51
|
Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int J Nanomedicine 2019; 14:5753-5783. [PMID: 31413573 PMCID: PMC6662516 DOI: 10.2147/ijn.s192779] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering embraces the potential of recreating and replacing defective body parts by advancements in the medical field. Being a biocompatible nanomaterial with outstanding physical, chemical, optical, and biological properties, graphene-based materials were successfully employed in creating the perfect scaffold for a range of organs, starting from the skin through to the brain. Investigations on 2D and 3D tissue culture scaffolds incorporated with graphene or its derivatives have revealed the capability of this carbon material in mimicking in vivo environment. The porous morphology, great surface area, selective permeability of gases, excellent mechanical strength, good thermal and electrical conductivity, good optical properties, and biodegradability enable graphene materials to be the best component for scaffold engineering. Along with the apt microenvironment, this material was found to be efficient in differentiating stem cells into specific cell types. Furthermore, the scope of graphene nanomaterials in liver tissue engineering as a promising biomaterial is also discussed. This review critically looks into the unlimited potential of graphene-based nanomaterials in future tissue engineering and regenerative therapy.
Collapse
Affiliation(s)
- Renu Geetha Bai
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Kasturi Muthoosamy
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Sivakumar Manickam
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Ali Hilal-Alnaqbi
- Electromechanical Technology, Abu Dhabi Polytechnic, Abu Dhabi, United Arab Emirates
| |
Collapse
|
52
|
Ahn CB, Son KH, Yu YS, Kim TH, Lee JI, Lee JW. Development of a flexible 3D printed scaffold with a cell-adhesive surface for artificial trachea. Biomed Mater 2019; 14:055001. [DOI: 10.1088/1748-605x/ab2a6c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
53
|
Trevisol TC, Langbehn RK, Battiston S, Immich APS. Nonwoven membranes for tissue engineering: an overview of cartilage, epithelium, and bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1026-1049. [PMID: 31106705 DOI: 10.1080/09205063.2019.1620592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Scaffold-type biomaterials are crucial for application in tissue engineering. Among them, the use of a nonwoven scaffold has grown in recent years and has been widely investigated for the regeneration of different types of tissues. Several polymers, whether they are synthetic, biopolymers or both, have been used to produce a scaffold that can mimic the natural tissue to which it will be applied to. The scaffolds used in tissue engineering must be biocompatible and allow cell adhesion and proliferation to be applied in tissue engineering. In addition, the scaffolds should maintain the mechanical properties and architecture of the desired tissue. Nonwoven fabrics have produced good results and are more extensively applied for the regeneration of cartilage, epithelial and bone tissues. Recent advances in tissue engineering have shown promising results, however, no ideal material or standardization parameters and characteristics of the materials were obtained. The present review provides an overview of the application of nonwoven scaffolds, including the main results obtained regarding the properties of the biomaterials and their applications in vitro and in vivo, focusing on the cartilaginous, the epithelium, and bone tissue regeneration.
Collapse
Affiliation(s)
- Thalles Canton Trevisol
- a Department of Chemical and Food Engineering, Technological Center , Federal University of Santa Catarina , Florianópolis , Brazil
| | - Rayane Kunert Langbehn
- a Department of Chemical and Food Engineering, Technological Center , Federal University of Santa Catarina , Florianópolis , Brazil
| | - Suellen Battiston
- a Department of Chemical and Food Engineering, Technological Center , Federal University of Santa Catarina , Florianópolis , Brazil
| | - Ana Paula Serafini Immich
- b Department of Textile Engineering, Blumenau campus , Federal University of Santa Catarina , Blumenau , Brazil
| |
Collapse
|
54
|
Faturechi R, Hashemi A, Abolfathi N, Solouk A, Seifalian A. Fabrications of small diameter compliance bypass conduit using electrospinning of clinical grade polyurethane. Vascular 2019; 27:636-647. [PMID: 31116695 DOI: 10.1177/1708538119850994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Objective Compliance and viscoelastic mismatches of small diameter vascular conduits and host arteries have been the cause of conduit’s failure. Methods To reduce these mismatches, the aim of this study was to develop and characterize a polyurethane conduit, which mimics the viscoelastic behaviors of human arteries. Electrospinning technique was used to fabricate tubular polyurethane conduits with similar properties of the human common carotid artery. This was achieved by manipulating the fiber diameter by altering the syringe flow rate of the solution. The mechanical and viscoelastic properties of the fabricated electrospun polyurethane conduits were, then, compared with commercially available vascular conduits, expanded polytetrafluoroethylene, polyethylene terephthalate (Dacron®) and the healthy human common carotid arteries. In addition, a comprehensive constitutive model was proposed to capture the visco-hyperelastic behavior of the synthetic electrospun polyurethanes, commercial conduits and human common carotid arteries. Results Results showed that increasing the fiber diameter of electrospun polyurethanes from 114 to 190 nm reduced Young’s modulus from 8 to 2 MPa. Also, thicker fiber diameter yielded in higher conduits’ viscosity. Furthermore, the results revealed that proposed visco-hyperelastic model is strongly able to fit the experimental data with great precision which proofs the reliability of the proposed model to address both nonlinear elasticity and viscoelasticity of the electrospun polyurethanes, commercial conduits and human common carotid arteries. Conclusions In conclusion, statistical analysis revealed that the elastic and viscous properties of 190 nm fiber diameter conduit are very similar to that of human common carotid artery in comparison to the commercial expanded polytetrafluoroethylene and Dacron® that are up to nine and seven times stiffer than natural vessels. Therefore, based on our findings, from the mechanical point of view, by considering the amount of Young’s modulus, compliance, distensibility and viscoelastic behavior, the fabricated electrospun polyurethane with fiber diameter of 189.6 ± 52.89 nm is an optimum conduit with promising potential for substituting natural human vessels.
