing strategies will be useful for a variety of applications, not only in cultured cells, but also in various organisms, including invertebrates and vertebrates.
Collapse
|
69
|
Rahmanian S, Taleei R, Nikjoo H. Radiation induced base excision repair (BER): a mechanistic mathematical approach. DNA Repair (Amst) 2014; 22:89-103. [PMID: 25117268 DOI: 10.1016/j.dnarep.2014.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 01/24/2023]
Abstract
This paper presents a mechanistic model of base excision repair (BER) pathway for the repair of single-stand breaks (SSBs) and oxidized base lesions produced by ionizing radiation (IR). The model is based on law of mass action kinetics to translate the biochemical processes involved, step-by-step, in the BER pathway to translate into mathematical equations. The BER is divided into two subpathways, short-patch repair (SPR) and long-patch repair (LPR). SPR involves in replacement of single nucleotide via Pol β and ligation of the ends via XRCC1 and Ligase III, while LPR involves in replacement of multiple nucleotides via PCNA, Pol δ/ɛ and FEN 1, and ligation via Ligase I. A hallmark of IR is the production of closely spaced lesions within a turn of DNA helix (named complex lesions), which have been attributed to a slower repair process. The model presented considers fast and slow component of BER kinetics by assigning SPR for simple lesions and LPR for complex lesions. In the absence of in vivo reaction rate constants for the BER proteins, we have deduced a set of rate constants based on different published experimental measurements including accumulation kinetics obtained from UVA irradiation, overall SSB repair kinetic experiments, and overall BER kinetics from live-cell imaging experiments. The model was further used to calculate the repair kinetics of complex base lesions via the LPR subpathway and compared to foci kinetic experiments for cells irradiated with γ rays, Si, and Fe ions. The model calculation show good agreement with experimental measurements for both overall repair and repair of complex lesions. Furthermore, using the model we explored different mechanisms responsible for inhibition of repair when higher LET and HZE particles are used and concluded that increasing the damage complexity can inhibit initiation of LPR after the AP site removal step in BER.
Collapse
Affiliation(s)
- Shirin Rahmanian
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260 P9-02, Stockholm 17176, Sweden
| | - Reza Taleei
- Radiation Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 94, Houston, TX 77030-4409, USA
| | - Hooshang Nikjoo
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260 P9-02, Stockholm 17176, Sweden.
| |
Collapse
|
70
|
Liamsuwan T, Hultqvist M, Lindborg L, Uehara S, Nikjoo H. Microdosimetry of proton and carbon ions. Med Phys 2014; 41:081721. [DOI: 10.1118/1.4888338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
71
|
Bodgi L, Foray N. On the coherence between mathematical models of DSB repair and physiological reality. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 761:48-9. [DOI: 10.1016/j.mrgentox.2014.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/30/2013] [Accepted: 01/07/2014] [Indexed: 11/29/2022]
|
72
|
Taleei R, Nikjoo H. Response to the Letter of Bodgi and Foray: On the coherence between mathematical models of DSB repair and physiological reality. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 761:50-2. [DOI: 10.1016/j.mrgentox.2014.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
|
73
|
From DNA damage to chromosome aberrations: joining the break. Mutat Res 2013; 756:5-13. [PMID: 23707699 DOI: 10.1016/j.mrgentox.2013.05.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 12/25/2022]
Abstract
Despite many years of experimental studies on radiation-induced chromosomal aberrations, and the recent progress in elucidating the molecular mechanisms of the DNA damage response, the link between DNA double-strand break repair and its expression as microscopically visible chromosomal rearrangements remains, in many ways, obscure. Some long standing controversies have partially been resolved to the satisfaction of most investigators, including the linearity of the dose-response for DNA double-strand break induction, the necessity of pairwise interaction of radiogenic damaged sites in the formation of exchange aberrations, and the importance of proximity between lesions in misrejoining. However, the contribution of different molecular DNA repair mechanisms (e.g., alternative end-joining pathways) and their impact on the kinetics of aberration formation is still unclear, as is the definition of "complex" radiogenic damaged sites - in either the chemical or spatial sense - which ostensibly lead to chromosome rearrangements. These topics have been recently debated by molecular biologists and cytogeneticists, whose opinions are summarized in this paper.
Collapse
|