Collapse
Affiliation(s)
- Rahim Faturechi
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Ata Hashemi
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Nabiollah Abolfathi
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (Ltd), The London BioScience Innovation Centre, London, UK
| |
Collapse
|
55
|
Ge S, Xi Y, Du R, Ren Y, Xu Z, Tan Y, Wang Y, Yin T, Wang G. Inhibition of in-stent restenosis after graphene oxide double-layer drug coating with good biocompatibility. Regen Biomater 2019; 6:299-309. [PMID: 31616567 PMCID: PMC6783699 DOI: 10.1093/rb/rbz010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, we designed a double layer-coated vascular stent of 316L stainless steel using an ultrasonic spray system to achieve both antiproliferation and antithrombosis. The coating included an inner layer of graphene oxide (GO) loaded with docetaxel (DTX) and an outer layer of carboxymethyl chitosan (CMC) loaded with heparin (Hep). The coated surface was uniform without aggregation and shedding phenomena before and after stent expanded. The coating treatment was able to inhibit the adhesion and activation of platelets and the proliferation and migration of smooth muscle cells, indicating the excellent biocompatibility and antiproliferation ability. The toxicity tests showed that the GO/DTX and CMC/Hep coating did not cause deformity and organ abnormalities in zebrafish under stereomicroscope. The stents with GO double-layer coating were safe and could effectively prevent thrombosis and in-stent restenosis after the implantation into rabbit carotid arteries for 4–12 weeks.
Collapse
Affiliation(s)
- Shuang Ge
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yadong Xi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Ruolin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yuzhen Ren
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Youhua Tan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yazhou Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
56
|
Asakura T, Tanaka T, Tanaka R. Advanced Silk Fibroin Biomaterials and Application to Small-Diameter Silk Vascular Grafts. ACS Biomater Sci Eng 2019; 5:5561-5577. [PMID: 33405687 DOI: 10.1021/acsbiomaterials.8b01482] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As the incidences of cardiovascular diseases have been on the rise in recent years, the need for small-diameter artificial vascular grafts is increasing globally. Although synthetic polymers such as expanded polytetrafluoroethylene or poly(ethylene terephthalate) have been successfully used for artificial vascular grafts ≥6 mm in diameter, they fail at smaller diameters (<6 mm) due to thrombus formation and intimal hyperplasia. Thus, development of vascular grafts for small diameter vessel replacement that are <6 mm in diameter remains a major clinical challenge. Silk fibroin (SF) from Bombyx mori silkworm is well-known as an excellent textile and also has been used as suture material in surgery for more than 2000 years. Many attempts to develop small-diameter SF vascular grafts with <6 mm in diameter have been reported. Here, research and development in small-diameter vascular grafts with SF are reviewed as follows: (1) the heterogeneous structure of SF fiber (Silk II), including the packing arrangements and type II β-turn structure of SF (Silk I*) before spinning; (2) SF modified by transgenic silkworm, which is more suitable for vascular grafts; (3) preparation of small-diameter SF vascular grafts; (4) characterization of SF in the hydrated state, including dynamics of water molecules by nuclear magnetic resonance; and (5) evaluation of the SF grafts by in vivo implantation experiment. According to the findings, SF is a promising material for small-diameter vascular graft development.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Takashi Tanaka
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Ryo Tanaka
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
57
|
Tamimi EA, Ardila DC, Ensley BD, Kellar RS, Vande Geest J. Computationally optimizing the compliance of multilayered biomimetic tissue engineered vascular grafts. J Biomech Eng 2019; 141:2725826. [PMID: 30778568 DOI: 10.1115/1.4042902] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Indexed: 12/19/2022]
Abstract
Coronary artery bypass grafts used to treat coronary artery disease often fail due to compliance mismatch. In this study, we have developed an experimental/computational approach to fabricate an acellular biomimetic hybrid tissue engineered vascular graft composed of alternating layers of electrospun porcine gelatin/polycaprolactone (PCL) and human tropoelastin/PCL blends with the goal of compliance-matching to rat abdominal aorta, while maintaining specific geometrical constraints. Polymeric blends at three different gelatin:PCL (G:PCL) and tropoelastin:PCL (T:PCL) ratios (80:20, 50:50 and 20:80) were mechanically characterized. The stress-strain data was used to develop predictive models, which were used as part of an optimization scheme that was implemented to determine the ratios of G:PCL and T:PCL and the thickness of the individual layers within a tissue engineered vascular graft that would compliance match a target compliance value. The hypocompliant, isocompliant, and hypercompliant grafts had target compliance values of 0.000256, 0.000568 and 0.000880 mmHg-1, respectively. Experimental validation of the optimization demonstrated that the hypercompliant and isocompliant grafts were not statistically significant from their respective target compliance values (p-value=0.37 and 0.89, respectively). The experimental compliance value of the hypocompliant graft was statistically significant than their target compliance value (p-value=0.047). We have successfully demonstrated a design optimization scheme that can be used to fabricate multilayered and biomimetic vascular grafts with targeted geometry and compliance.
Collapse
Affiliation(s)
- Ehab Akram Tamimi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Diana Catalina Ardila
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Robert S Kellar
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, AZ, 86011; Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, 86011; Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011
| | - Jonathan Vande Geest
- ASME Member, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States, McGowan Institute for Regenerative Medicine, 300 Technology Drive, Pittsburgh, PA, United State 15219
| |
Collapse
|
58
|
Mi H, Jing X, Li Z, Lin Y, Thomson JA, Turng L. Fabrication and modification of wavy multicomponent vascular grafts with biomimetic mechanical properties, antithrombogenicity, and enhanced endothelial cell affinity. J Biomed Mater Res B Appl Biomater 2019; 107:2397-2408. [DOI: 10.1002/jbm.b.34333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 12/31/2018] [Accepted: 01/05/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Hao‐Yang Mi
- Wisconsin Institute for DiscoveryUniversity of Wisconsin–Madison Madison Wisconsin 53715 USA
- Department of Mechanical EngineeringUniversity of Wisconsin–Madison Madison Wisconsin, 53706 USA
| | - Xin Jing
- Wisconsin Institute for DiscoveryUniversity of Wisconsin–Madison Madison Wisconsin 53715 USA
- Department of Mechanical EngineeringUniversity of Wisconsin–Madison Madison Wisconsin, 53706 USA
- School of Packaging and Materials EngineeringHunan University of Technology Zhuzhou, 412007 China
| | - Zhu‐Tong Li
- Wisconsin Institute for DiscoveryUniversity of Wisconsin–Madison Madison Wisconsin 53715 USA
- Department of Mechanical EngineeringUniversity of Wisconsin–Madison Madison Wisconsin, 53706 USA
| | - Yu‐Jyun Lin
- Wisconsin Institute for DiscoveryUniversity of Wisconsin–Madison Madison Wisconsin 53715 USA
| | - James A. Thomson
- Morgridge Institute for ResearchUniversity of Wisconsin–Madison Madison Wisconsin, 53715 USA
| | - Lih‐Sheng Turng
- Wisconsin Institute for DiscoveryUniversity of Wisconsin–Madison Madison Wisconsin 53715 USA
- Department of Mechanical EngineeringUniversity of Wisconsin–Madison Madison Wisconsin, 53706 USA
| |
Collapse
|
59
|
The Effect of Nanoclays on Nanofiber Density Gradient in 3D Scaffolds Fabricated By Divergence Electrospinning. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.promfg.2019.06.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
60
|
Aydogdu MO, Ekren N, Suleymanoglu M, Erdem-Kuruca S, Lin CC, Bulbul E, Erdol MN, Oktar FN, Terzi UK, Kilic O, Gunduz O. Novel electrospun polycaprolactone/graphene oxide/Fe3O4 nanocomposites for biomedical applications. Colloids Surf B Biointerfaces 2018; 172:718-727. [DOI: 10.1016/j.colsurfb.2018.09.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
|
61
|
Yadav M, Ahmad S, Chiu FC. Graphene oxide dispersed polyvinyl chloride/alkyd green nanocomposite film: Processing and physico-mechanical properties. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
62
|
Griffin M, Palgrave R, Baldovino-Medrano VG, Butler PE, Kalaskar DM. Argon plasma improves the tissue integration and angiogenesis of subcutaneous implants by modifying surface chemistry and topography. Int J Nanomedicine 2018; 13:6123-6141. [PMID: 30349241 PMCID: PMC6181122 DOI: 10.2147/ijn.s167637] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Tissue integration and vessel formation are important criteria for the successful implantation of synthetic biomaterials for subcutaneous implantation. OBJECTIVE We report the optimization of plasma surface modification (PSM) using argon (Ar), oxygen (O2) and nitrogen (N2) gases of a polyurethane polymer to enhance tissue integration and angiogenesis. METHODS The scaffold's bulk and surface characteristics were compared before and after PSM with either Ar, O2 and N2. The viability and adhesion of human dermal fibroblasts (HDFs) on the modified scaffolds were compared. The formation of extracellular matrix by the HDFs on the modified scaffolds was evaluated. Scaffolds were subcutaneously implanted in a mouse model for 3 months to analyze tissue integration, angiogenesis and capsule formation. RESULTS Surface analysis demonstrated that interfacial modification (chemistry, topography and wettability) achieved by PSM is unique and varies according to the gas used. O2 plasma led to extensive changes in interfacial properties, whereas Ar treatment caused moderate changes. N2 plasma caused the least effect on surface chemistry of the polymer. PSM-treated scaffolds significantly (P<0.05) enhanced HDF activity and growth over 21 days. Among all three gases, Ar modification showed the highest protein adsorption. Ar-modified scaffolds also showed a significant upregulation of adhesion-related proteins (vinculin, focal adhesion kinase, talin and paxillin; P<0.05) and extracellular matrix marker genes (collagen type I, fibronectin, laminin and elastin) and deposition of associated proteins by the HDFs. Subcutaneous implantation after 3 months demonstrated the highest tissue integration and angiogenesis and the lowest capsule formation on Ar-modified scaffolds compared with O2- and N2-modified scaffolds. CONCLUSION PSM using Ar is a cost-effective and efficient method to improve the tissue integration and angiogenesis of subcutaneous implants.
Collapse
Affiliation(s)
- Michelle Griffin
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, UK,
- Royal Free London NHS Foundation Trust Hospital, London, UK
- The Charles Wolfson Center for Reconstructive Surgery, Royal Free London NHS Foundation Trust Hospital, London, UK
| | - Robert Palgrave
- Department of Chemistry, University College London, London, UK
| | | | - Peter E Butler
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, UK,
- Royal Free London NHS Foundation Trust Hospital, London, UK
- The Charles Wolfson Center for Reconstructive Surgery, Royal Free London NHS Foundation Trust Hospital, London, UK
| | - Deepak M Kalaskar
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, UK,
- UCL Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, London, UK,
| |
Collapse
|
63
|
Jirofti N, Mohebbi-Kalhori D, Samimi A, Hadjizadeh A, Kazemzadeh GH. Small-diameter vascular graft using co-electrospun composite PCL/PU nanofibers. Biomed Mater 2018; 13:055014. [DOI: 10.1088/1748-605x/aad4b5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
64
|
Chernonosova VS, Gostev AA, Gao Y, Chesalov YA, Shutov AV, Pokushalov EA, Karpenko AA, Laktionov PP. Mechanical Properties and Biological Behavior of 3D Matrices Produced by Electrospinning from Protein-Enriched Polyurethane. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1380606. [PMID: 30046587 PMCID: PMC6038672 DOI: 10.1155/2018/1380606] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/16/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023]
Abstract
Properties of matrices manufactured by electrospinning from solutions of polyurethane Tecoflex EG-80A with gelatin in 1,1,1,3,3,3-hexafluoroisopropanol were studied. The concentration of gelatin added to the electrospinning solution was shown to influence the mechanical properties of matrices: the dependence of matrix tensile strength on protein concentration is described by a bell-shaped curve and an increase in gelatin concentration added to the elasticity of the samples. SEM, FTIR spectroscopy, and mechanical testing demonstrate that incubation of matrices in phosphate buffer changes the structure of the fibers and alters the polyurethane-gelatin interactions, increasing matrix durability. The ability of the matrices to maintain adhesion and proliferation of human endothelial cells was studied. The results suggest that matrices made of 3% polyurethane solution with 15% gelatin (wt/wt) and treated with glutaraldehyde are the optimal variant for cultivation of endothelial cells.
Collapse
Affiliation(s)
- Vera S. Chernonosova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia
| | - Alexander A. Gostev
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia
| | - Yun Gao
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Yuriy A. Chesalov
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Alexey V. Shutov
- Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Evgeniy A. Pokushalov
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia
| | - Andrey A. Karpenko
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia
| | - Pavel P. Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia
| |
Collapse
|
65
|
Mi HY, Jing X, Thomsom JA, Turng LS. Promoting Endothelial Cell Affinity and Antithrombogenicity of Polytetrafluoroethylene (PTFE) by Mussel-Inspired Modification and RGD/Heparin Grafting. J Mater Chem B 2018; 6:3475-3485. [PMID: 30455952 PMCID: PMC6238965 DOI: 10.1039/c8tb00654g] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
When used as small-diameter vascular grafts (SDVGs), synthetic biomedical materials like polytetrafluoroethylene (PTFE) may induce thrombosis and intimal hyperplasia due to the lack of an endothelial cell layer. Modification of the PTFE in an aqueous solution is difficult because of its hydrophobicity. Herein, aiming to simultaneously promote endothelial cell affinity and antithrombogenicity, a mussel-inspired modification approach was employed to enable the grafting of various bioactive molecules like RGD and heparin. This approach involves a series of pragmatic steps including oxygen plasma treatment, dopamine (DA) coating, polyethylenimine (PEI) grafting, and RGD or RGD/heparin immobilization. Successful modification in each step was verified via Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Plasma treatment increased the hydrophilicity of PTFE, thereby allowing it to be efficiently coated with dopamine. Grafting of dopamine, RGD, and heparin led to an increase in surface roughness and a decrease in water contact angle due to increased surface energy. Platelet adhesion increased after dopamine and RGD modification, but it dramatically decreased when heparin was introduced. All of these modifications, especially the incorporation of RGD, showed favorable effects on endothelial cell attachment, viability, and proliferation. Due to strong cell-substrate interactions between endothelial cells and RGD, the RGD/heparin-grafted PTFE demonstrated high endothelial cell affinity. This facile modification method is highly suitable for all hydrophobic surfaces and provides a promising technique for SDVG modification to stimulate fast endothelialization and effective antithrombosis.
Collapse
Affiliation(s)
- Hao-Yang Mi
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, 53715, USA
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou, 510640, China
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, 53706, USA
| | - Xin Jing
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, 53715, USA
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou, 510640, China
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, 53706, USA
| | - James A. Thomsom
- Morgridge Institute for Research, University of Wisconsin–Madison, WI, 53715, USA
| | - Lih-Sheng Turng
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, 53715, USA
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, 53706, USA
| |
Collapse
|
66
|
Yu E, Mi HY, Zhang J, Thomson JA, Turng LS. Development of biomimetic thermoplastic polyurethane/fibroin small-diameter vascular grafts via a novel electrospinning approach. J Biomed Mater Res A 2018; 106:985-996. [PMID: 29143442 PMCID: PMC5826852 DOI: 10.1002/jbm.a.36297] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/28/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022]
Abstract
A new electrospinning approach for fabricating vascular grafts with a layered, circumferentially aligned, and micro-wavy fibrous structure similar to natural elastic tissues has been developed. The customized electrospinning collector was able to generate wavy fibers using the dynamic "jump rope" collecting process, which also solved the sample removal problem for mandrel-type collectors. In this study, natural silk fibroin and synthetic thermoplastic polyurethane (TPU) were combined at different weight ratios to produce hybrid small-diameter vascular grafts. The purpose of combining these two materials was to leverage the bioactivity and tunable mechanical properties of these natural and synthetic materials. Results showed that the electrospun fiber morphology was highly influenced by the material compositions and solvents employed. All of the TPU/fibroin hybrid grafts had mechanical properties comparable to natural blood vessels. The circumferentially aligned and wavy biomimetic configuration provided the grafts with a sufficient toe region and the capacity for long-term usage under repeated dilatation and contraction. Cell culture tests with human endothelial cells (EC) also revealed high cell viability and good biocompatibility for these grafts. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 985-996, 2018.
Collapse
Affiliation(s)
- Emily Yu
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, USA, 53706
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, USA, 53715
| | - Hao-Yang Mi
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, USA, 53706
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, USA, 53715
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou, China
| | - Jue Zhang
- Morgridge Institute for Research, WI, USA, 53715
| | | | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, USA, 53706
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, USA, 53715
| |
Collapse
|
67
|
Mi HY, Jing X, Yu E, Wang X, Li Q, Turng LS. Manipulating the structure and mechanical properties of thermoplastic polyurethane/polycaprolactone hybrid small diameter vascular scaffolds fabricated via electrospinning using an assembled rotating collector. J Mech Behav Biomed Mater 2018; 78:433-441. [DOI: 10.1016/j.jmbbm.2017.11.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 01/22/2023]
|
68
|
Magnetic electrospun short nanofibers wrapped graphene oxide as a promising biomaterials for guiding cellular behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:314-320. [DOI: 10.1016/j.msec.2017.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/17/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023]
|
69
|
Khodadoust M, Mohebbi-Kalhori D, Jirofti N. Fabrication and Characterization of Electrospun Bi-Hybrid PU/PET Scaffolds for Small-Diameter Vascular Grafts Applications. Cardiovasc Eng Technol 2017; 9:73-83. [PMID: 29196952 DOI: 10.1007/s13239-017-0338-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 11/18/2017] [Indexed: 11/27/2022]
Abstract
In spite of advances have been made during the past decades, the problems associated with small-diameter vascular grafts, including low patency and compliance mismatch and in consequence of that thrombosis, aneurysm and intimal hyperplasia are still challenges. To address these problems, net polyurethane (PU) and poly (ethylene terephthalate) (PET) polymers and hybrid PU/PET were electrospun to create three different types of small-diameter vascular scaffolds due to their unique physicochemical characteristics: PU, PET, and novel hybrid PU/PET scaffolds. The results show that the PU and PET composite can improve the mechanical properties of the tissue-engineered vascular scaffolds in the range of the native vessels where the non-cytotoxicity characteristic of these well-known polymers is still immutable. The compliance and stiffness factor of the fabricated hybrid scaffolds were 4.468 ± 0.177 and 22.718 ± 0.896%/0.01 mmHg, respectively, which were significantly different with that of the net PU and PET electrospun scaffolds. Other properties such as ultimate tensile stress (UTS) (3.56 ± 1.21 MPa) were also in good accordance with the native vessels. Furthermore, FT-IR analysis testified the presence of both PU and PET in the hybrid scaffolds. Overall, we were able to fabricate a hybrid scaffold as a small-diameter vascular graft that mechanically matched the gold standard of blood vessel substitution.
Collapse
Affiliation(s)
- Marziyeh Khodadoust
- Chemical Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran
| | - Davod Mohebbi-Kalhori
- Chemical Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran. .,Institute of Nanotechnology, University of Sistan and Baluchestan, Zahedan, Iran. .,University of Sistan and Baluchestan Central Laboratory, Zahedan, Iran.
| | - Nafiseh Jirofti
- Chemical Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
70
|
Synergistic effects of retinoic acid and graphene oxide on the physicochemical and in-vitro properties of electrospun polyurethane scaffolds for bone tissue engineering. E-POLYMERS 2017. [DOI: 10.1515/epoly-2016-0304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractTissue engineering scaffolds simulate extracellular matrixes (ECMs) to promote healing processes of damaged tissues. In this investigation, ECM were simulated by retinoic acid-loaded polyurethane-graphene oxide nanofibers to regenerate bone defects. Scanning electron microscopy (SEM) micrographs, Fourier transform infrared (FTIR) spectrum and X-ray diffraction (XRD) patterns proved the synthesis of graphene oxide (GO) nanosheets. SEM micrographs of nanofibers demonstrated through the formation of homogeneous and bead free fibrous scaffolds that the diameter of fibers were reduced by decreasing the applied voltage in an electrospinning process and the addition of GO. According to the results, the addition of GO to the polyurethane (PU) solution led to an increase in mechanical strength which is the most important parameter in the hard tissue repair. The GO-containing scaffolds showed an increased wettability, swelling, biodegradation and drug release level. Release behavior in nanocomposite scaffolds followed the swelling and biodegradation mechanisms, so osteogenic expression was possible by incorporating retinoic acid (RA) in PU-GO nanofibrous scaffolds. Biological evaluations demonstrated that composite scaffolds are biocompatible and support cellular attachment in which RA-loaded samples represented better cellular spreading. In brief, nanocomposite fibers showed desired that the physicochemical, mechanical and biological properties and synergic effects of GO and RA in osteogenic activity of MG-63 cells produced favorable constructs for hard tissue engineering applications.
Collapse
|
71
|
Shin YC, Kang SH, Lee JH, Kim B, Hong SW, Han DW. Three-dimensional graphene oxide-coated polyurethane foams beneficial to myogenesis. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:762-774. [PMID: 28657493 DOI: 10.1080/09205063.2017.1348738] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of three dimensional (3D) scaffolds for promoting and stimulating cell growth is one of the greatest concerns in biomedical and tissue engineering. In the present study, novel biomimetic 3D scaffolds composed of polyurethane (PU) foam and graphene oxide (GO) nanosheets were designed, and their potential as 3D scaffolds for skeletal tissue regeneration was explored. The GO-coated PU foams (GO-PU foams) were characterized by scanning electron microscopy and Raman spectroscopy. It was revealed that the 3D GO-PU foams consisted of an interconnected foam-like network structure with an approximate 300 μm pore size, and the GO was uniformly distributed in the PU foams. On the other hand, the myogenic stimulatory effects of GO on skeletal myoblasts were also investigated. Moreover, the cellular behaviors of the skeletal myoblasts within the 3D GO-PU foams were evaluated by immunofluorescence analysis. Our findings showed that GO can significantly promote spontaneous myogenic differentiation without any myogenic factors, and the 3D GO-PU foams can provide a suitable 3D microenvironment for cell growth. Furthermore, the 3D GO-PU foams stimulated spontaneous myogenic differentiation via the myogenic stimulatory effects of GO. Therefore, this study suggests that the 3D GO-PU foams are beneficial to myogenesis, and can be used as biomimetic 3D scaffolds for skeletal tissue engineering.
Collapse
Affiliation(s)
- Yong Cheol Shin
- a Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea
| | - Seok Hee Kang
- a Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea
| | - Jong Ho Lee
- b Center for Biomaterials, Biomedical Research Institute , Korea Institute of Science and Technology , Seoul , Korea
| | - Bongju Kim
- c Dental Life Science Research Institute & Clinical Translational Research Center for Dental Science , Seoul National University Dental Hospital , Seoul , Korea
| | - Suck Won Hong
- a Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea.,d Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea
| | - Dong-Wook Han
- a Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea.,d Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea
| |
Collapse
|
72
|
Liu M, Zhou Z, Chai Y, Zhang S, Wu X, Huang S, Su J, Jiang J. Synthesis of cell composite alginate microfibers by microfluidics with the application potential of small diameter vascular grafts. Biofabrication 2017; 9:025030. [PMID: 28485303 DOI: 10.1088/1758-5090/aa71da] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fabrication of small diameter vascular grafts (SDVGs) with appropriate responses for clinical application is still challenging. In the present work, the production and characterization of solid alginate based microfibers as potential SDVG candidates through the method of microfluidics were considered original. A simple glass microfluidic device with a 'L-shape' cylindrical-flow channel in the microfluidic platform was developed. The gelation of microfibers occurred when the alginate solution and a CaCl2 solution were introduced as a core flow and as a sheath flow, respectively. The diameters of the microfibers could be controlled by varying the flow rates and the glass capillary tubes diameters at their tips. The generated microfibers had somewhat rough and porous surfaces, their suture retention strengths were comparable to the strength of other tissue engineered grafts. The encapsulated mesenchymal stem cells proliferated well in the microfibers, and showed a stable endothelialization under the angiogenesis effects of vascular endothelial growth factor and fibroblastic growth factor. The in vivo implant into the mice abdomens indicated that cell composite microfibers caused a mild host reaction. These encouraging results suggest great promise of the application of microfluidics as a future alternative in SDVGs engineering.
Collapse
Affiliation(s)
- Mingying Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Scaffaro R, Maio A, Lopresti F, Botta L. Nanocarbons in Electrospun Polymeric Nanomats for Tissue Engineering: A Review. Polymers (Basel) 2017; 9:E76. [PMID: 30970753 PMCID: PMC6432463 DOI: 10.3390/polym9020076] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/17/2017] [Indexed: 01/01/2023] Open
Abstract
Electrospinning is a versatile process technology, exploited for the production of fibers with varying diameters, ranging from nano- to micro-scale, particularly useful for a wide range of applications. Among these, tissue engineering is particularly relevant to this technology since electrospun fibers offer topological structure features similar to the native extracellular matrix, thus providing an excellent environment for the growth of cells and tissues. Recently, nanocarbons have been emerging as promising fillers for biopolymeric nanofibrous scaffolds. In fact, they offer interesting physicochemical properties due to their small size, large surface area, high electrical conductivity and ability to interface/interact with the cells/tissues. Nevertheless, their biocompatibility is currently under debate and strictly correlated to their surface characteristics, in terms of chemical composition, hydrophilicity and roughness. Among the several nanofibrous scaffolds prepared by electrospinning, biopolymer/nanocarbons systems exhibit huge potential applications, since they combine the features of the matrix with those determined by the nanocarbons, such as conductivity and improved bioactivity. Furthermore, combining nanocarbons and electrospinning allows designing structures with engineered patterns at both nano- and microscale level. This article presents a comprehensive review of various types of electrospun polymer-nanocarbon currently used for tissue engineering applications. Furthermore, the differences among graphene, carbon nanotubes, nanodiamonds and fullerenes and their effect on the ultimate properties of the polymer-based nanofibrous scaffolds is elucidated and critically reviewed.
Collapse
Affiliation(s)
- Roberto Scaffaro
- Department of Civil, Environmental, Aerospace, Materials Engineering, RU INSTM, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy.
| | - Andrea Maio
- Department of Civil, Environmental, Aerospace, Materials Engineering, RU INSTM, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy.
| | - Francesco Lopresti
- Department of Civil, Environmental, Aerospace, Materials Engineering, RU INSTM, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy.
| | - Luigi Botta
- Department of Civil, Environmental, Aerospace, Materials Engineering, RU INSTM, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy.
| |
Collapse
|
74
|
Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017; 117:1826-1914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
Collapse
Affiliation(s)
- Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
75
|
Huang A, Jiang Y, Napiwocki B, Mi H, Peng X, Turng LS. Fabrication of poly(ε-caprolactone) tissue engineering scaffolds with fibrillated and interconnected pores utilizing microcellular injection molding and polymer leaching. RSC Adv 2017. [DOI: 10.1039/c7ra06987a] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Three-dimensional fibrillated interconnected porous poly(ε-caprolactone) scaffolds were prepared by microcellular injection molding and polymer leaching.
Collapse
Affiliation(s)
- An Huang
- National Engineering Research Center of Novel Equipment for Polymer Processing
- South China University of Technology
- Guangzhou
- China
- Department of Mechanical Engineering
| | - Yongchao Jiang
- Department of Mechanical Engineering
- University of Wisconsin-Madison
- Madison
- USA
- Wisconsin Institute for Discovery
| | - Brett Napiwocki
- Wisconsin Institute for Discovery
- University of Wisconsin-Madison
- Madison
- USA
- Department of Biomedical Engineering
| | - Haoyang Mi
- National Engineering Research Center of Novel Equipment for Polymer Processing
- South China University of Technology
- Guangzhou
- China
- Department of Mechanical Engineering
| | - Xiangfang Peng
- National Engineering Research Center of Novel Equipment for Polymer Processing
- South China University of Technology
- Guangzhou
- China
| | - Lih-Sheng Turng
- Department of Mechanical Engineering
- University of Wisconsin-Madison
- Madison
- USA
- Wisconsin Institute for Discovery
| |
Collapse
|
76
|
Yu E, Zhang J, Thomson JA, Turng LS. Fabrication and Characterization of Electrospun Thermoplastic Polyurethane/Fibroin Small-Diameter Vascular Grafts for Vascular Tissue Engineering. ACTA ACUST UNITED AC 2016; 31:638-646. [PMID: 29033499 DOI: 10.3139/217.3247] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The demand for small-diameter blood vessel substitutes has been increasing due to a shortage of autograft vessels and problems with thrombosis and intimal hyperplasia with synthetic grafts. In this study, hybrid small-diameter vascular grafts made of thermoplastic polyurethane (TPU) and silk fibroin, which possessed a hybrid fibrous structure of an aligned inner layer and a random outer layer, were fabricated by the electrospinning technique using a customized striated collector that generated both aligned and random fibers simultaneously. A methanol post-treatment process induced the transition of fibroin protein conformation from the water-soluble, amorphous, and less ordered structures to the water-insoluble β-sheet structures that possessed robust mechanical properties and relatively slow proteolytic degradation. The methanol post-treatment also created crimped fibers that mimicked the wavy structure of collagen fibers in natural blood vessels. Ultrafine nanofibers and nanowebs were found on the electrospun TPU/fibroin samples, which effectively increased the surface area for cell adhesion and migration. Cyclic circumferential tensile test results showed compatible mechanical properties for grafts made of a soft TPU/fibroin blend compared to human coronary arteries. In addition, cell culture tests with endothelial cells after 6 and 60 days of culture exhibited high cell viability and good biocompatibility of TPU/fibroin grafts, suggesting the potential of applying electrospun TPU/fibroin grafts in vascular tissue engineering.
Collapse
Affiliation(s)
- E Yu
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - J Zhang
- Morgridge Institute for Research, Madison, WI, USA
| | - J A Thomson
- Morgridge Institute for Research, Madison, WI, USA
| | - L-S Turng
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
77
|
Boire TC, Balikov DA, Lee Y, Guth CM, Cheung-Flynn J, Sung HJ. Biomaterial-Based Approaches to Address Vein Graft and Hemodialysis Access Failures. Macromol Rapid Commun 2016; 37:1860-1880. [PMID: 27673474 PMCID: PMC5156561 DOI: 10.1002/marc.201600412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/15/2016] [Indexed: 12/19/2022]
Abstract
Veins used as grafts in heart bypass or as access points in hemodialysis exhibit high failure rates, thereby causing significant morbidity and mortality for patients. Interventional or revisional surgeries required to correct these failures have been met with limited success and exorbitant costs, particularly for the US Centers for Medicare & Medicaid Services. Vein stenosis or occlusion leading to failure is primarily the result of neointimal hyperplasia. Systemic therapies have achieved little long-term success, indicating the need for more localized, sustained, biomaterial-based solutions. Numerous studies have demonstrated the ability of external stents to reduce neointimal hyperplasia. However, successful results from animal models have failed to translate to the clinic thus far, and no external stent is currently approved for use in the US to prevent vein graft or hemodialysis access failures. This review discusses current progress in the field, design considerations, and future perspectives for biomaterial-based external stents. More comparative studies iteratively modulating biomaterial and biomaterial-drug approaches are critical in addressing mechanistic knowledge gaps associated with external stent application to the arteriovenous environment. Addressing these gaps will ultimately lead to more viable solutions that prevent vein graft and hemodialysis access failures.
Collapse
Affiliation(s)
- Timothy C Boire
- Department of Biomedical Engineering, Vanderbilt University, 37235, Nashville, TN, USA
| | - Daniel A Balikov
- Department of Biomedical Engineering, Vanderbilt University, 37235, Nashville, TN, USA
| | - Yunki Lee
- Department of Biomedical Engineering, Vanderbilt University, 37235, Nashville, TN, USA
| | - Christy M Guth
- Division of Vascular Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - Joyce Cheung-Flynn
- Division of Vascular Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, 37235, Nashville, TN, USA
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, 120-752, Republic of Korea
| |
Collapse
|
78
|
Shao W, He J, Wang Q, Cui S, Ding B. Biomineralized Poly(l-lactic-co-glycolic acid)/Graphene Oxide/Tussah Silk Fibroin Nanofiber Scaffolds with Multiple Orthogonal Layers Enhance Osteoblastic Differentiation of Mesenchymal Stem Cells. ACS Biomater Sci Eng 2016; 3:1370-1380. [DOI: 10.1021/acsbiomaterials.6b00533] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weili Shao
- Henan
Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, 450007 Zhengzhou, China
- Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007, China
| | - Jianxin He
- Henan
Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, 450007 Zhengzhou, China
- Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007, China
| | - Qian Wang
- Henan
Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, 450007 Zhengzhou, China
- Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007, China
| | - Shizhong Cui
- Henan
Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, 450007 Zhengzhou, China
- Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007, China
| | - Bin Ding
- Henan
Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, 450007 Zhengzhou, China
- Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007, China
- Nanomaterials
Research Center, Modern Textile Institute, Donghua University, Shanghai 200051, China
| |
Collapse
|
79
|
In vitro screening procedure for characterization of thrombogenic properties of plasma treated surfaces. Biointerphases 2016; 11:029808. [PMID: 27154919 DOI: 10.1116/1.4948808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Estimation of thrombogenic surface properties is an important aspect of hemocompatibility studies. To improve our understanding of interaction between blood and biomaterial surfaces, there is a need to employ standardized methods that are both effective and efficient. This contribution details a systematic approach for the in vitro analysis of plasma modified polymer surfaces and human blood platelet interaction, following the recently introduced ISO 10933-4 guidelines. A holistic multistep process is presented that considers all aspects of testing procedure, including blood collection, platelet function testing, and incubation parameters, right through to a comparison and evaluation of the different methods and analysis available. In terms of detection and analysis, confocal light microscopy is shown to offer many advantages over the widely used scanning electron microscopy technique; this includes simpler, less-invasive sample preparation, and less time-consuming analysis procedure. On the other hand, as an alternative to microscopy techniques, toxicology sulforhodamine B based assay (TOX assay) was also evaluated. It has been shown that the assay could be used for rapid estimation of relative concentration of blood platelets on the surface of plasma treated materials, especially when samples do not allow the implementation of microscopy techniques.
Collapse
|
80
|
Mi HY, Jing X, Salick MR, Cordie TM, Turng LS. Carbon nanotube (CNT) and nanofibrillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent. J Mech Behav Biomed Mater 2016; 62:417-427. [PMID: 27266475 DOI: 10.1016/j.jmbbm.2016.05.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022]
Abstract
Although phase separation is a simple method of preparing tissue engineering scaffolds, it suffers from organic solvent residual in the scaffold. Searching for nontoxic solvents and developing effective solvent removal methods are current challenges in scaffold fabrication. In this study, thermoplastic polyurethane (TPU) scaffolds containing carbon nanotubes (CNTs) or nanofibrillated cellulose fibers (NFCs) were prepared using low toxicity dimethyl sulfoxide (DMSO) as a solvent. The effects of two solvent removal approaches on the final scaffold morphology were studied. The freeze drying method caused large pores, with small pores on the pore walls, which created connections between the pores. Meanwhile, the leaching and freeze drying method led to interconnected fine pores with smaller pore diameters. The nucleation effect of CNTs and the phase separation behavior of NFCs in the TPU solution resulted in significant differences in the microstructures of the resulting scaffolds. The mechanical performance of the nanocomposite scaffolds with different morphologies was investigated. Generally, the scaffolds with a fine pore structure showed higher compressive properties, and both the CNTs and NFCs improved the compressive properties of the scaffolds, with greater enhancement found in TPU/NFC nanocomposite scaffolds. In addition, all scaffolds showed good sustainability under cyclical load bearing, and the biocompatibility of the scaffolds was verified via 3T3 fibroblast cell culture.
Collapse
Affiliation(s)
- Hao-Yang Mi
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou 510640, China; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xin Jing
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Max R Salick
- Department of Engineering Physics, University of Wisconsin-Madison, WI 53706, USA
| | - Travis M Cordie
- Department of Biomedical, University of Wisconsin-Madison, WI 53706, USA
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
81
|
Bhattacharya M. Polymer Nanocomposites-A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E262. [PMID: 28773388 PMCID: PMC5502926 DOI: 10.3390/ma9040262] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/28/2022]
Abstract
Nanofilled polymeric matrices have demonstrated remarkable mechanical, electrical, and thermal properties. In this article we review the processing of carbon nanotube, graphene, and clay montmorillonite platelet as potential nanofillers to form nanocomposites. The various functionalization techniques of modifying the nanofillers to enable interaction with polymers are summarized. The importance of filler dispersion in the polymeric matrix is highlighted. Finally, the challenges and future outlook for nanofilled polymeric composites are presented.
Collapse
Affiliation(s)
- Mrinal Bhattacharya
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
82
|
Zhan J, Morsi Y, Ei-Hamshary H, Al-Deyab SS, Mo X. Preparation and characterization of electrospun in-situ cross-linked gelatin-graphite oxide nanofibers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:385-402. [PMID: 26733331 DOI: 10.1080/09205063.2015.1133156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrospun gelatin(Gel) nanofibers scaffold has such defects as poor mechanical property and quick degradation due to high solubility. In this study, the in situ cross-linked electrospinning technique was used for the production of gelatin nanofibers. Deionized water was chosen as the spinning solvent and graphite oxide (GO) was chosen as the enhancer. The morphological structure, porosity, thermal property, moisture absorption, and moisture retention performance, hydrolysis resistance, mechanical property, and biocompatibility of the produced nanofibers were investigated. Compared with in situ cross-linked gelatin nanofibers scaffold, in situ cross-linked Gel-GO nanofibers scaffold has the following features: (1) the hydrophilicity, moisture absorption, and moisture retention performance slightly reduce, while the hydrolysis resistance is improved; (2) the breaking strength, breaking elongation, and Young's modulus are significantly improved; (3) the porosity slightly reduces while the biocompatibility considerably increases. The in situ cross-linked Gel-GO nanofibers scaffold is likely to be applied in such fields as drug delivery and scaffold for skin tissue engineering.
Collapse
Affiliation(s)
- Jianchao Zhan
- a Chemical Engineering and Biotechnology , College of Chemistry, Donghua University , Shanghai , P.R. China.,b College of Materials and Textile Engineering , Jiaxing University , Zhejiang Province , P.R. China
| | - Yosry Morsi
- c Faculty of Engineering and Industrial Sciences , Swinburne University of Technology , Hawthorn , Australia
| | - Hany Ei-Hamshary
- d Department of Chemistry , College of Science, King Saud University , Riyadh , Kingdom of Saudi Arabia.,e Faculty of Science, Department of Chemistry , Tanta University , Tanta , Egypt
| | - Salem S Al-Deyab
- d Department of Chemistry , College of Science, King Saud University , Riyadh , Kingdom of Saudi Arabia
| | - Xiumei Mo
- a Chemical Engineering and Biotechnology , College of Chemistry, Donghua University , Shanghai , P.R. China
| |
Collapse
|
83
|
Fabrication and characterisation of biomimetic, electrospun gelatin fibre scaffolds for tunica media-equivalent, tissue engineered vascular grafts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 61:473-83. [PMID: 26838874 DOI: 10.1016/j.msec.2015.12.081] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/02/2015] [Accepted: 12/28/2015] [Indexed: 11/20/2022]
Abstract
It is increasingly recognised that biomimetic, natural polymers mimicking the extracellular matrix (ECM) have low thrombogenicity and functional motifs that regulate cell-matrix interactions, with these factors being critical for tissue engineered vascular grafts especially grafts of small diameter. Gelatin constitutes a low cost substitute of soluble collagen but gelatin scaffolds so far have shown generally low strength and suture retention strength. In this study, we have devised the fabrication of novel, electrospun, multilayer, gelatin fibre scaffolds, with controlled fibre layer orientation, and optimised gelatin crosslinking to achieve not only compliance equivalent to that of coronary artery but also for the first time strength of the wet tubular acellular scaffold (swollen with absorbed water) same as that of the tunica media of coronary artery in both circumferential and axial directions. Most importantly, for the first time for natural scaffolds and in particular gelatin, high suture retention strength was achieved in the range of 1.8-1.94 N for wet acellular scaffolds, same or better than that for fresh saphenous vein. The study presents the investigations to relate the electrospinning process parameters to the microstructural parameters of the scaffold, which are further related to the mechanical performance data of wet, crosslinked, electrospun scaffolds in both circumferential and axial tubular directions. The scaffolds exhibited excellent performance in human smooth muscle cell (SMC) proliferation, with SMCs seeded on the top surface adhering, elongating and aligning along the local fibres, migrating through the scaffold thickness and populating a transverse distance of 186 μm and 240 μm 9 days post-seeding for scaffolds of initial dry porosity of 74 and 83%, respectively.
Collapse
|
84
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|